Guayule (Parthenium Argentatum Gray)

Total Page:16

File Type:pdf, Size:1020Kb

Guayule (Parthenium Argentatum Gray) GUAYULE (PARTHENIUM ARGENTATUM GRAY) A RUBBER-PLANT OF THE CHIHUAHUAN DESERT BY FRANCIS ERNEST LLOYD Professor of Plant Physiology, Alabama Polytechnic Institute WASHINGTON, D. C. SB PUBLISHED BY THE CARNEGIE INSTITUTION OF WASHINGTON 291 .G8L56X 1942 GUAYULE (PARTHENIUM ARGENTATUM GRAY) A RUBBER-PLANT OF THE CHIHUAHUAN DESERT BY FRANCIS ERNEST LLOYD Professor of Plant Physiology, Alabama Polytechnic Institute WASHINGTON, D. d PUBLISHED BY THE CARNEGIE INSTITUTION OF WASHINGTON 191 I CARNEGIE INSTITUTION OF WASHINGTON PUBLICATION NO. 139 Copies of this Book were first issued JUL271911 Reproduced by Lithograph May 1942 PRESS OF J. a L1PP1NCOTT COMPANY PHILADELPHIA, PA. PREFACE. In 1907 the author of the present paper was engaged by the Continental-Mexican Rubber Company and the Intercontinental Rub- ber Company to organize investigations looking toward the successful cultivation of a Mexican desert rubber plant, the guayule (Parthenium argentatum Gray). Dr. Theodore Whittelsey and Dr. J. E. Kirkwood later became identified with this undertaking, the former as chemist, the latter as assistant botanist. The headquarters for the investiga- tions were established at the Hacienda de Cedros, Partido de Mazapil* 2acatecas, Mexico. It was not a matter for congratulation that, at the close of a year, the directors found it inadvisable, for financial reasons consequent on the panic of 1907, to continue the department of inves- tigation. By the courtesy of the company, however, the author carried on his studies for some three months beyond the termination of his business relations with it, and this period, falling during the growing season of 1908, brought to light many important facts. Still further observations of capital importance, in part -on experiments begun in 1907 and 1908, were made by the writer in April 1909, while represent- ing the United States Rubber Company, a commission which could not have been prosecuted without the kind concurrence of President C. C, Thach and a number of the writer's colleagues at the Alabama Polytech- nic Institute. As silence was not imposed by the United States Rubber Company, it has been possible to include these observations. No less than hearty recognition is due also to Mr. W. H. Stayton, formerly captain, U. S. Navy, sometime president of the Continental- Mexican Rubber Company, and now president of the Texas Rubber Company. It is stating an open secret to say that it was through the initiative and enthusiasm of this gentleman that the work of the inves- tigation was undertaken and would have been continued but for cir- cumstances beyond his control. Mr. Stayton has shown a liberal and scientific'spirit, qualities not of necessity nor at all times associated. Thanks are due further to Prof. J. C. Arthur and Prof. W. G, Far- low for reports on various pathological matters; to Dr. M. T. Cook for contributing manuscript on the galls found on guayule; to Dr. A. D. Hopkins for a report on the guayule bark-borer; to Dr. L. 0. Howard and Dr. J. G. Sanders for the identification of certain insects; and to Prof. B. L. Robinson for his courtesy in causing a photograph of the type speci- men of guayule to be made. Mr. Charles S. Ridgway has rendered sub- stantial aid in the preparation of certain figures. The drawing for figure 5 was supplied by Professor Arthur; the nega- tive of plate 2, fig. B, was made by Dr. W. E. Hinds; Professor Trelease furnished the illustration (fig. 4) and description of the Cedros sotol, and kindly made several other determinations; the negatives of plate 3 and D iv Preface. plate 4, fig. A, were made by Mr. Victor Blanco. Dr. H. van der Linde obtained for me valuable material of irrigated plants from Caopas. Dr. Theo. Holm has afforded me the benefit of his criticism of the portion of this work treating of the anatomy, and has been good enough to examine inaccessible literature for me. Dr. W. E. Safford did a like service regarding a few pages in the first chapter. To Prof. W. L. Bray I am indebted for information about the Texas guayule fields, later verified by me personally; and to my colleagues, Prof. C. L. Hare and Prof. J. P. C. Southall, for assistance in making chemical analyses and for mathematical formulae, respectively. With reference to the chapters which follow, no pretensions are made with regard to completeness. The exhaustive study of a single plant from all points of view might well be numbered among the labors of fable. The reader is asked also to remember that the study of but a single growing-period was possible. Much of the experimentation, therefore, was done, as it eventually turned out, during the most un- favorable season; but in the case of field experiments this was not entirely a misfortune. That the theoretical bearing of many observa- tions and more refined methods of making them are less attended to than the matter warrants has been due to the urgent necessity of practical success. With these qualifications, the work may be regarded as a report on a unique opportunity, unhappily shortly terminated, to bring a hitherto feral desert plant under the subjugation of culture. That suc- cess may ultimately be attained is not an unreasonable nor an unwar- ranted expectation, for which statement the interested reader will find not a little evidence in what follows. FRANCIS ERNEST LLOYD. ALABAMA POLYTECHNIC INSTITUTE, January 1910. TABLE OF CONTENTS. Page. Preface iii List of plates ' vii CHAPTER I.—HISTORICAL ACCOUNT. Original discovery and description 3 The vulgar name 4 Primitive and later uses ] 5 History of manufacture. 7 Methods of extraction 8 The natural supply of shrub 10 Attempts at culture 1 a CHAPTER II.—THE ENVIRONMENT. Geographical distribution 13 Altitudinal distribution 13 Climate 14 Rainfall 14 Air-temperatures 15 Soil-temperatures 18 Soil-moisture 19 Relation of rainfall and temperature to growth 20 Relative humidity 21 Topography and soil 23 Density of growth 25 Bibtic relations 35 CHAPTER III.—DESCRIPTION OF THE GUAYULE. Seed 46 Seedling. 48 The mature plant 50 Root-system * 50 Retofios , 51 Method of branching 54 Biotypes 55 Size 56 Surface characters of the stem and method of determining age 57 Field plants 57 Irrigated plants * .. 58 The leaves ... 58 The inflorescence and the flowering period 59 The production of seed 60 CHAPTER IV.—REPRODUCTION. Methods of reproduction , - 61 Retofios, normal and induced : 6x Seed 68 Rate of reproduction and of growth. ^ 75 Rate of growth during germination. 75 Rate of growth in maturer plants beyond the seedling stage 79 Rate of growth in terms of stem-length 79 Rate of growth in earlier years after germination 79 Rate of growth in medium-sized plants 81 Rate of growth in irrigated plants. ,.,.. ... 84 Field plants 85 CHAPTER V.—AKATOXT AND HISTOLOG*. Root • 90 Primary structure , ,« .. ,\ ,. 90 Secondary structure. 90 Hypocotyl , ,.,.....- .,.. 96 Primary structure •.,..«•.. 96 Secondary structure *.... 99 Later secondary structure.. ,. ..,.,. IOX vi Table of Contents. CHAPTER V.—ANATOMY AND HISTOLOGY—Continued. Page. Age and structure in the seedling 104 ticotyl 105 e definitive stem 107 Primary structure 107 Secondary structure 109 Origin of the medullary and cortical stereome no Annular structure .......... 114 The effect of abundant water upon anatomical structure 116 Relative volumes of cortex and wood 117 Effect of various amounts of water of irrigation 121 Effect of drought following irrigation 122 Effect of irrigation on the physical characters of the wood 122 The peduncle 124 The leaf 125 Cotyledons. 125 Prophylls 126 The definitive leaf , 126 CHAPTER VI.—THE RESIN-CANALS IN THE GUAYULE. The canal-systems .. 165 Primary canals in the root and hypocotyl 165 Primary cortical canals „ . 166 Medullary canals ' > 169 The canals in the leaf 171 jPrimary canals in branches. 171 Secondary canals In root, hypocotyl, and stem 172 Canals in the peduncle.._.,> 172 The canals In retonos 173 The contents of the canals; their origin 174 The role' of resin.. .• « 174 Resin-content of guayule by analysis : 175 CHAPTER VII.—THE ORIGIN AND OCCURRENCE OF RUBBER. Methods. 176 General distribution of rubber in the plant 177 The appearance of rubber in richly loaded tissues..•., . 179 Behavior of peridermal divisions toward rubber 179 The development of rubber In the cell 180 Centers of secretion * 181 Rate of rubber secretion relative to growth.., 183 Rubber-content by chemical methods. 185 Variation In relative amount of rubber in field plants...................... 187 Relation of rubber and resin. .............................. 188 The significance of rubber......... 188 Summary. .* 190 CHAPTER VIII.-—VEGETATIVE REPRODUCTION. Induced root-regeneration. 193 Propagation by cuttings. 195 CHAPTER IX.—THE CULTIVATION OF GUAYULE. Forestal operations. 199 Present field operations. ........................................... x99 Suggested rules of practice,........................................ 200 Harvesting period.............. 202 Reseedlng barren ground,......................... 202 Cultural operations.................................................... 203 Seed 203 The raising of seedlings. 203 Irrigation.;....................................................,. 208 Transplanting.................................................... 209 H&rvestlag cultivated guayole...................................... 21© Catch crops, ...................................................... 210 Bibliography ........................................................... 211 Plates 1-21 and 40-46 are not included in the
Recommended publications
  • Author Index to USDA Technical Bulletins
    USD Index to USDA United States Department of Agriculture Technical Bulletins Compiled in March 2003 by: ARS Ellen Kay Miller Agricultural D.C. Reference Center Research Service National Agricultural Library Agricultural Research Service U.S. Department of Agriculture NAL Updated November 2003 National Agricultural Library National Agricultural Library Cataloging Record: Miller, Ellen K. Index to USDA Technical Bulletins 1. United States. Dept. of Agriculture--Periodicals, Indexes. I. Title. aZ5073.I52-1993 Contents USDA Technical Bulletins by Title USDA Technical Bulletins by Number - 1-1906 Subject Index (with links to Bulletin Title) Author Index (with links to Bulletin Title) The National Agricultural Library call number of each Agriculture Information Bulletin is (1--Ag84Te-no.xxx), where xxx is the series document number of the publication. Titles held by the National Agricultural Library can be verified in the Library's AGRICOLA database. To obtain copies of these documents, contact your local or state libraries, including public libraries, land-grant university libraries, or other large research libraries. Note: An older edition of this document was published in 1993: Index to USDA Technical Bulletins, Numbers 1-1802. The current edition is an Internet-based document, and includes links to full-text USDA Technical Bulletins on the Internet. Technical Bulletins by Title Skip Navigation Bar | By Title | By Number | Subject Index | Author Index Go to: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | A Accounting for the environment in agriculture. Hrubovcak, James; LeBlanc, Michael, and Eakin, B.
    [Show full text]
  • Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
    RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a).
    [Show full text]
  • The New York Botanical Garden
    Vol. XV DECEMBER, 1914 No. 180 JOURNAL The New York Botanical Garden EDITOR ARLOW BURDETTE STOUT Director of the Laboratories CONTENTS PAGE Index to Volumes I-XV »33 PUBLISHED FOR THE GARDEN AT 41 NORTH QUBKN STRHBT, LANCASTER, PA. THI NEW ERA PRINTING COMPANY OFFICERS 1914 PRESIDENT—W. GILMAN THOMPSON „ „ _ i ANDREW CARNEGIE VICE PRESIDENTS J FRANCIS LYNDE STETSON TREASURER—JAMES A. SCRYMSER SECRETARY—N. L. BRITTON BOARD OF- MANAGERS 1. ELECTED MANAGERS Term expires January, 1915 N. L. BRITTON W. J. MATHESON ANDREW CARNEGIE W GILMAN THOMPSON LEWIS RUTHERFORD MORRIS Term expire January. 1916 THOMAS H. HUBBARD FRANCIS LYNDE STETSON GEORGE W. PERKINS MVLES TIERNEY LOUIS C. TIFFANY Term expire* January, 1917 EDWARD D. ADAMS JAMES A. SCRYMSER ROBERT W. DE FOREST HENRY W. DE FOREST J. P. MORGAN DANIEL GUGGENHEIM 2. EX-OFFICIO MANAGERS THE MAYOR OP THE CITY OF NEW YORK HON. JOHN PURROY MITCHEL THE PRESIDENT OP THE DEPARTMENT OP PUBLIC PARES HON. GEORGE CABOT WARD 3. SCIENTIFIC DIRECTORS PROF. H. H. RUSBY. Chairman EUGENE P. BICKNELL PROF. WILLIAM J. GIES DR. NICHOLAS MURRAY BUTLER PROF. R. A. HARPER THOMAS W. CHURCHILL PROF. JAMES F. KEMP PROF. FREDERIC S. LEE GARDEN STAFF DR. N. L. BRITTON, Director-in-Chief (Development, Administration) DR. W. A. MURRILL, Assistant Director (Administration) DR. JOHN K. SMALL, Head Curator of the Museums (Flowering Plants) DR. P. A. RYDBERG, Curator (Flowering Plants) DR. MARSHALL A. HOWE, Curator (Flowerless Plants) DR. FRED J. SEAVER, Curator (Flowerless Plants) ROBERT S. WILLIAMS, Administrative Assistant PERCY WILSON, Associate Curator DR. FRANCIS W. PENNELL, Associate Curator GEORGE V.
    [Show full text]
  • 2019 Cover Art (In Collaboration with 4-H Youth Development, University of Arizona Cooperative Extension)
    Association for the Advancement of Industrial Crops Advancing the adoption of industrial crops through innovation and technology El Conquistador Hilton Resort Tucson, Arizona USA September 8-11, 2019 Cover art (in collaboration with 4-H Youth Development, University of Arizona Cooperative Extension) PLANT MATTER MAKES THE WORLD GO ROUND Alexis Peck, Grade 11, Duncan High School, Duncan, AZ ASSOCIATION FOR THE ADVANCEMENT OF INDUSTRIAL CROPS www.aaic.org “ADVANCING THE ADOPTION OF INDUSTRIAL CROPS THROUGH INNOVATION AND TECHNOLOGY” 31st Annual Meeting September 8-11, 2019 Tucson, Arizona USA Sponsors i AAIC BOARD OF DIRECTORS President: Von Mark V. Cruz, Bridgestone Americas, Inc., Eloy, AZ, USA President-Elect: Federica Zanetti, University of Bologna, Bologna, Italy Past-President: Jim Todd, Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), Simcoe, ON, Canada Secretary: Claire C. Heinitz, USDA-ARS National Arid Land Plant Genetic Resources Unit, Parlier, CA, USA Treasurer: Burton L. Johnson, North Dakota State University, Fargo, ND, USA Registrar / Valerie H. Teetor, University of Arizona, Tucson, AZ, USA Membership: Webmaster: Von Mark V. Cruz, Bridgestone Americas, Inc., Eloy, AZ, USA Division Chairs Fibers & Cellulosics: Efthymia Alexopoulou, Centre for Renewable Energy Sources and Saving (CRES), Pikermi, Greece General Crops & Ana Luisa Fernando, Nova University of Lisbon, Lisbon, Portugal Products: Medicinal & Diana Jasso De Rodríguez, Universidad Autónoma Agraria Antonio Nutraceutical Plants: Narro, Saltillo, Coahuila, México Natural Rubber & Guangyao (Sam) Wang, Bridgestone Americas, Inc., Eloy, AZ, USA Resins: Oilseeds: Hussein Abdel-Haleem, USDA-ARS ALARC, Maricopa, AZ, USA To cite this publication: Cruz, V.M.V. and M. Berti. (eds.) 2019. Advancing the Adoption of Industrial Crops through Innovation and Technology.
    [Show full text]
  • Guayule (Pathenium Argentatum) Plant Guide
    Natural Resources Conservation Service Plant Guide GUAYULE Parthenium argentatum A. Gray Plant Symbol = PAAR5 Common Names: guayule Description General: Guayule is a perennial shrub with thick lignified stems, a low, spreading form, and an average height of approximately 20 inches (USDA, 1945). The leaves are greenish-grey and are covered with small hairs that aid in reducing evapotranspiration. Guayule has a deep, coarse taproot to collect water and nutrients from deep in the soil profile as well as a shallow fibrous system to collect moisture from brief desert rainfall (USDA, 1945; Muller, 1946). It flowers in the spring and through most of the summer months. The small, yellow composite flowers formed at the end of a stem are approximately 6 inches long. Reproduction is by facultative apomixis or sexual reproduction and results in small seeds, 0.12 inches long and 0.06 Guayule. Photo by Blase Evancho. University of Arizona inches wide, of relatively low viability (Lloyd, 1911). Cooperative Extension. Distribution: Native guayule stands are distributed throughout the northeastern parts of the Chihuahuan Desert from Mexico to the Big Bend region of Texas. For current distribution, please consult the Plant Profile page for this species on the PLANTS Website. Habitat: Guayule is frequently found in the foothills and hillslopes of the transitional zone between desert and desert grassland regions. It prefers shallow, sandy soils formed from limestone where it has the highest competitive advantage over other flora (Lloyd, 1911). Adaptation Guayule is a long lived, desert adapted shrub but requires more water than associated desert vegetation for active growth (Muller, 1946).
    [Show full text]
  • Southwestern Rare and Endangered Plants: Proceedings of the Fourth Conference
    Southwestern Rare and Endangered Plants : UnitedUnited States States DepartmentDepartment ofof Agriculture Agriculture ForestForest Service Service Proceedings of the Fourth RockyRocky Mountain Mountain ResearchResearch Station Station Conference ProceedingsProceedings RMRS-P-48CD RMRS-P-48CD JulyJuly 2007 2007 March 22-26, 2004 Las Cruces, New Mexico Barlow-Irick, P., J.J. AndersonAnderson andand C.C. McDonald,McDonald, techtech eds.eds. 2007.2006. SouthwesternSouthwestern rarerare andand endangered plants: Proceedings of the fourth conference; March 22-26, 2004; Las Cruces, New Mexico. Proceedings RMRS-P-XX.RMRS-P-48CD. Fort Fort Collins, Collins, CO: CO: U.S. U.S. Department of Agriculture, Forest Service,Service, Rocky Mountain ResearchResearch Station.Station. 135 pp.p. Abstract These contributed papers review the current status of plant conservation in the southwestern U.S. Key Words: plant conservation, conservation partnerships, endangered plants, plant taxonomy, genetics, demography, reproductive biology, biogeography, plant surveys, plant monitoring These manuscripts received technical and statistical review. Views expressed in each paper are those of the authors and not necessarily those of the sponsoring organizations or the USDA Forest Service. Cover illustration: Have Plant Press, Will Travel by Patricia Barlow-Irick You may order additional copies of this publication by sending your mailing information in label form through one of the following media. Please specify the publication title and series number. Fort Collins Service Center Telephone (970) 498-1392 FAX (970) 498-1122 E-mail [email protected] Web site http://www.fs.fed.us/rmrs Mailing address Publications Distribution Rocky Mountain Research Station 240 West Prospect Road Fort Collins, CO 80526 USDA Forest Service Proceedings RMRS-P-XXRMRS-P-48CD Southwestern Rare and Endangered Plants: Proceedings of the Fourth Conference March 22-26, 2004 Las Cruces, New Mexico Technical Coordinators: Patricia Barlow-Irick Largo Canyon School Counselor, NM John Anderson U.S.
    [Show full text]
  • Jeffrey James Keeling Sul Ross State University Box C-64 Alpine, Texas 79832-0001, U.S.A
    AN ANNOTATED VASCULAR FLORA AND FLORISTIC ANALYSIS OF THE SOUTHERN HALF OF THE NATURE CONSERVANCY DAVIS MOUNTAINS PRESERVE, JEFF DAVIS COUNTY, TEXAS, U.S.A. Jeffrey James Keeling Sul Ross State University Box C-64 Alpine, Texas 79832-0001, U.S.A. [email protected] ABSTRACT The Nature Conservancy Davis Mountains Preserve (DMP) is located 24.9 mi (40 km) northwest of Fort Davis, Texas, in the northeastern region of the Chihuahuan Desert and consists of some of the most complex topography of the Davis Mountains, including their summit, Mount Livermore, at 8378 ft (2554 m). The cool, temperate, “sky island” ecosystem caters to the requirements that are needed to accommo- date a wide range of unique diversity, endemism, and vegetation patterns, including desert grasslands and montane savannahs. The current study began in May of 2011 and aimed to catalogue the entire vascular flora of the 18,360 acres of Nature Conservancy property south of Highway 118 and directly surrounding Mount Livermore. Previous botanical investigations are presented, as well as biogeographic relation- ships of the flora. The numbers from herbaria searches and from the recent field collections combine to a total of 2,153 voucher specimens, representing 483 species and infraspecies, 288 genera, and 87 families. The best-represented families are Asteraceae (89 species, 18.4% of the total flora), Poaceae (76 species, 15.7% of the total flora), and Fabaceae (21 species, 4.3% of the total flora). The current study represents a 25.44% increase in vouchered specimens and a 9.7% increase in known species from the study area’s 18,360 acres and describes four en- demic and fourteen non-native species (four invasive) on the property.
    [Show full text]
  • GUAYULE Parthenium Argentatum
    UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO GUAYULE Parthenium argentatum UNIDAD DE APRENDIZAJE: CULTIVOS DE ZONAS ÁRIDAS LICENCIATURA DE INGENIERO AGRONOMO FITOTECNISTA FACULTAD DE CIENCIAS AGRÍCOLAS Campus Universitario “El Cerrillo” Elaborado por: M. en Ed. Alfredo Medina García Octubre de 2017 Presentación La presente guía didáctica tiene como principal objetivo de dar a conocer a los dicentes en el campo de los Cultivos de Zonas Áridas, se ha seleccionado material significativo para que el alumno entienda y comprenda los vegetales de importancia económica y así facilitar el proceso de enseñanza-aprendizaje. Se inicia con la taxonomía del cultivo, continuando con descripción botánica del cultivo, el origen, hábitat y usos. Se recomienda su empleo para la unidad de Aprendizaje de Cultivos de Zonas Áridas, la cual se cursa a partir del 7º Semestre como Asignatura Optativa y se imparte el la Licenciatura de Ingeniero Agrónomo Fitotecnista. GUAYULE Parthenium argentatum Clasificación botánica según Cronquist Reino: Plantae División: Magnoliophyta Clase: Magnoliopsida Subclase: Asteridae Orden: Asterales Familia: Asteraceae Genero: Parthenium Especie: Parthenium argentatum Matorral: Microfilo Nombres comunes en México: PLANTA MACHO: Guayule, Hule; Afinador (Zacatecas); Yerba del hule (Durango); Jehuite o Jihuite (Zac. y Dgo.). PLANTA HERMBRA: Copalillo, guayule hembra, hierba blanca, hierba ceniza) (Martínez, 1979; McVaugh, 1984). Parthenium argentatum Esta planta fué descrita por Asa Gray y publicado en Journal of Botany, British and Foreign en 1928. Se trata de un arbusto leñoso profusamente ramificado, con hojas de color gris plateado que le dan un aspecto polvoriento. Las flores, apenas visibles, son amarillas y pequeñas. Las plantas espontáneas de varios años alcanzan unos60 centímetrosdealtura.
    [Show full text]
  • Plan De Manejo “Área Natural Protegida Reserva
    Plan de Manejo “Área Natural Protegida Reserva Estatal Real de Guadalcázar” San Luis Potosí 2020 Contenido 1. INTRODUCCIÓN ................................................................................................................. 7 2. ANTECEDENTES ............................................................................................................... 8 3. OBJETIVOS DEL AREA NATURAL PROTEGIDA......................................................... 11 4. DESCRIPCIÓN DEL ÁREA PROTEGIDA ...................................................................... 11 4.1. LOCALIZACIÓN Y LÍMITES ......................................................................................... 11 4.2. CARACTERÍSTICAS FÍSICO-GEOGRÁFICAS .......................................................... 14 4.2.1. Relieve .................................................................................................................... 14 4.2.2 Geología .................................................................................................................. 14 4.2.3 Geomorfología y suelos ....................................................................................... 15 4.2.4 Clima ........................................................................................................................ 17 4.2.5 Hidrología ................................................................................................................ 20 4.2.6 Perturbaciones ......................................................................................................
    [Show full text]
  • Integrated Parthenium Management (IPM): Need of the Hour
    Integrated Parthenium Management RASHTRIYA KRISHI Volume 10 Issue 2 December, 2015 33-37 e ISSN–2321–7987 | Article |Visit us : www.researchjournal.co.in| Integrated Parthenium Management (IPM): Need of the hour Hiralal Jana Department of Agricultural Extension, College of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Agricultural Farm, BURDWAN (W.B.) INDIA (Email: [email protected]) Parthenium hysterophorus is a species of flowering and along roadsides and railway tracts. Drought and plant in the aster family, Asteraceae, that is native to the subsequent reduced pasture cover, creates the ideal American tropics. It is a common invasive species in situation for the parthenium weed to establish itself. It India, Australia and parts of Africa. Parthenium weed is prefers alkaline, clay loam to heavy black clay soils, but a weed of national significance. It is a vigorous colonizer tolerates a wide variety of soil types. The weed grows of bare ground, degraded pastures and disturbed sites. It well in areas where the annual rainfall is greater than is a fast growing annual plant with prolific seed production. 500mm and falls dominantly in summer. It can grow upto Parthenium weed contains powerful allergens that cause an elevation of 2200 m above sea level. Parthenium a range of human health problems, including asthma and hysterophorus is a weed of semi-arid, subtropical, tropical severe contact dermatitis in sensitized individuals. and warmer temperate regions. It is found also in riparian Parthenium weed is a threat to agriculture because it is zones (banks of watercourses), seasonal floodplains, unpalatable to livestock and competes with pastures and grasslands, open woodlands, waste areas, disturbed sites, crop seedlings.
    [Show full text]
  • Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River
    National Park Service U.S. Department of the Interior Natural Resource Program Center Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 ON THE COVER Chisos Basin, as viewed from Casa Grande Peak. Image provided by NPS Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 James Von Loh Cogan Technology, Inc. 8140 East Lightening View Drive Parker, Colorado 80134 Dan Cogan Cogan Technology, Inc. 21 Valley Road Galena, Illinois 61036 February 2011 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.
    [Show full text]
  • Guayule (Parthenium Argentatum A. Gray), a Renewable Resource for Natural Polyisoprene and Resin: Composition, Processes and Applications
    molecules Review Guayule (Parthenium argentatum A. Gray), a Renewable Resource for Natural Polyisoprene and Resin: Composition, Processes and Applications Amandine Rousset 1,2, Ali Amor 3,4, Teerasak Punvichai 5, Sandrine Perino 2, Serge Palu 4, Michel Dorget 1,3, Daniel Pioch 4,* and Farid Chemat 2,* 1 GuaTecs, 28 rue Xavier Bichat, 72000 Le Mans, France; [email protected] (A.R.); [email protected] (M.D.) 2 Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France; [email protected] 3 CTTM, Centre de Transfert de Technologie, 72000 Le Mans, France; [email protected] 4 UR BioWooEB-Biorefinery Team, CIRAD, 34398 Montpellier, France; [email protected] 5 Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus 84000, Thailand; [email protected] * Correspondence: [email protected] (D.P.); [email protected] (F.C.) Abstract: Natural rubber is an essential material, especially for plane and truck tyres but also for medical gloves. Asia ranks first in the production of natural rubber, of which the Hevea tree is currently the sole source. However, it is anticipated that this source alone will not be able to fulfill the growing demand. Guayule, a shrub native to northern Mexico and southern United States, may also contribute. This plant not only contains polyisoprene, but also resin, a mixture of lipids and terpenoids. Citation: Rousset, A.; Amor, A.; This review summarizes various aspects of this plant, from the usage history, botanical description, Punvichai, T.; Perino, S.; Palu, S.; geographical distribution and cultivation practices, down to polyisoprene and resin biosynthesis Dorget, M.; Pioch, D.; Chemat, F.
    [Show full text]