Fast On-Line Monitoring of Fuel Gases with the Thermo Scientific Prima

Total Page:16

File Type:pdf, Size:1020Kb

Fast On-Line Monitoring of Fuel Gases with the Thermo Scientific Prima Fast On-Line Monitoring of Fuel Gases with Notes Application the Thermo Scientific Prima PRO Process Mass Spectrometer Daniel Merriman & Graham Lewis, Thermo Fisher Scientific, Winsford Cheshire UK Key Words • Calorific Value • Wobbe Index • Stoichiometric Air Requirement • Combustion Air Requirement Index • Magnetic Sector • Rapid Multistream Sampler Introduction Furnace or power plant fuel gases which have variable composition pose particular challenges for process engineers who need to achieve optimum efficiency and product yield. As the gas composition changes, the heating (calorific) value changes and the burner temperature can therefore change. So too can the amount of air that is required for combustion. Unless these properties are monitored and compensated for, the furnace or power plant will not be properly controlled, causing significant inefficiency, wastage and even burner damage. Normally furnaces are operated at constant temperature; to achieve this, a gas-fired furnace would ideally burn a gas of constant composition, delivered at a constant rate and using a constant intake of air at the correct rate for complete combustion. In practice, the gas supply is of varying composition, especially on a petrochemical complex or integrated iron and steel works, where fuel gases from a variety of processes are utilized. Thus in order to maintain a constant temperature, either the rate of the gas supply needs to be varied or, in the case of a mixing station mixing various gas streams, the relative flow rates of the different gases need to be varied. Also, the air supply rate needs to be varied, since there will be energy wasted if either too little air or too much air is used. If there is too little air, some of the fuel gas will be unburned and wasted. If too much air is added then heat will be wasted. In metallurgy processes, excess air can also cause surface defects on metal surfaces due to oxidation, and poor temperature control can have an adverse effect on product quality. Table 1 shows the energy parameters of some of the typical components of fuel gases; the wide range of energy values means that relatively low concentrations of some components can have a significant impact on the energy value of the gas stream. It is therefore imperative to provide a comprehensive analysis of the gas stream, not just measure the major components. Process Mass Spectrometry is the ideal technique for determining the properties of fuel gases, by virtue of its speed and accuracy. It is therefore becoming widely adopted as the preferred technique. 2 Calorific Value Air Requirement Component Density kg/m3 Specific Gravity MJ/m3 m3/m3 Table 1: Energy values of typical fuel gas Hydrogen 0.1079 0.0009 0.0238 0.0007 components. Methane 0.3588 0.0072 0.0956 0.0055 Water 0.0000 0.0083 0.0000 0.0064 Carbon Monoxide 0.1264 0.0125 0.0239 0.0097 Ethylene 0.5944 0.0126 0.1441 0.0097 Ethane 0.6436 0.0136 0.1686 0.0105 Oxygen 0.0000 0.0143 0.0000 0.0111 Hydrogen Sulfide 0.2337 0.0154 0.0723 0.0119 Propylene 0.8761 0.0191 0.2187 0.0148 Carbon Dioxide 0.0000 0.0198 0.0000 0.0153 Propane 0.9318 0.0201 0.2436 0.0155 Butane 1.2357 0.0270 0.3231 0.0209 Pentane 1.5663 0.0345 0.4093 0.0267 Benzene 1.5567 0.0385 0.3937 0.0298 Hexane 1.9000 0.0410 0.4900 0.0317 Fuel Gas Energy Parameters By analyzing the composition of the fuel gas, the precise heating properties can be predicted. This enables a ‘feed-forward’ method of control (rather than ‘feed-back’). The calorific value is calculated from the analyzed composition according to the sum of the pure component calorific values weighted on a mole fraction basis1, as below. Calorific Value = [Calorific Value of Pure Component A × Mole Fraction of Component A] of Mixture + [Calorific Value of Pure Component B × Mole Fraction of Component B] + [Calorific Value of Pure Component C × Mole Fraction of Component C] + etc In practice the fuel gas will flow through a restriction such as an orifice or valve and the actual flow is inversely proportional to the square root of the density of the gas, so the property known as the Wobbe Index is more useful than the Calorific Value. The Wobbe Index is defined as follows: Wobbe Index = Calorific Value √(Specific Gravity) The Wobbe Index indicates the effective heating value of the fuel gas. The specific gravity is equal to the density of the gas divided by the density of the reference gas (normally air). The density is calculated according to: Density of Mixture = [Density of Pure Component A × Mole Fraction of Component A] + [Density of Pure Component B × Mole Fraction of Component B] + [Density of Pure Component C × Mole Fraction of Component C] + etc To predict the required ratio of air/fuel required for complete combustion the property known as Stoichiometric Air Requirement is calculated as: Stoichiometric Air = [SAR of Pure Component A × Mole Fraction of Component A] Requirement (SAR) + [SAR of Pure Component B × Mole Fraction of Component B] + [SAR of Pure Component C × Mole Fraction of Component C] + etc 3 Calorific Value Air Requirement Again, because the actual flow of fuel gas through a restriction such as an orifice or valve is inversely Component Density kg/m3 Specific Gravity MJ/m3 m3/m3 proportional to the square root of the density of the gas, so the property known as CARI (Combustion Air Hydrogen 0.1079 0.0009 0.0238 0.0007 Requirement Index) is more useful than the Stoichiometric Air Requirement. The CARI is defined as follows: Methane 0.3588 0.0072 0.0956 0.0055 Water 0.0000 0.0083 0.0000 0.0064 CARI = Stoichiometric Air Requirement Carbon Monoxide 0.1264 0.0125 0.0239 0.0097 √(Specific Gravity) Ethylene 0.5944 0.0126 0.1441 0.0097 The ideal analyzer is capable of fast on-line determination of Wobbe Index and CARI, to enable feed-forward Ethane 0.6436 0.0136 0.1686 0.0105 control. Process Mass Spectrometry has established itself as the optimum technique for these measurements. Oxygen 0.0000 0.0143 0.0000 0.0111 Hydrogen Sulfide 0.2337 0.0154 0.0723 0.0119 Measurement of Fuel Gases by Process Mass Spectrometry Propylene 0.8761 0.0191 0.2187 0.0148 Process Mass Spectrometry is particularly suited to the measurement of fuel gas because the analysis is Carbon Dioxide 0.0000 0.0198 0.0000 0.0153 comprehensive, accurate and fast. The analysis of all the components present in fuel gas which typically Propane 0.9318 0.0201 0.2436 0.0155 contains many components (e.g. H2, CH4, CO, N2, O2, C2H4, Ar, C3H6, CO2, C3H8, C4H10 and C6H6) is completed Butane 1.2357 0.0270 0.3231 0.0209 in less than 30 seconds, with a precision of typically better than 0.1% relative or 0.01 mol% absolute. Mass Pentane 1.5663 0.0345 0.4093 0.0267 spectrometers function by ionizing the sample gas molecules and atoms, then using magnetic or electric Benzene 1.5567 0.0385 0.3937 0.0298 fields to separate the resulting characteristic ions according to their mass to charge ratio. The various ion Hexane 1.9000 0.0410 0.4900 0.0317 currents are measured with a detector2. An example of such an instrument designed for process measurements is the Thermo Scientific™ Prima PRO which is a compact and rugged unit using a scanning magnetic sector MS analyzer. This instrument, shown in Figure 1, provides exceptional reproducibility and linearity. Advantages of Prima PRO Process MS At the heart of the Prima PRO is a magnetic sector analyzer which offers unrivalled precision and accuracy compared with other mass spectrometers. Thermo Fisher Scientific manufactures both quadrupole and magnetic sector mass spectrometers; over thirty years of industrial experience have shown the magnetic sector based analyzer offers the best performance for industrial online gas analysis. Key advantages of magnetic sector analyzers include improved precision, accuracy, long intervals between calibrations and resistance to contamination. Typically, analytical precision is between 2 and 10 times better than a quadrupole analyzer, depending on the gases analyzed and complexity of the mixture. A unique feature of the Prima PRO magnet is that it is laminated. Our analyzer scans at speeds equivalent to that of quadrupole analyzers, offering the unique combination of rapid analysis and high stability. This allows the rapid and extremely stable analysis of an unlimited number of user-defined gases. The scanning magnetic sector is controlled with 24-bit precision using a magnetic flux measuring device for extremely stable mass alignment. Figure 1: Thermo Scientific Prima PRO magnetic sector mass spectrometer Sample gases, for example Natural Gas, Process gas used for on-line analysis of fuel gases. streams, Mixed gas • Gas composition • Calorific Value • Wobbe Index • Density • CARI Available as analog outputs, Modbus or Profibus 4 Rapid Multistream Sampling If the MS is to monitor all process streams then a fast, reliable means of switching between streams is required. Solenoid valve manifolds have too much dead volume and rotary valves suffer from poor reliability so we developed the unique RMS Rapid Multistream Sampler. It offers an unmatched combination of sampling speed and reliability and allows sample selection from 1 of 32 or 1 of 64 streams. Stream settling times are application dependent and completely user configurable. The RMS includes digital sample flow recording for every selected stream. This can be used to trigger an alarm if the sample flow drops- if a filter in the sample conditioning system becomes blocked, for example.
Recommended publications
  • En Wobbe Index Control System in Gas Industry
    ~-4$ EN ! FROI05409 . ..+.. .“+_____________ WOBBE INDEX CONTROL SYSTEM IN GAS INDUSTRY PROCESSES SYSTEME DE CONTROLE DE L’INDEX DE WOBBE DU GAZ NATUREL DANS LES PROCESSUS INDUSTRIALS M. Cassibbaand M. Bertani SNAM, ltaly ABSTRACT Natural gassupplied toindustry forprocess utilisations originates from different sources and that can cause fluctuations in gas composition. Changing gas composition may lead to production problems in industry with sensitive thermal processes (particularly glass industry and thermal metal treatments), such as efficiency and product quality. An equipment suitable to control and adjust such variations has been developed. Experimental tests in laboratory were carried out in order to investigate the control system accuracy and reliability. In particular five different settings were tested: at a preset thermal input by adjusting the natural gas flow rate in respect to Wobbe Index variations; at a set furnace temperature and stack oxygen level with variable thermal input by monitoring the Wobbe Index value; at constant Wobbe Index value by adding air to natural gas; at constant thermal input and prefixed Wobbe Index value by adding air to natural gas and varying the air and gas mixture flow rate; gross calorific value control by adding air or LPG to natural gas. All the tested settings gave good results. This report illustrates these results and the main features of the control system. The control and regulation system was installed in two glass factories for field tests. RESUME Le gaz naturel utilise clans [es processus industrials provient de gisements a caracteristiques differences qui peuvent dormer lieu a des fluctuations clans la composition du gaz. Ces variations peuvent entralner des problemes clans certaines processus industrials tels que, en particulier, ceux du verre et du traitement des metaux.
    [Show full text]
  • 2002-00201-01-E.Pdf (Pdf)
    report no. 2/95 alternative fuels in the automotive market Prepared for the CONCAWE Automotive Emissions Management Group by its Technical Coordinator, R.C. Hutcheson Reproduction permitted with due acknowledgement Ó CONCAWE Brussels October 1995 I report no. 2/95 ABSTRACT A review of the advantages and disadvantages of alternative fuels for road transport has been conducted. Based on numerous literature sources and in-house data, CONCAWE concludes that: · Alternatives to conventional automotive transport fuels are unlikely to make a significant impact in the foreseeable future for either economic or environmental reasons. · Gaseous fuels have some advantages and some growth can be expected. More specifically, compressed natural gas (CNG) and liquefied petroleum gas (LPG) may be employed as an alternative to diesel fuel in urban fleet applications. · Bio-fuels remain marginal products and their use can only be justified if societal and/or agricultural policy outweigh market forces. · Methanol has a number of disadvantages in terms of its acute toxicity and the emissions of “air toxics”, notably formaldehyde. In addition, recent estimates suggest that methanol will remain uneconomic when compared with conventional fuels. KEYWORDS Gasoline, diesel fuel, natural gas, liquefied petroleum gas, CNG, LNG, Methanol, LPG, bio-fuels, ethanol, rape seed methyl ester, RSME, carbon dioxide, CO2, emissions. ACKNOWLEDGEMENTS This literature review is fully referenced (see Section 12). However, CONCAWE is grateful to the following for their permission to quote in detail from their publications: · SAE Paper No. 932778 ã1993 - reprinted with permission from the Society of Automotive Engineers, Inc. (15) · “Road vehicles - Efficiency and emissions” - Dr. Walter Ospelt, AVL LIST GmbH.
    [Show full text]
  • Gas Interchangeability Defined
    AGA Staff Paper: Technical Background and Issues of Gas Interchangeability Prepared for: Building Energy Codes and Standards Committee American Gas Association Prepared by: Ted A. Williams Director, Codes, Standards & Technical Support American Gas Association April 2006 Disclaimer This report was prepared by American Gas Association (AGA) Staff for the purpose of summarizing prior technical work, research, and technical application of gas interchangeability principles and practices. Neither AGA, its members, nor any person acting on behalf of these organizations: • Makes any warranty or representation with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information disclosed in this report may not infringe privately owned rights; or • Assumes any liability with respect to the use of, or for damages resulting from the use of, any information disclosed in this report. 2 Table of Contents 1. Gas Interchangeability Defined . 5. 1.1 The NGC+ Definition . 5. 1.2 Historical Definitions from the Gas Industry Literature . 6. 1.3 Implications of Gas Interchangeability as Defined . 6. 2. The Objectives of Gas Interchangeability Criteria . 7. 2.1 Anticipation and Avoidance of Adverse Combustion Behavior . 7. 2.2 Drivers for Gas Interchangeability Specifications in the U. S. 8. 2.3 Appliance Focus of Gas Interchangeability Studies and Specifications . 8. 2.4 Relevance of Historical Studies to Current End Uses . .11. 3. Combustion Issues in Classical and Contemporary Gas Interchangeability . 12. 3.1 General Combustion Issues . .12. 3.2 Combustion Failure Modes . .13. 3.2.1 Elevated Pollutant Generation . 13. 3.2.1.1 CO Production .
    [Show full text]
  • Interchangeability & Wobbe Index Used As Quality Parameter For
    INTERCHANGEABILITY AND WOBBE INDEX USED AS QUALITY PARAMETER FOR LIQUEFIED NATURAL GAS Rafael Rosal 1 and Sabrina Di Scipio 2. 1 Natural Gas Business Management Specialization. 2 Thermodynamics and Transfer Phenomena Department. Simón Bolívar University. Valle de Sartenejas, Baruta, Edo. Miranda. Venezuela. AP.89000. 1. Background The natural gas (NG) is projected like one of the most important energy sources in the future, due to its reduced contaminant effect and relatively low cost compared with liquid combustibles, like fuel oil or gasoline. Currently, Liquefied Natural Gas (LNG) is a common way to commercialize NG around the World. The main advantage of liquefaction process is the reduction by about 600 times of the total volume required for NG storage and transportation. Venezuela has big quantities of proven NG reserves (148 BCF). The country has to take profit of these reserves and monetize them in all possible ways [1]. Venezuela’s geographic location gives open access to most important oil markets, such as: Europe and USA. Historically, has sold to those regions the main part of its oil production and, few quantities are exported to Central America and Caribbean countries. In addition, Argentina, Brazil and, Chile have become in potential oil gas consumers. In order to verify the potential markets for the LNG that will be produced in Venezuela, it is important to analyze the influence of different gas compounds interchangeability on the final product; considering the specifications and gas compositions required by each country or region. A key interchangeability parameter is the Wobbe Index (WI). WI is used to compare the combustion energy output of different composition fuel gases in an appliance (fire, cooker, etc.), it changes with gas composition.
    [Show full text]
  • Methane Number
    Methane Number Gary Palmer Independent Consultant, Calgary, Canada Received October 24, 2017; Accepted October 25, 2017 Abstract: The Methane Number is a measure of the resistance of natural gas to detonation when it is burned as a motor fuel in an engine. Pure Methane is assigned a Methane Number of 100 and pure Hydrogen is assigned a Methane Number of zero. A natural gas having a Methane Number of 80 for example, would have the detonation properties of a mixture consisting of 80 vol% Methane and 20 vol% Hydrogen. The Methane Number concept is similar to the Octane Number for gasoline. Unlike gasoline however, there is not yet a universal standard for testing natural gas Methane Number as there is in the motor test for gasoline. Also, there is no universally accepted method for calculating the Methane Number based on the composition of natural gas. Keywords: Methane number, gas combustion 1 Methane Number The definition of Methane Number is simple if the gas consists only of the two components Methane and Hydrogen. But for hydrocarbon gas mixtures consisting not only of methane but also of Ethane and heavier, the definition is much more difficult and is the subject of much debate and controversy. There are various proposed methods of calculating Methane Number based on gas composition. Some are methods proposed by standards associations in Europe and some are proprietary methods proposed by engine manufacturers. 1.1 Standards Associations The following standards have been proposed to establish a universal method to relate gas composition to Methane Number but so far there has been no agreement on which method to use.
    [Show full text]
  • Current State and Prospects of Lng in the Unece Region
    STUDY: CURRENT STATE AND PROSPECTS OF LNG IN THE UNECE REGION CHAPTER 4: INTEROPERABILITY AND SAFETY TABLE OF CONTENTS: 1.- INTRODUCTION 2.- LNG QUALITY AND INTERCHANGEABILITY 2.1.- LNG Specifications 2.1.1.- General 2.1.2.- Gas Interchangeability Specifications in importing and exporting Countries 2.1.3.- Gas Quality Harmonization efforts: EASEE-gas 2.1.4.- Weathering/Aging issues in LNG Transport and Storage 2.2.- Impurity Specifications 2.2.1.- Origin of Impurity Specifications 2.2.2.- Review of Impurity Specifications in Europe and the rest of the World 2.2.3.- Proposed new Impurity Specifications 2.3.- Sampling, Analysis and Measurement of LNG Quality 2.3.1.- Sampling techniques 2.3.2.- Operational sampling for LNG Quality and Interchangeability 2.3.3.- Conclusion 2.4.- Quality adjustment at LNG Import Terminals and Liquefaction Plants 2.4.1.- Market specifications and LNG qualities 2.4.2.- NGL extraction at Liquefaction Plants and at LNG Import Terminals 2.4.3.- Heating Value Adjustment by LPG Injection in Import Terminals 2.5.- Impact of LNG Quality on Gas Turbine operation 2.5.1.- Gas Turbine design and fuel specifications 2.5.2.- Effect of Gas Quality on Gas Turbine operation 2.6.- Impact of LNG Quality on consumers: Appliance testing 2.6.1.- U.K. and Spain test work 2.6.2.- Marcogaz activity in gas Interchangeability in Europe 2.6.3.- U.S. Appliance Testing addressing gas Interchangeability 2.7.- Future Challenges 2.7.1.- The Near-Term Perspective 2.7.1.- The Long-Run Perspective 2.8.- Conclusions 1 3.- LNG FACILITIES COMPATIBILITY 3.1.- Executive Summary 3.2.- The characteristics of the LNG Facilities and the impact on the compatibility 3.2.1.- Introduction 3.2.2.- Terminal / LNG carrier compatibility in the Design Phase 3.2.3.- Storage Capacity 3.2.4.- Ship Shore Interface 3.2.5.- Conclusions 3.3.- Operational Safety of LNG Facilities and LNG Carriers 3.3.1.- Introduction 3.3.2.- Safety in operations 3.3.3.- Safety procedures 3.3.4.- Design codes and standards, 3.3.5.- Environmental issues 3.3.6.- Best practices.
    [Show full text]
  • Addressing Gas Turbine Fuel Flexibility
    GE Energy Addressing Gas Turbine Fuel Flexibility GER4601 (05/11) revB Robert Jones, Manager of Syngas Power Island Products Jeffrey Goldmeer, Product Marketing Manager Bruno Monetti, Product Marketing Manager Contents: Introduction. 1 Fuel classification. 1 GE operating experience . 3 Natural gas . 3 Alternative gaseous fuels. 4 High calorific value gases . 4 Medium and low calorific value (LCV) fuels . 5 Improving the LCV solution for the steel industry. 6 Refinery and coal IGCC. 7 Oils. 9 Bio-liquid fuels . 10 Summary and conclusion. 11 Appendix. 12 List of figures . 12 List of tables . 12 GE Energy | GER-4601 (05/2011) i ii Addressing Gas Turbine Fuel Flexibility Introduction than 50 years of fuel experience, GE has developed gas turbine technology that is proven and a more efficient alternative to other The global energy landscape is experiencing major changes as technologies, while burning the widest range of alternative gas and current economic issues evolve. There is worldwide pressure to liquid fuel. secure and make more gas and oil available to support global power needs. With constrained fuel sources and increasing Fuel classification environmental focus, the quest for higher efficiency and lower The potential fuels to be utilized on high efficiency gas turbines emissions targets in the context of security over fuel supplies are very large, and in this changing energy landscape, there is a seems straightforward. As Natural Gas Combined Cycle (NGCC) growing interest in turning to non-traditional fuels, capitalizing on plants provide very high efficiency, there will be increasing demand the experience gained during the past five decades. As continuous- for natural gas, which will continue the push for increased flow machines with robust designs and universal combustion availability of Liquefied Natural Gas (LNG).
    [Show full text]
  • Gas Turbine Fuel Flexibility: an Enabler for Regional Power Generation Jeffrey Goldmeer
    GE Power & Water Power-GEN International Gas Turbine Fuel Flexibility: An Enabler For Regional Power Generation Jeffrey Goldmeer © 2013, General Electric Company. Proprietary information. All rights reserved. GE Power & Water © General Electric Company, 2013. GE Proprietary Information - The information contained in this document is General Electric Company (GE) proprietary information. It is the property of GE and shall not be used, disclosed to others or reproduced without the express written consent of GE, including, but without limitation, it is not to be used in the creation. manufacture. development, or derivation of any repairs, modifications, spare parts, or configuration changes or to obtain government or regulatory approval to do so, if consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. The information contained in this document may also be controlled by the US export control laws. Unauthorized export or re-export is prohibited. 2 © 2013, General Electric Company. Proprietary information. All rights reserved. Concerns facing the global energy industry today Emissions Energy securitycosts Fuel Fuel diversification Changing Resource regulatory Increasing scarcity landscape renewables Grid stability Economic uncertainty Ancillary industry opportunities industry Ancillary 3 © 2013, General Electric Company. Proprietary information. All rights reserved. But, resources and fuels are regional E. Europe •
    [Show full text]
  • Fundamentals of Energy Determination
    FUNDAMENTALS OF ENERGY DETERMINATION David Hailey, Ph.D. Cosa Instrument Corp 7125 North Loop East Houston, TX 77029 Abstract This paper presents fundamental information necessary to understand and appreciate the concept of total gas energy in a natural gas pipeline. That is, to be able to converse with peers within the natural gas industry and understand basic concepts and terminology. Discussed is the historical transition from volumetric measurement to total gas energy including some of the basic terminology, physics, measurement, as well as the reasons for changes in methodologies. Included is industry acceptance of new concepts and regulations involving custody transfer as well as the instrumentation and systems involved in traditional and newer, more progressive forms of gas measurement. Figure 1 Figure 2 illustrates the Ocean at 50 to 100 Where Does Natural Gas Come From? million years ago. Over millions of years, the remains were buried deeper and deeper. The Millions of years ago, the remains of plants and enormous heat and pressure turned them into oil animals decayed and built up in thick layers. and gas. This decayed matter from plants and animals is called organic material -- it was once alive. Over time, the mud and soil changed to rock, covered the organic material, and trapped it beneath the rock. Pressure and heat changed some of this organic material into coal, some into oil (petroleum), and some into natural gas -- tiny bubbles of odorless gas. The main ingredient in natural gas is methane, a gas (or compound) composed of one carbon atom and four hydrogen atoms. Figure 1 shows an Ocean bed at 300 to 400 million years ago.
    [Show full text]
  • Wobbe - Index Prof
    Formulary Waste Management Page 1/2 Wobbe - Index Prof. Dr. Werner Bidlingmaier & Dr.-Ing. Christian Springer Projekt Orbit | Dr. W. Bidlingmaier | Bauhaus Universität Weimar | www.orbit-online.net Wobbe - Index: The Wobbe - Index (WI) or Wobbe number is an indicator of the interchangeability of fuel gases such as natural gas, liquefied petroleum gas (LPG), and town gas and is frequently defined in the specifications of gas supply and transport utilities. The Wobbe - Index was defined 1927 by the engineer Goffredo Wobbe. It allows the compatibility of different fuels. The Wobbe Index is used to compare the combustion energy output of different composition fuel gases in an appliance (fire, cooker etc.). If two fuels have identical Wobbe Indices then for given pressure and valve settings the energy output will also be identical. Typically variations of up to 5% are allowed as these would not be noticeable to the consumer. The Wobbe-Index is the quotient of the square root of the relation density fuel / air and the upper calorific value. To measure the Wobbe -Index a test gas is burned under standardized conditions. Hereby a gas mantle is heated and the temperature is measured. In comparison to a calibration gas the Wobbe-Index for a gas can be determed. Unit: kWh/Nm³ = 3,6 MJ/Nm³ = 3,6·106 J/Nm³ (1 Nm³ = 1 m³ under normal pressure: 1.013,25 mbar, 0 °C) Formulary Waste Management Page 2/2 Wobbe - Index Prof. Dr. Werner Bidlingmaier & Dr.-Ing. Christian Springer Projekt Orbit | Dr. W. Bidlingmaier | Bauhaus Universität Weimar | www.orbit-online.net Calculation: The Wobbe Index, , is defined as: or H H W = on bzw W = un on d un d Wo,n upper Wobbe-Index Wu,n lower Wobbe-Index Ho,n upper calorific value Hu,n lower calorific value ρL density air ρG density fuel d rel.
    [Show full text]
  • Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy
    sensors Article Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy Vincenz Sandfort 1, Barbara M. Trabold 2, Amir Abdolvand 2,3, Carsten Bolwien 4, Philip St. J. Russell 2, Jürgen Wöllenstein 1,4 and Stefan Palzer 5,* ID 1 Laboratory for Gas Sensors, Department of Microsystems Engineering–IMTEK, University of Freiburg, Georges-Köhler-Allee 102, 79110 Freiburg, Germany; [email protected] 2 Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany; [email protected] (B.M.T.); [email protected] (A.A.); [email protected] (P.S.J.R.) 3 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore 4 Fraunhofer Institute for Physical Measurement Techniques IPM, Heidenhofstraße 8, 79110 Freiburg, Germany; [email protected] (C.B.); [email protected] (J.W.) 5 Department of Computer Science, Universidad Autónoma de Madrid, Francisco Tomás y Valiente 11, 28049 Madrid, Spain * Correspondence: [email protected] Received: 26 October 2017; Accepted: 23 November 2017; Published: 24 November 2017 Abstract: The fast and reliable analysis of the natural gas composition requires the simultaneous quantification of numerous gaseous components. To this end, fiber-enhanced Raman spectroscopy is a powerful tool to detect most components in a single measurement using a single laser source. However, practical issues such as detection limit, gas exchange time and background Raman signals from the fiber material still pose obstacles to utilizing the scheme in real-world settings. This paper compares the performance of two types of hollow-core photonic crystal fiber (PCF), namely photonic bandgap PCF and kagomé-style PCF, and assesses their potential for online determination of the Wobbe index.
    [Show full text]
  • How to Measure Gas Quality the Composition of the Natural Gas Is Continuously Measured at a Number of Measurement Sites in Nybr
    How to measure gas quality The composition of the natural gas is continuously measured at a number of measurement sites in Nybro, Lille Torup, Stenlille, Egtved and Dragør. The measurement of gas composition is used to analyse and calculate calorific values, Wobbe index and other quality parameters of the natural gas. Calculating the delivered energy to the customers is performed on the basis of all the analyses and calculations. The method of calculation takes into consideration regional differences in gas composition as a result of the actual operating conditions. The information is not to be used to calculate the size of the gas settlement for the particular month in question, but solely to evaluate operating conditions. Calorific value, hydrogen sulphide, overall sulphur content, Wobbe index and methane number are described below: The calorific value The overall term describes the amount of heat generated during combustion of the natural gas. The customer pays for the delivered amount of energy, and not for the delivered amount of natural gas. The calorific value is used to calculate how much energy each customer has received. The Net Calorific Value A term describing the amount of heat generated, when the temperature of the combustion air and the natural gas prior to combustion is 25°C, when the combustion products (flue gas) are cooled to 25°C, and when the water produced during combustion is present in the form of steam. The Gross Calorific Value A term describing the amount of heat developed by combustion of one cubic metre of gas at constant pressure when the gas and air for the combustion have a temperature of 25°C, the combustion products being brought to that temperature and the water formed by the combustion being present in liquid state.
    [Show full text]