I Doctor of Philosophy Department Of. Geology, University of Sheffield

Total Page:16

File Type:pdf, Size:1020Kb

I Doctor of Philosophy Department Of. Geology, University of Sheffield THE GEOCHEMISTRY AND MINERALOGY OF COAL AND COAL-BEARING STRATA FROM THE CANNOCK COALFIELD WITH SPECIAL REFERENCE TO CHLORINE VOLUME 1 STEPHEN ALLEN CASWELL I Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Department of. Geology, University of Sheffield. January, 1983. fi SUMMARY (i) The Geochemistry and Mineralogy of Coal and Coal-Bearing Strata from the Cannock Coalfield with Specific Reference to Chlorine The project was conducted on four coals seams, the Shallow and Yard (Lower Coal Measures) from Lea Hall Colliery at Rugeley, and the Park and-Eight Feet seams from Littleton Colliery, near Cannock. Ultimate, proximate analyses and moisture contents showed them to be of high volatile bituminous 'B' coal-rank, and typical of high Cl coals. The Cl investigation showed a relationship with organic matter where ash is a dilutant, reaching c. 1% (by weight) in the coals, almost an order higher than in the associated mudrocks. It is related to the internal surface area and is thus highest in the vitrinite dominated 'bright rocks' and lowest in the 'dull coals'. Two types of Cl were identified, originating from saline ground waters, the former representing present ground water solutions trapped in the larger pores and readily water-soluble, and the latter held in organic combination within smaller or closed pores produced by Hercynian rank imposition. Varying levels of this Cl can be released by ion exchange with carbonates in leaching experiments. The mudrock and coal ash mineralogy was conducted on low temperature ashed material which suffered the side-effect of gypsum formation during oxidation. The mudrock mineralogy is dominated by detrital minerals, quartz and clays predominating. Diagenetic minerals"rarely account for 7% of the normative minerals except in localised pyrite and siderite nodules., Climate played an important role in the detrital mineralogy, the lower seam floor measures being dominated by a tropically leached suite of kaolinite and quartz. Continental movement led to increased aridity characterised by illite and chlorite which dominate the higher seams. The intraseam dirt bands are composed of very fine clays, rapidly deposited over wide areas by minor base-level changes or river (ii) bank bursts. The roof measures show least evidence of leaching and are often highest in diagenetic siderite. Ba, Sr, Rb (illite) and Zr (zircon) are predominantly detrital trace elements whilst oxyhydroxide material was-the transporting media. for the diagenetically located elements, Ni, Pb (pyrite), Co and Mn (siderite). Cu is primarily associated with organic matter. The detrital coal mineralogy reflects the fine mudrock material and is usually highest associated with the dirt bands. Diagenetic minerals dominate the ash, reaching 95% (by weight), the major component being late diagenetic cleat. A paragenetic sequence of mineralisation follows a widespread trend from sulphides, silicates to carbonates reflecting changing ground water composition. The cleat fractures represent micro- jointing produced with stress release during uplift. Its frequence decreases with bed thickness, and the brittle nature of vitrinite causes it to have the earliest formed and most abundant cleat. The strength of multimaceral lithotypes such as durain is much greater and therefore fracture least, later änd with a greater dilation. F.. _-,. ý a. ,. ýý re (iii) ACKNOWLEDGEMENTS This research project was undertaken with the financial support of a C. A. S. E. Award sponsored by the Central Electricity Generating Board (C. E. R. L., Leatherhead) and the Natural Environmental Research Council and to these establishments my appreciation is gratefully acknowledged. To the following I extend my thanks: - Dr. D. A. Spears, as my supervisor at Sheffield University, for many fruitful discussions and much encouragement; Dr. C. D. Curtis, as my temporary supervisor and for showing continued interest in my project; Dr. J. Bettelheim (external supervisor) and Dr. K. G. Saunders of the C. E. R. L., for their continued interest, help and access to C. E. R. L. data; Mr. J. H. Atkin (Chief Scientific Officer, Western Division) and Mr. R. H. Hoare (Chief Geologist, Western Division) of the N. C. B. who arranged for my underground visits and for technical information. Mr. T. Halker and Mr. K. Whitworth (N. C. B. geologists) in their help during sample collection; Mr. K. Kendal (C. E. G. B. ) for conducting ultimate and proximate analyses on my coal samples; Mr. E. Hall (Water Research Centre) for high speed centrifuging of coal samples; Dr. I. F. Holmes, in close co-operation and discussions in the Chlorine study; Dr. R. Kanaris-Sotiriou, for his help in X-ray techniques; Dr. N. J. Soper, for discussions on joint formation; Mr. V. A. Somogyi, Mr. A. Saxby and Mrs. S. M. Rhodes in helping a non-chemist in wet chemical analysis; Mr. H. Brockley, in T. E. M. microscopy and preparation; Mr. M. G. Cooper, for help and instruction in the art of cartography and the Appendix diagrams. Mr. G. Mulhearn, for thin section preparation; Mr. B. Piggott, for. help in photographic matters; Mr. S. T. Reynolds,. for trace element analysis and discussion in the follow-up to this work thesis; Mr. A. Sheldon (Department of Metallurgy)', for S. E. M. operation . (iv) Finally, but not least, to the secretaries who suffered from my protracted pestering during typing, without whom this thesis would not have been completed: - Miss S. Forster; Miss P. M. Mellor; Mrs. M. Townsend and Mrs. B. M. Wilson. .t'4 (V) VOLUME 1 LIST OF CONTENTS page number SUMMARY i ACKNOWLEDGEMENTS iii LIST OF CONTENTS V CHAPTER 1 INTRODUCTION 1 Sample Locations 2 Sampling Scheme 5 Coal Sample Description 6 Mudrocks 9 Mudrock Colour 11 Sample Numbering 12 Coal Analysis 14 Classification of Coal by Rank 17 Macroscopic Seam Sections and Formation Curves 18 CHAPTER 2 REGIONAL GEOLOGY - THE CANNOCK COALFIELD 21 General 21 The South Staffordshire Coalfield and its Extensions 22 Stratigraphy 23 Igneous Intrusions 31 Structure 32 CHAPTER 3 WATER-SOLUBLE ELEMENTS IN COAL AND ASSOCIATED STRATA 34 Section 1 LEACHING EXPERIMENTS 36 (vi) Page Number Preliminary Studies 36 Water-soluble Leaching Experiments 37 30-72 B. S. S. Mesh Fraction-Eight Feet Seam 37 150-200 B. S. S. Mesh Coal 40 Tema Coal 41 Seam Profiles 41 Conclusions 43 Section 2 DIFFUSION STUDY 45 Theory of Diffusion 46 Eight Feet Seam - Diffusion Experiments 48 Conclusions 52 Section 3 TEMA GROUND ANALYSIS OF WATER-SOLUBLE ELEMENTS 53 Method 53 Discussion of Seam Profiles 55 Element Distribution within Seam Profiles 57 Sodium 57 Potassium 60 Calcium 61 Magnesium 62 Bicarbonate 63 Hydrogen - ion Activity 65 Sulphate 66 Chlorine 68 CHAPTER 4 TOTAL CHLORINE 73 The Origin of Chlorine 73 Nature of Chlorine in Coal 74 Chlorine Distribution 75 Variation with Rank 75 Variation with Depth 77 (vii) Page Number Small Scale Local Variations 78 Within Seam Variations 78 Association with Coal Types 78 Mode and Time of Chlorine Introduction 79 Peat Growth 79 During Deposition 79 Diagenetic Alteration of Ground Waters 80 Total Cl Profiles, Lea Hall and Littleton Collieries 82 Discussion of Profiles 82 The Influence of very Saline Ground Waters- an overriding example. 87 Total Cl and Depth 89 Prediction of Cl Leaching Levels 89 Influence of Ground Water on Leachable Cl 90 Location of Cl in Coal 90 Time of Cl Introduction 91 Conclusions 92 CHAPTER 5 LOW TEMPERATURE ASHING 95 Apparatus 95 L. T. A. Side Effects 96 Temperature of Ashing 100 Ashing- The Colour of Mineral Matter 100 Mineral Matter Profiles 101 CHAPTER 6 MUDROCKANALYSES 102 Section 1 WHOLE ROCK GEOCHEMISTRY 102 XRF Preparation 103 Major Element Geochemistry 105 Normative Mineralogy 107 (viii) Page Number Quartz 108 Combined Silica and Alumina 111 Titania 112 Ferrous Iron 113 Ferric Iron 114 Manganese 115 Calcium 117 Magnesium 118 Sodium and Potassium 120 Phosphorous 121 Conclusions 123 Section 2 CLAY MINERAL ANALYSIS 126 Method 126 Sample Preparation 126 Pre-treatment Procedures 129 Peak Area Estimation 130 Clay Proportions 133 Clay Minerals in the Coal 134 Clay Mineral Distribution in the Mudrocks 135 Clay Mineral Variation 135 Chlorite Composition 139 Illite 141 Illite Polytypes 142 Crystallinity Index and Sharpness Ratio 143 Mixed-layer Clays 145 Kaolinite 148 Crystallinity. 149 The Significance of Kaolinite in Diagenesis 151 (ix) Page Number The Implications of the Kaolinite Content in the Floor Measures 152 Conclusions - 154 Section 3 TRACE ELEMENTS 157 Sample Preparation 157 Past Study 158' Trace Elements in Early Sulphide Diagenesis, Nodules, Cleat and Associated Strata 158 Trace Element Comparisons 159 Seam Profile Description - General 159 Trace Element Associations 160 Further Evidence on Trace Element Location 170 Summary of Trace Element Locations 171 Source of Trace Elements 171 Conclusions 175 Section 4 PHYSICAL PROPERTIES OF MUDROCKS 177 N. C. B. Cone Indenter 177 The-Influence of Mineralogy, Fabric and Organic Matter- 177 Conclusions 180 CHAPTER 7 EXCHANGEABLE CATIONS 181 Method 181 Cation Exchange - Theory 182 Clay Mineral Content and C. E. C. 184 Clay, Associationships 185 -Mineral Seam Profiles 186 Cation Ratios 189 Exchangeable Cations in Coals 191 Conclusions 191 LX) Page Number CHAPTER 8 COAL MINERALOGY AND GEOCHEMISTRY 193 The Origin of Minerals in Coal Seams 193 Inorganic Matter in Vegetation 194 Coal Mineral Matter Analysis - XRD 196 Minerals Present 196 Sulphide Group 199 Clay Group including Quartz 201 Carbonate Group 204 Other Minerals 205 Summary of Coal Minerals 206 Coal Ash Geochemistry - XRF 207 Constraints 207 Total Silica and Alumina 208 Titania 210 Total Iron 213 Calcium, Magnesium and Manganese 215 Sodium and Potassium 218 Phosphorous 220 The Relative Contributions of Detrital and Diagenetic Minerals in Coal Ash and Associated Strata 221 Conclusions 224 CHAPTER 9 CLEAT 228 Cleat origins 229 Cleat Frequency 231 Influence of Bed Thickness 232 Physical Properties of Coal Types 233 (xi) Page Number Cleat Mineralogy 234 Minerals Present 234 Between Colliery Comparisons 235 Yorkshire, Nottinghamshire, S.
Recommended publications
  • Categorical Versus Geometric Morphometric Approaches To
    [Palaeontology, 2020, pp. 1–16] CATEGORICAL VERSUS GEOMETRIC MORPHOMETRIC APPROACHES TO CHARACTERIZING THE EVOLUTION OF MORPHOLOGICAL DISPARITY IN OSTEOSTRACI (VERTEBRATA, STEM GNATHOSTOMATA) by HUMBERTO G. FERRON 1,2* , JENNY M. GREENWOOD1, BRADLEY DELINE3,CARLOSMARTINEZ-PEREZ 1,2,HECTOR BOTELLA2, ROBERT S. SANSOM4,MARCELLORUTA5 and PHILIP C. J. DONOGHUE1,* 1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; [email protected], [email protected], [email protected] 2Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/ Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia, Spain; [email protected], [email protected] 3Department of Geosciences, University of West Georgia, Carrollton, GA 30118, USA; [email protected] 4School of Earth & Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK; [email protected] 5School of Life Sciences, University of Lincoln, Riseholme Hall, Lincoln, LN2 2LG, UK; [email protected] *Corresponding authors Typescript received 2 October 2019; accepted in revised form 27 February 2020 Abstract: Morphological variation (disparity) is almost aspects of morphology. Phylomorphospaces reveal conver- invariably characterized by two non-mutually exclusive gence towards a generalized ‘horseshoe’-shaped cranial mor- approaches: (1) quantitatively, through geometric morpho- phology and two strong trends involving major groups of metrics;
    [Show full text]
  • Proposed Black Country UNESCO Global Geopark
    Great things to see and do in the Proposed Black Country UNESCO Global Geopark Black Country UNESCO Global Geopark Project The layers lying above these are grey muddy Welcome to the world-class rocks that contain seams of ironstone, fireclay heritage which is the Black and coal with lots of fossils of plants and insects. These rocks tell us of a time some 310 million Country years ago (called the Carboniferous Period, The Black Country is an amazing place with a named after the carbon in the coal) when the captivating history spanning hundreds of Black Country was covered in huge steamy millions of years. This is a geological and cultural rainforests. undiscovered treasure of the UK, located at the Sitting on top of those we find reddish sandy heart of the country. It is just 30 minutes from rocks containing ancient sand dunes and Birmingham International Airport and 10 minutes pebbly river beds. This tells us that the landscape by train from the city of Birmingham. dried out to become a scorching desolate The Black Country is where many essential desert (this happened about 250 million years aspects of the Industrial Revolution began. It ago and lasted through the Permian and Triassic was the world’s first large scale industrial time periods). landscape where anything could be made, The final chapter in the making of our landscape earning it the nick-name the ‘workshop of the is often called the’ Ice Age’. It spans the last 2.6 world’ during the Industrial Revolution. This million years of our history when vast ice sheets short guidebook introduces some of the sites scraped across the surface of the area, leaving and features that are great things to see and a landscaped sculpted by ice and carved into places to explore across many parts of The the hills and valleys we see today.
    [Show full text]
  • Fish and Amphibians
    Fish and Amphibians Geology 331 Paleontology Phylum Chordata: Subphyla Urochordata, Cephalochordata, and: Subphylum Vertebrata Class Agnatha: jawless fish, includes the hagfish, conodonts, lampreys, and ostracoderms (armored jawless fish) Gnathostomates: jawed fish Class Chondrichthyes: cartilaginous fish Class Placoderms: armored fish Class Osteichthyes: bony fish Subclass Actinopterygians: ray-finned fish Subclass Sarcopterygians: lobe-finned fish Order Dipnoans: lung fish Order Crossopterygians: coelocanths and rhipidistians Class Amphibia Urochordates: Sea Squirts. Adults have a pharynx with gill slits. Larval forms are free-swimming and have a notochord. Chordates are thought to have evolved from the larval form by precocious sexual maturation. Chordate evolution Cephalochordate: Branchiostoma, the lancelet Pikaia, a cephalochordate from the Burgess Shale Yunnanozoon, a cephalochordate from the Lower Cambrian of China Haikouichthys, agnathan, Lower Cambrian of China - Chengjiang fauna, scale is 5 mm A living jawless fish, the lamprey, Class Agnatha Jawless fish do have teeth! A fossil jawless fish, Class Agnatha, Ostracoderm, Hemicyclaspis, Silurian Agnathan, Ostracoderm, Athenaegis, Silurian of Canada Agnathan, Ostracoderm, Pteraspis, Devonian of the U.K. Agnathan, Ostracoderm, Liliaspis, Devonian of Russia Jaws evolved by modification of the gill arch bones. The placoderms were the armored fish of the Paleozoic Placoderm, Dunkleosteus, Devonian of Ohio Asterolepis, Placoderms, Devonian of Latvia Placoderm, Devonian of Australia Chondrichthyes: A freshwater shark of the Carboniferous Fossil tooth of a Great White shark Chondrichthyes, Great White Shark Chondrichthyes, Carcharhinus Sphyrna - hammerhead shark Himantura - a ray Manta Ray Fish Anatomy: Ray-finned fish Osteichthyes: ray-finned fish: clownfish Osteichthyes: ray-finned fish, deep water species Lophius, an Eocene fish showing the ray fins. This is an anglerfish.
    [Show full text]
  • Fins, Limbs, and Tails: Outgrowths and Axial Patterning in Vertebrate Evolution Michael I
    Review articles Fins, limbs, and tails: outgrowths and axial patterning in vertebrate evolution Michael I. Coates1* and Martin J. Cohn2 Summary Current phylogenies show that paired fins and limbs are unique to jawed verte- brates and their immediate ancestry. Such fins evolved first as a single pair extending from an anterior location, and later stabilized as two pairs at pectoral and pelvic levels. Fin number, identity, and position are therefore key issues in vertebrate developmental evolution. Localization of the AP levels at which develop- mental signals initiate outgrowth from the body wall may be determined by Hox gene expression patterns along the lateral plate mesoderm. This regionalization appears to be regulated independently of that in the paraxial mesoderm and axial skeleton. When combined with current hypotheses of Hox gene phylogenetic and functional diversity, these data suggest a new model of fin/limb developmental evolution. This coordinates body wall regions of outgrowth with primitive bound- aries established in the gut, as well as the fundamental nonequivalence of pectoral and pelvic structures. BioEssays 20:371–381, 1998. ௠ 1998 John Wiley & Sons, Inc. Introduction over and again to exemplify fundamental concepts in biological Vertebrate appendages include an amazing diversity of form, theory. The striking uniformity of teleost pectoral fin skeletons from the huge wing-like fins of manta rays or the stumpy limbs of illustrated Geoffroy Saint-Hilair’s discussion of ‘‘special analo- frogfishes, to ichthyosaur paddles, the extraordinary fingers of gies,’’1 while tetrapod limbs exemplified Owen’s2 related concept aye-ayes, and the fin-like wings of penguins. The functional of ‘‘homology’’; Darwin3 then employed precisely the same ex- diversity of these appendages is similarly vast and, in addition to ample as evidence of evolutionary descent from common ances- various modes of locomotion, fins and limbs are also used for try.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Application Dossier for the Proposed Black Country Global Geopark
    Application Dossier For the Proposed Black Country Global Geopark Page 7 Application Dossier For the Proposed Black Country Global Geopark A5 Application contact person The application contact person is Graham Worton. He can be contacted at the address given below. Dudley Museum and Art Gallery Telephone ; 0044 (0) 1384 815575 St James Road Fax; 0044 (0) 1384 815576 Dudley West Midlands Email; [email protected] England DY1 1HP Web Presence http://www.dudley.gov.uk/see-and-do/museums/dudley-museum-art-gallery/ http://www.blackcountrygeopark.org.uk/ and http://geologymatters.org.uk/ B. Geological Heritage B1 General geological description of the proposed Geopark The Black Country is situated in the centre of England adjacent to the city of Birmingham in the West Midlands (Figure. 1 page 2) .The current proposed geopark headquarters is Dudley Museum and Art Gallery which has the office of the geopark coordinator and hosts spectacular geological collections of local fossils. The geological galleries were opened by Charles Lapworth (founder of the Ordovician System) in 1912 and the museum carries out annual programmes of geological activities, exhibitions and events (see accompanying supporting information disc for additional detail). The museum now hosts a Black Country Geopark Project information point where the latest information about activities in the geopark area and information to support a visit to the geopark can be found. Figure. 7 A view across Stone Street Square Dudley to the Geopark Headquarters at Dudley Museum and Art Gallery For its size, the Black Country has some of the most diverse geology anywhere in the world.
    [Show full text]
  • Description of a New Osteostracan Species from Ukraine with a Brief Analysis of the Interrelationships of Scolenaspida
    Description of a new osteostracan species from Ukraine with a brief analysis of the interrelationships of Scolenaspida Anders Carlsson Degree project in biology, 2006 Examensarbete i biologi 20p, 2006 Institutionen för fysiologi och utvecklingsbiologi, Avdelningen för evolutionär organismbiologi Supervisor: Henning Blom Sammanfattning Under devonperioden (ca. 400-350 miljoner år sedan) levde många märkliga former av ryggradsdjur som inte har några nutida ättlingar. En av dessa grupper var osteostracerna, en form av käklösa fiskar som anses vara de närmaste släktingarna till käkförsedda fiskar. De bestod av en hästskoformad huvudsköld av ben, ofta försedd med bakåtböjda horn, och en fiskliknande bakkropp, täckt av ledade fjäll. Skölden hade ögon och en enda näsöppning på ovansidan, och munnen och flera par gälöppningar på undersidan . I mitt examensarbete beskrivs ett nytt släkte och art av osteostracerna, Voichyschynaspis longicornualis gen. et sp. nov. Beskrivningen är baserad på fossilt material hittat i Dniestrdalen i Ukraina. Detta nya släkte har likheter med släktena Zychaspis och Stensiopelta. För att testa det nya släktets plats i släktträdet görs en fylogenetisk analys tillsammans med dess närmaste släktingar, Zychaspis och Stensiopelta. Analysen försöker också reda ut släktskapsförhållandena mellan de båda andra släktenas arter. Voichyschynaspis visar sig vara närmast släkt med Stensiopelta, som visar sig vara monofyletiskt, det vill säga alla dess arter har en gemensam förfader. Zychaspis är mer problematiskt eftersom en av dess arter inte med säkerhet kan föras till det. 1 Description of a new osteostracan species from Ukraine with a brief analysis of the interrelationships of Scolenaspida ANDERS CARLSSON Biology Education Centre and Department of Developmental Biology and Comparative Physiology, Subdepartment of Evolutionary Organism Biology, Uppsala University Supervised by Dr.
    [Show full text]
  • Family-Group Names of Fossil Fishes
    European Journal of Taxonomy 466: 1–167 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.466 www.europeanjournaloftaxonomy.eu 2018 · Van der Laan R. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:1F74D019-D13C-426F-835A-24A9A1126C55 Family-group names of fossil fishes Richard VAN DER LAAN Grasmeent 80, 1357JJ Almere, The Netherlands. Email: [email protected] urn:lsid:zoobank.org:author:55EA63EE-63FD-49E6-A216-A6D2BEB91B82 Abstract. The family-group names of animals (superfamily, family, subfamily, supertribe, tribe and subtribe) are regulated by the International Code of Zoological Nomenclature. Particularly, the family names are very important, because they are among the most widely used of all technical animal names. A uniform name and spelling are essential for the location of information. To facilitate this, a list of family- group names for fossil fishes has been compiled. I use the concept ‘Fishes’ in the usual sense, i.e., starting with the Agnatha up to the †Osteolepidiformes. All the family-group names proposed for fossil fishes found to date are listed, together with their author(s) and year of publication. The main goal of the list is to contribute to the usage of the correct family-group names for fossil fishes with a uniform spelling and to list the author(s) and date of those names. No valid family-group name description could be located for the following family-group names currently in usage: †Brindabellaspidae, †Diabolepididae, †Dorsetichthyidae, †Erichalcidae, †Holodipteridae, †Kentuckiidae, †Lepidaspididae, †Loganelliidae and †Pituriaspididae. Keywords. Nomenclature, ICZN, Vertebrata, Agnatha, Gnathostomata.
    [Show full text]
  • Some Attempts at Phylogeny of Early Vertebrates George M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Northern Iowa Proceedings of the Iowa Academy of Science Volume 60 | Annual Issue Article 96 1953 Some Attempts at Phylogeny of Early Vertebrates George M. Robertson Grinnell College Copyright © Copyright 1953 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Robertson, George M. (1953) "Some Attempts at Phylogeny of Early Vertebrates," Proceedings of the Iowa Academy of Science: Vol. 60: No. 1 , Article 96. Available at: https://scholarworks.uni.edu/pias/vol60/iss1/96 This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Robertson: Some Attempts at Phylogeny of Early Vertebrates Some Attempts at Phylogeny of Early Vertebrates By GEORGE M. ROBERTSON There is an often-quoted reply of a mountain-climber to the question of his motives in mountain climbing. "Why do I want to climb that mountain?· Because it is there." The same char­ acteristic of curiosity has driven men to investigate all sorts of things aside from mountains, and in many, perhaps most, cases we make the same reply if we are really honest. So in paleontology one generally starts with the small-boy motive and some fortunate souls continue with it. They are the rock­ hounds, the human "pack-rats", like the famous Lauder Dick, the Baker of Thurso.
    [Show full text]
  • Silurian Vertebrate Remains from the Oslo Region, Norway, and Their Implications for Regional Biostratigraphy
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 1 https://dx.doi.org/10.17850/njg99-1-07 Silurian vertebrate remains from the Oslo Region, Norway, and their implications for regional biostratigraphy Oskar Bremer1, Susan Turner2, Tiiu Märss3 & Henning Blom1 1Uppsala University, Department of Organismal Biology, Norbyvägen 18A, 752 36, Uppsala, Sweden. 2Honorary Research Fellow, Queensland Museum Geosciences, 122 Gerler Road, Hendra, Queensland 4011, Australia. 3Department of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia. E-mail corresponding author (Oskar Bremer): [email protected]. Several vertebrate assemblages are described from the Silurian of the Oslo Region, Norway, based on the review and revision of previous reports of microremains, as well as unpublished material from museum collections. Articulated thelodont specimens from the Rudstangen Fauna, Ringerike Group, are also described here for the first time, revealing a seemingly monogeneric loganelliid assemblage. The oldest assemblage (mid-Llandovery) only contains the thelodont Loganellia cf. aldridgei, while a single sample from upper Llandovery strata produced four Thelodus sp. scales. These scales share features with those from younger Thelodus taxa and give additional support to an early appearance of this genus. The mid-Wenlock faunas consist of thelodonts Loganellia grossi, Loganellia einari and Thelodus laevis. These are joined by the thelodont Paralogania martinssoni, anaspids Rhyncholepis parvula and cf. Pterygolepis nitida, as well as the osteostracans cf. Tyriaspis whitei and Osteostraci gen. et sp. indet. in late Wenlock and earliest Ludlow faunas. These complement the previously described anaspids and osteostracans of the Rudstangen Fauna based on articulated specimens. The faunas of a number of calcarenite samples collectively contain the thelodonts L.
    [Show full text]
  • Computational Fluid Dynamics Suggests Ecological Diversification
    Report Computational Fluid Dynamics Suggests Ecological Diversification among Stem-Gnathostomes Highlights Authors d Osteostracan headshield morphologies exhibit different Humberto G. Ferro´ n, hydrodynamic efficiencies Carlos Martı´nez-Perez, Imran A. Rahman, d Osteostracans had adaptations for passive control of water Vı´ctor Selles de Lucas, Hector Botella, flow around the body Philip C.J. Donoghue d Jawless stem-gnathostomes were ecologically diversified Correspondence d The origin of jaws was not the trigger for vertebrate ecological [email protected] (H.G.F.), diversification [email protected] (P.C.J.D.) In Brief Ferron et al. show, using computational fluid dynamics, that early jawless vertebrates were ecologically diversified and had complex hydrodynamic adaptations. These findings challenge the traditional scenario of jaws as the key evolutionary innovation that precipitated the ecological diversification of our ancestors. Ferro´ n et al., 2020, Current Biology 30, 1–6 December 7, 2020 ª 2020 Elsevier Inc. https://doi.org/10.1016/j.cub.2020.09.031 ll Please cite this article in press as: Ferro´ n et al., Computational Fluid Dynamics Suggests Ecological Diversification among Stem-Gnathostomes, Cur- rent Biology (2020), https://doi.org/10.1016/j.cub.2020.09.031 ll Report Computational Fluid Dynamics Suggests Ecological Diversification among Stem-Gnathostomes Humberto G. Ferro´ n,1,2,5,* Carlos Martı´nez-Perez, 1,2 Imran A. Rahman,3 Vı´ctor Selles de Lucas,4 Hector Botella,2 and Philip C.J. Donoghue1,* 1School of Earth
    [Show full text]
  • Lecture III.5B. Animals – III
    Lecture III.5b. Animals – III. The coelacanth, Latimeria chalumnae, the only living cros- sopterygian, was thought to be extinct until 1938. Coela- canths are descended from freshwater crossopterygians that returned to the sea. Prior to 1938, the last known coe- lacanth was from the late Cretaceous. Vertebrates. Four extant groups of verte- brates. 1. Agnatha – jawless fish. 2. Chondrichthyes – sharks and rays (cartilaginous). Simplified vertebrate phylog- eny. Red dots refer to pre- 3. Osteichthyes – bony fish. sumptive change in habitat. 4. Tetrapods – amphibians, reptiles, birds, mammals. a. Tetrapods evolved from a now extinct group of freshwater lobefin fish- es. b. Coelacanth, the only liv- ing lobefin, is secondari- Top. A typical Devonian ly marine. crossopterygian close to the ancestor of tetrapods. Bot- c. Previously thought to tom. The coelacanth, Latime- have died out at end of ria, a deep water marine form Cretaceous. and the only living repre- sentative of the group. 2 Myllokunmingia, a Cambrian jawless fish. 3 From Fish to Tetrapods. First vertebrates jawless. 1. Class Agnatha. 2. Principal fossil representa- tives belonged to the group called ostracoderms – ex- ternal boney armor. 3. Living forms called cyclo- Above. Ostracoderms. Note stomes (hagfish, lamprey) the armored heads. The pad- dles in Hemicyclaspis in back a. Lack bony skeletons. of the head shield evolved independently of the pectoral b. Special feeding struc- fins of modern fish. Below. tures for bottom scav- Business end of a living lam- enging (hagfish), and prey. blood sucking (lamprey - right). c. Lampreys have a ses- sile “ammocete” larva that resembles Amphi- oxus. 4 Above. Cyclostome manifest a combination of primitive and de- rived features.
    [Show full text]