Computational Fluid Dynamics Suggests Ecological Diversification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polskaakademianauk Instytutpaleobiologii
POLSKA AKADEMIA NAUK INSTYTUT PALEOBIOLOGII im. Romana Kozłowskiego SILURIAN AND DEVONIAN HETEROSTRACI FROM POLAND AND HYDRODYNAMIC PERFORMANCE OF PSAMMOSTEIDS Sylurskie i dewońskie Heterostraci z Polski oraz efektywność hydrodynamiczna psammosteidów Marek Dec Dissertation for degree of doctor of Earth and related environmental sciences, presented at the Institute of Paleobiology of Polish Academy of Sciences Rozprawa doktorska wykonana w Instytucie Paleobiologii Polskiej Akademii Nauk pod kierunkiem prof. dr hab. Magdaleny Borsuk-Białynickiej w celu uzyskania stopnia doktora w dyscyplinie Nauki o Ziemi oraz środowisku Warszawa 2020 CONTENTS ACKNOWLEDGMENTS…………………………………………………………….….... 3 STRESZCZENIE………………………………………………………………….....….. 4 SUMMARY……………………………………………………………………….…….. 8 CHAPTER I…………………………………………………………………………….. 13 TRAQUAIRASPIDIDAE AND CYATHASPIDIDAE (HETEROSTRACI) FROM LOWER DEVONIAN OF POLAND CHAPTER II……………………………………………………………………….…… 24 A NEW TOLYPELEPIDID (AGNATHA, HETEROSTRACI) FROM THE LATE SILURIAN OF POLAND CHAPTER III…………………………………………………………………………... 41 REVISION OF THE EARLY DEVONIAN PSAMMOSTEIDS FROM THE “PLACODERM SANDSTONE” - IMPLICATIONS FOR THEIR BODY SHAPE RECONSTRUCTION CHAPTER IV……………………………………………………………………….….. 82 NEW MIDDLE DEVONIAN (GIVETIAN) PSAMMOSTEID FROM HOLY CROSS MOUNTAINS (POLAND) CHAPTER V……………………………………………………………………………109 HYDRODYNAMIC PERFORMANCE OF PSAMMOSTEIDS: NEW INSIGHTS FROM COMPUTATIONAL FLUID DYNAMICS SIMULATIONS 2 ACKNOWLEDGMENTS First and foremost I would like to say thank you to my supervisor Magdalena -
UNIVERSITY of CALIFORNIA Los Angeles
UNIVERSITY OF CALIFORNIA Los Angeles Evolution of the boxfish carapace: functional consequences of shape A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Biology by Tina Ashley Marcroft 2015 ABSTRACT OF THE THESIS Evolution of the boxfish carapace: functional consequences of shape by Tina Ashley Marcroft Master of Science in Biology University of California, Los Angeles, 2015 Professor Michael Edward Alfaro, Chair Boxfishes are a group of heavily armored Tetraodontiform fishes that are highly variable in shape. Disparification of shape could be driven by a simple performance trade-off between its two hypothesized primary functions: protection from predation and maneuverability. Alternatively, disparification could be driven by many-to-one mapping of shape to performance, where a relaxation in morphological constraint where many of morphologies have the same performance. We tested this by isolating the major features of the boxfish carapace shape and tested for their correlation to performance, as well as for a negative correlation between performances. We found that some features were correlated but very weakly, and that the two performances did trade-off but also weakly. This weak correlation primarily suggests that many- to-one mapping of shape to performance is driving disparification, which was unobserved in continuous 3D shape systems until this study. ii The thesis of Tina Ashley Marcroft is approved. Blaire Van Valkenburgh David K. Jacobs Michael Edward Alfaro, Committee Chair University of California, Los Angeles 2015 iii I dedicate this thesis to Carrie Umetsu, Joseph Aprill, Mai Nguyen, Princess Gilbert, Francisca Wufu, Deb Pires, Jonathan Chang, Herbert Icasiano, and many others, without whose unwavering emotional and professional support I would not have completed this text. -
Bone Metabolism and Evolutionary Origin Of
Bone metabolism and evolutionary origin of osteocytes: Novel application of FIB-SEM tomography Yara Haridy, Markus Osenberg, André Hilger, Ingo Manke, Donald Davesne, Florian Witzmann To cite this version: Yara Haridy, Markus Osenberg, André Hilger, Ingo Manke, Donald Davesne, et al.. Bone metabolism and evolutionary origin of osteocytes: Novel application of FIB-SEM tomography. Science Ad- vances , American Association for the Advancement of Science (AAAS), 2021, 7 (14), pp.eabb9113. 10.1126/sciadv.abb9113. hal-03188775 HAL Id: hal-03188775 https://hal.sorbonne-universite.fr/hal-03188775 Submitted on 2 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2021 The Authors, some rights reserved; Bone metabolism and evolutionary origin of osteocytes: exclusive licensee American Association Novel application of FIB-SEM tomography for the Advancement Yara Haridy1*†, Markus Osenberg2*, André Hilger2, Ingo Manke2, of Science. No claim to 3,4 1 original U.S. Government Donald Davesne , Florian Witzmann Works. Distributed under a Creative Lacunae and canaliculi spaces of osteocytes are remarkably well preserved in fossilized bone and serve as an Commons Attribution established proxy for bone cells. -
Categorical Versus Geometric Morphometric Approaches To
[Palaeontology, 2020, pp. 1–16] CATEGORICAL VERSUS GEOMETRIC MORPHOMETRIC APPROACHES TO CHARACTERIZING THE EVOLUTION OF MORPHOLOGICAL DISPARITY IN OSTEOSTRACI (VERTEBRATA, STEM GNATHOSTOMATA) by HUMBERTO G. FERRON 1,2* , JENNY M. GREENWOOD1, BRADLEY DELINE3,CARLOSMARTINEZ-PEREZ 1,2,HECTOR BOTELLA2, ROBERT S. SANSOM4,MARCELLORUTA5 and PHILIP C. J. DONOGHUE1,* 1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; [email protected], [email protected], [email protected] 2Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/ Catedratic Jose Beltran Martınez 2, 46980, Paterna, Valencia, Spain; [email protected], [email protected] 3Department of Geosciences, University of West Georgia, Carrollton, GA 30118, USA; [email protected] 4School of Earth & Environmental Sciences, University of Manchester, Manchester, M13 9PT, UK; [email protected] 5School of Life Sciences, University of Lincoln, Riseholme Hall, Lincoln, LN2 2LG, UK; [email protected] *Corresponding authors Typescript received 2 October 2019; accepted in revised form 27 February 2020 Abstract: Morphological variation (disparity) is almost aspects of morphology. Phylomorphospaces reveal conver- invariably characterized by two non-mutually exclusive gence towards a generalized ‘horseshoe’-shaped cranial mor- approaches: (1) quantitatively, through geometric morpho- phology and two strong trends involving major groups of metrics; -
Proposed Black Country UNESCO Global Geopark
Great things to see and do in the Proposed Black Country UNESCO Global Geopark Black Country UNESCO Global Geopark Project The layers lying above these are grey muddy Welcome to the world-class rocks that contain seams of ironstone, fireclay heritage which is the Black and coal with lots of fossils of plants and insects. These rocks tell us of a time some 310 million Country years ago (called the Carboniferous Period, The Black Country is an amazing place with a named after the carbon in the coal) when the captivating history spanning hundreds of Black Country was covered in huge steamy millions of years. This is a geological and cultural rainforests. undiscovered treasure of the UK, located at the Sitting on top of those we find reddish sandy heart of the country. It is just 30 minutes from rocks containing ancient sand dunes and Birmingham International Airport and 10 minutes pebbly river beds. This tells us that the landscape by train from the city of Birmingham. dried out to become a scorching desolate The Black Country is where many essential desert (this happened about 250 million years aspects of the Industrial Revolution began. It ago and lasted through the Permian and Triassic was the world’s first large scale industrial time periods). landscape where anything could be made, The final chapter in the making of our landscape earning it the nick-name the ‘workshop of the is often called the’ Ice Age’. It spans the last 2.6 world’ during the Industrial Revolution. This million years of our history when vast ice sheets short guidebook introduces some of the sites scraped across the surface of the area, leaving and features that are great things to see and a landscaped sculpted by ice and carved into places to explore across many parts of The the hills and valleys we see today. -
Fish and Amphibians
Fish and Amphibians Geology 331 Paleontology Phylum Chordata: Subphyla Urochordata, Cephalochordata, and: Subphylum Vertebrata Class Agnatha: jawless fish, includes the hagfish, conodonts, lampreys, and ostracoderms (armored jawless fish) Gnathostomates: jawed fish Class Chondrichthyes: cartilaginous fish Class Placoderms: armored fish Class Osteichthyes: bony fish Subclass Actinopterygians: ray-finned fish Subclass Sarcopterygians: lobe-finned fish Order Dipnoans: lung fish Order Crossopterygians: coelocanths and rhipidistians Class Amphibia Urochordates: Sea Squirts. Adults have a pharynx with gill slits. Larval forms are free-swimming and have a notochord. Chordates are thought to have evolved from the larval form by precocious sexual maturation. Chordate evolution Cephalochordate: Branchiostoma, the lancelet Pikaia, a cephalochordate from the Burgess Shale Yunnanozoon, a cephalochordate from the Lower Cambrian of China Haikouichthys, agnathan, Lower Cambrian of China - Chengjiang fauna, scale is 5 mm A living jawless fish, the lamprey, Class Agnatha Jawless fish do have teeth! A fossil jawless fish, Class Agnatha, Ostracoderm, Hemicyclaspis, Silurian Agnathan, Ostracoderm, Athenaegis, Silurian of Canada Agnathan, Ostracoderm, Pteraspis, Devonian of the U.K. Agnathan, Ostracoderm, Liliaspis, Devonian of Russia Jaws evolved by modification of the gill arch bones. The placoderms were the armored fish of the Paleozoic Placoderm, Dunkleosteus, Devonian of Ohio Asterolepis, Placoderms, Devonian of Latvia Placoderm, Devonian of Australia Chondrichthyes: A freshwater shark of the Carboniferous Fossil tooth of a Great White shark Chondrichthyes, Great White Shark Chondrichthyes, Carcharhinus Sphyrna - hammerhead shark Himantura - a ray Manta Ray Fish Anatomy: Ray-finned fish Osteichthyes: ray-finned fish: clownfish Osteichthyes: ray-finned fish, deep water species Lophius, an Eocene fish showing the ray fins. This is an anglerfish. -
Fins, Limbs, and Tails: Outgrowths and Axial Patterning in Vertebrate Evolution Michael I
Review articles Fins, limbs, and tails: outgrowths and axial patterning in vertebrate evolution Michael I. Coates1* and Martin J. Cohn2 Summary Current phylogenies show that paired fins and limbs are unique to jawed verte- brates and their immediate ancestry. Such fins evolved first as a single pair extending from an anterior location, and later stabilized as two pairs at pectoral and pelvic levels. Fin number, identity, and position are therefore key issues in vertebrate developmental evolution. Localization of the AP levels at which develop- mental signals initiate outgrowth from the body wall may be determined by Hox gene expression patterns along the lateral plate mesoderm. This regionalization appears to be regulated independently of that in the paraxial mesoderm and axial skeleton. When combined with current hypotheses of Hox gene phylogenetic and functional diversity, these data suggest a new model of fin/limb developmental evolution. This coordinates body wall regions of outgrowth with primitive bound- aries established in the gut, as well as the fundamental nonequivalence of pectoral and pelvic structures. BioEssays 20:371–381, 1998. 1998 John Wiley & Sons, Inc. Introduction over and again to exemplify fundamental concepts in biological Vertebrate appendages include an amazing diversity of form, theory. The striking uniformity of teleost pectoral fin skeletons from the huge wing-like fins of manta rays or the stumpy limbs of illustrated Geoffroy Saint-Hilair’s discussion of ‘‘special analo- frogfishes, to ichthyosaur paddles, the extraordinary fingers of gies,’’1 while tetrapod limbs exemplified Owen’s2 related concept aye-ayes, and the fin-like wings of penguins. The functional of ‘‘homology’’; Darwin3 then employed precisely the same ex- diversity of these appendages is similarly vast and, in addition to ample as evidence of evolutionary descent from common ances- various modes of locomotion, fins and limbs are also used for try. -
Copyrighted Material
06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago). -
Application Dossier for the Proposed Black Country Global Geopark
Application Dossier For the Proposed Black Country Global Geopark Page 7 Application Dossier For the Proposed Black Country Global Geopark A5 Application contact person The application contact person is Graham Worton. He can be contacted at the address given below. Dudley Museum and Art Gallery Telephone ; 0044 (0) 1384 815575 St James Road Fax; 0044 (0) 1384 815576 Dudley West Midlands Email; [email protected] England DY1 1HP Web Presence http://www.dudley.gov.uk/see-and-do/museums/dudley-museum-art-gallery/ http://www.blackcountrygeopark.org.uk/ and http://geologymatters.org.uk/ B. Geological Heritage B1 General geological description of the proposed Geopark The Black Country is situated in the centre of England adjacent to the city of Birmingham in the West Midlands (Figure. 1 page 2) .The current proposed geopark headquarters is Dudley Museum and Art Gallery which has the office of the geopark coordinator and hosts spectacular geological collections of local fossils. The geological galleries were opened by Charles Lapworth (founder of the Ordovician System) in 1912 and the museum carries out annual programmes of geological activities, exhibitions and events (see accompanying supporting information disc for additional detail). The museum now hosts a Black Country Geopark Project information point where the latest information about activities in the geopark area and information to support a visit to the geopark can be found. Figure. 7 A view across Stone Street Square Dudley to the Geopark Headquarters at Dudley Museum and Art Gallery For its size, the Black Country has some of the most diverse geology anywhere in the world. -
Categorical Versus Geometric Morphometric Approaches to Characterising the Evolution of Morphological Disparity in Osteostraci (Vertebrata, Stem-Gnathostomata)
Palaeontology CATEGORICAL VERSUS GEOMETRIC MORPHOMETRIC APPROACHES TO CHARACTERISING THE EVOLUTION OF MORPHOLOGICAL DISPARITY IN OSTEOSTRACI (VERTEBRATA, STEM-GNATHOSTOMATA) Journal: Palaeontology Manuscript ID PALA-10-19-4616-OA Manuscript Type: Original Article Date Submitted by the 02-Oct-2019 Author: Complete List of Authors: Ferrón, Humberto; Universitat de Valencia Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Greenwood, Jenny; University of Bristol School of Earth Sciences Deline, Bradley; University of West Georgia, Geosciences Martínez Pérez, Carlos; Universitat de Valencia Institut Cavanilles de Biodiversitat i Biologia Evolutiva, ; University of Bristol School of Biological Sciences, BOTELLA, HECTOR; university of Valencia, geology Sansom, Robert; University of Manchester, School of Earth and Environmental Sciences Ruta, Marcello; University of Lincoln, Life Sciences; Donoghue, Philip; University of Bristo, School of Earth Sciences Key words: Disparity, Osteostraci, Geometric morphometrics, Categorical data Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. File S1.rar Palaeontology Page 1 of 32 Palaeontology 1 2 3 CATEGORICAL VERSUS GEOMETRIC MORPHOMETRIC APPROACHES TO CHARACTERISING THE EVOLUTION 4 5 OF MORPHOLOGICAL DISPARITY IN OSTEOSTRACI (VERTEBRATA, STEM-GNATHOSTOMATA) 6 7 8 by HUMBERTO G. FERRÓN1,2*, JENNY M. GREENWOOD1, BRADLEY DELINE3, CARLOS MARTÍNEZ-PÉREZ1,2, 9 10 HÉCTOR BOTELLA2, ROBERT S. SANSOM4, -
Description of a New Osteostracan Species from Ukraine with a Brief Analysis of the Interrelationships of Scolenaspida
Description of a new osteostracan species from Ukraine with a brief analysis of the interrelationships of Scolenaspida Anders Carlsson Degree project in biology, 2006 Examensarbete i biologi 20p, 2006 Institutionen för fysiologi och utvecklingsbiologi, Avdelningen för evolutionär organismbiologi Supervisor: Henning Blom Sammanfattning Under devonperioden (ca. 400-350 miljoner år sedan) levde många märkliga former av ryggradsdjur som inte har några nutida ättlingar. En av dessa grupper var osteostracerna, en form av käklösa fiskar som anses vara de närmaste släktingarna till käkförsedda fiskar. De bestod av en hästskoformad huvudsköld av ben, ofta försedd med bakåtböjda horn, och en fiskliknande bakkropp, täckt av ledade fjäll. Skölden hade ögon och en enda näsöppning på ovansidan, och munnen och flera par gälöppningar på undersidan . I mitt examensarbete beskrivs ett nytt släkte och art av osteostracerna, Voichyschynaspis longicornualis gen. et sp. nov. Beskrivningen är baserad på fossilt material hittat i Dniestrdalen i Ukraina. Detta nya släkte har likheter med släktena Zychaspis och Stensiopelta. För att testa det nya släktets plats i släktträdet görs en fylogenetisk analys tillsammans med dess närmaste släktingar, Zychaspis och Stensiopelta. Analysen försöker också reda ut släktskapsförhållandena mellan de båda andra släktenas arter. Voichyschynaspis visar sig vara närmast släkt med Stensiopelta, som visar sig vara monofyletiskt, det vill säga alla dess arter har en gemensam förfader. Zychaspis är mer problematiskt eftersom en av dess arter inte med säkerhet kan föras till det. 1 Description of a new osteostracan species from Ukraine with a brief analysis of the interrelationships of Scolenaspida ANDERS CARLSSON Biology Education Centre and Department of Developmental Biology and Comparative Physiology, Subdepartment of Evolutionary Organism Biology, Uppsala University Supervised by Dr. -
Devonian Jawless Vertebrates
FULL COMMUNICATIONS PALAEONTOLOGY Phylogenetic relationships of psammosteid heterostracans (Pteraspidiformes), Devonian jawless vertebrates Vadim Glinskiy PALAEONTOLOGY Institute of Earth Sciences, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 199034, Russian Federation Address correspondence and requests for materials to Vadim Glinskiy, [email protected] Abstract Psammosteid heterostracans are a group (suborder Psammosteoidei) of Devo- nian-age jawless vertebrates, which is included in the order Pteraspidiformes. The whole group of psammosteids is represented by numerous species (more than 40); their phylogenetic relationships are still poorly known and deserve further study. Classical researchers of the psammosteids, such as D. Obruchev, E. Mark-Kurik and L. Halstead Tarlo, had different views on the phylogeny of the group (e.g. origins and evolution of Psammosteus). To check the modern hy- potheses of psammosteid origins from various Pteraspidiformes and to clarify psammosteid interrelationships, the most complete phylogeny of this group (38 ingroup taxa + juvenile Drepanapsis) is presented here. Different methods of data analysis were used to explore the psammosteid data set, including equally weighted characters versus implied weighting. According to the results of the phylogenetic analysis, the monophyletic status of the group and their early development from the Pteraspidiformes are supported. The diagnoses and interrelationships of many taxa are clarified. Two new genera are proposed (Vladimirolepis