TRABAJO FIN DE GRADO Grado En Matemáticas MATH-ORIGAMI

Total Page:16

File Type:pdf, Size:1020Kb

TRABAJO FIN DE GRADO Grado En Matemáticas MATH-ORIGAMI Facultad de Ciencias TRABAJOFINDEGRADO Grado en Matemáticas MATH-ORIGAMI Aspectos algebraicos de las construcciones con origami javier gomez´ villamayor Tutor: philippe t. gimenez MATH-ORIGAMI ASPECTOSALGEBRAICOSDELAS CONSTRUCCIONESCONORIGAMI Javier Gómez Villamayor trabajo fin de grado: Math-Origami. Aspectos algebraicos de las construcciones con origami Grado en Matemáticas, Universidad de Valladolid lugar: Valladolid fecha: Julio de 2017 MATH-ORIGAMI El presente Trabajo de Fin de Grado (TFG) pretende abordar el estudio de la teoría matemática relacionada con el origami. Siendo este un tema relati- vamente amplio, abierto e inexplorado (aún), nosotros sólo nos ocuparemos de precisar las construcciones mediante dobleces sobre una hoja de papel infinita (i.e., equiparando la hoja con el plano complejo, de analizar los con- juntos de números complejos origami-constructibles). Esta es la concepción del origami más elemental, análoga al concepto de construcciones con regla y compás, aunque alejada quizá de la idea esperable de origami (esculturas trimidensionales de papel). El contenido del trabajo tiene como argumento principal el estudio de los números construibles por origami siguiendo la formalización clásica dada por los axiomas Huzita-Justin. El resultado fundamental a demostrar en este ámbito será el siguiente: Un número α 2 C pertenece al conjunto OP de los números origami- construibles (siguiendo los axiomas Huzita-Justin) si, y sólo si, existe una torre de cuerpos Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ C de forma que α 2 Fn y el grado de cada extensión F j ⊂ F j+1 sea 2 ó 3. Una vez realizado dicho estudio propondremos diferentes generalizaciones y extensiones de los axiomas de partida, creando así nuevas concepciones del origami que analizar; estudiaremos en cada caso las consecuencias y limita- ciones de cada una de estas nuevas herramientas de construcción mediante doblado, dando caracterizaciones precisas siempre que nos sea posible. En cada caso intentaremos tratar también algunas aplicaciones de tales he- rramientas; así, por ejemplo, veremos cómo caracterizar los polígonos regu- lares construibles por origami (siguiendo los axiomas Huzita-Justin) o cómo resolver ecuaciones polinomiales simplemente doblando una hoja de papel. También compararemos estos resultados con los correspondientes a otras he- rramientas más clásicas (e.g., la regla y compás), y daremos respuestas alter- nativas a los problemas de la geometría clásica. La teoría de Galois será la materia crucial que nos permitirá entender con precisión, caracterizar y clarificar estas construcciones; siendo imprescindible por tanto para este trabajo la asignatura “Ecuaciones Algebraicas” del Grado de Matemáticas aquí en la Universidad de Valladolid. Si bien el contenido del trabajo queda fuera de los temas examinados en el Grado (así como de los manuales académicos tradicionales en esta materia), parte de éste bien podría considerarse como un ejemplo práctico inmediato de los conceptos fundamentales de teoría de Galois impartidos. El trabajo pretende dar una visión global sobre este tema, históricamente poco tratado de forma matemática y que actualmente ha vuelto a ser objeto de i análisis (motivado por el reciente auge del origami computacional). La expo- sición se persigue rigurosa y formal, de forma que se reflejen las capacidades alcanzadas durante el trascurso de los estudios de grado en matemáticas; de igual forma el contenido; siendo este el fin último de cualquier TFG. El contenido del trabajo se estructura como sigue: los tres primeros capí- tulos constituyen una parte preparatoria; en el capítulo 1 empezaremos ofre- ciendo un breve resumen sobre origami; en el capítulo 2 hemos recogido el conjunto de resultados teóricos ya conocidos que se utilizarán durante el tra- bajo; y en el capítulo 3 presentamos el lenguaje técnico sobre construcciones. La parte central del contenido del TFG queda constituida en los tres capítulos restantes; en el capítulo 4 nos ocuparemos de estudiar las construcciones con origami siguiendo los axiomas Huzita-Justin, esto es, permitiendo un único pliegue a la vez; en el capítulo 5 analizaremos las consecuencias de permi- tirnos construir cualquier polígono regular; y, por último, en el capítulo 6 estudiaremos el origami autorizándonos a realizar multiples pliegues simulta- neamente en el papel. ii ÍNDICEGENERAL 1 introduccion´ al origami 1 1.1 Historia del origami . .1 1.2 Origami y matemáticas . .2 2 preliminares algebraicos 5 2.1 Rudimentos sobre extensiones de cuerpos . .5 2.2 Teoría de Galois . .9 2.3 Extensiones ciclotómicas . 11 2.4 Resolubilidad por radicales . 13 2.5 Composición de extensiones . 14 3 construcciones geometricas´ 17 3.1 Sobre constructibilidad plana general . 17 3.2 Axiomas y herramientas . 18 3.3 Construcciones y mapas . 20 3.4 Equivalencias entre herramientas . 23 4 origami: concepcion´ clasica´ 25 4.1 Axiomas Huzita-Justin . 25 4.1.1 Observaciones relativas a los axiomas Huzita-Justin . 26 4.2 Origami-constructibilidad . 30 4.3 El cuerpo OP ......................... 32 4.3.1 Construcciones auxiliares . 32 4.3.2 Construcciones de cuerpo . 33 4.3.3 Otras construcciones algebraicas . 37 4.4 Caracterización del conjunto OP ............... 43 4.4.1 Caracterización mediante torres de cuerpos . 43 4.4.2 Otras caracterizaciones . 48 4.4.3 Algunas consecuencias inmediatas . 53 4.5 Caracterización del conjunto OC ............... 54 4.6 Polígonos regulares O-construibles . 55 4.7 Resolubilidad de ecuaciones mediante origami . 57 4.8 Escapando a los axiomas clásicos . 59 5 gon-origami 61 5.1 Axioma regularGon . 61 5.1.1 El método de doblado . 61 5.2 RegularGon-constructibilidad . 65 5.2.1 Caracterización de ORG mediante torres de cuerpos . 66 5.2.2 Consecuencias . 68 5.3 Una visión alternativa: origami anudado . 71 5.3.1 Axiomas nudoGon . 71 iii iv ´indice general 5.3.2 NudoGon-Constructibilidad . 75 5.4 Generalizaciones: axiomas ciclicGon y origami poliédrico . 77 5.4.1 Origami ciclicGon . 77 5.4.2 Origami poliédrico . 78 6 mp-origami 79 6.1 1P-Origami . 79 6.1.1 Preparación a la teoría de superposición . 79 6.1.2 Condiciones de superposición por un doblez . 80 6.1.3 Axiomas 1P . 86 6.1.4 Revisión de los axiomas Huzita-Justin . 89 6.2 2P-Origami y mP-Origami . 96 6.2.1 Multiplegado y teoría de superposición . 96 6.2.2 2P-origami . 99 6.2.3 Resolución de polinomios de grado n mediante ori- gami multipliegue . 106 6.2.4 Observaciones finales . 110 bibliograf´ia 113 ´indice de terminos´ 125 1 INTRODUCCIÓNALORIGAMI La papiroflexia (del latín papiro, papel, y flexux, doblado), o cocotología1, es el arte y la habilidad de realizar figuras reconocibles mediante el doblado de papel. Daremos preferencia a la voz japonesa origami, pues es la denomi- nación más universal y extendida2. Habitualmente3 el origami busca “esculpir” el papel para conseguir una de- terminada figura a partir de una hoja de papel únicamente mediante dobleces, Figura 1.1: Origami. sin estar permitido cortar ni pegar el papel. Grafía japonesa: el radical superior deriva Las referencias principales para este capítulo son: [Hat; Hat11; Smi05; de mano, el inferior de Eng94; Pri02] (historia) y [DO07; NY15; Hul11] (matemáticas). seda; se leen ori, doblar, y kami, papel. Imagen extraída de 1.1 historia del origami [Eng94] La historia del origami va ligada al nacimiento del papel (China, siglo II) y a su difusión por el mundo. El papel viajaría desde Corea a Japón en el siglo VII con los monjes budistas. Durante la ocupación árabe de Samarcan- da (s. VIII) el papel comenzó a transmitirse por los territorios musulmanes, llegando hasta Egipto (siglo X), y recalando finalmente (junto con las mate- máticas) en la península ibérica. En el siglo XIV su uso se habría extendido ya prácticamente por toda Europa. Posiblemente ciertos modelos de origami se transmitiesen junto con la di- fusión del papel (de aquí considerar el origami originario de China, Corea o Japón); otros surgirían independientemente en diferentes territorios (con- cibiendo así el origami como una actividad natural sin origen concreto). La historia del origami no examina quién dobló primero4, sino de rastrear las in- fluencias y precedentes del origami que conocemos. Y aparentemente lo más razonable es pensar que el origami surgió y evolucionó de manera indepen- diente en Europa y Japón, desembocando en la distinción de dos corrientes en la papiroflexia moderna (anterior a 1980) 5. 1 Cocotología (del francés cocotte; gallina, ave, pajarita; y el griego logía; tratado, estudio de), término introducido por Unamuno; en palabras suyas «es la ciencia que trata de las pajaritas de papel» [Una02]. El origami modular 2 Los trabajos de Akira Yoshizawa (1911-2005) popularizaron el término japonés por el mundo, confecciona los en detrimento de los términos nativos de las lenguas locales, o de la voz zhezhi china. modelos a partir de 3 Existen otras variantes del origami, como el modular o las teselaciones. En la rama más purista numerosas piezas de del origami no se permite más de un pliegue a la vez, ni pliegues ubicados intuitivamente. Otras papel (módulos) ramas más artísticas conceden “licéncia poética” al autor para moldear a conveniencia la hoja, ensamblados (sin creando pliegues y superficies curvas. pegarlos). Las 4 Ya habría existido papel “antes del papel” en Mesoamérica, Hawái y Asia del sur hace 7000 teselaciones buscan años, y probablemente tuviesen su propio “origami”; pero ese origami no tendría relación crear un patrón en el alguna con el nuestro (cfr. [Hat11]). plano de papel, 5 En [Hat] se citan numerosas referencias sobre origami europeo simultáneamente desconocido apareciendo las figuras en japón; junto con las características distintivas entre ambas corrientes japonesa y europea como textura. Para discutidas en [Hat11], llevan al autor a sostener que «el origami no es un arte “japonés”». crear dobleces curvos suele recurrirse a la técnica de plegado en 1 húmedo 2 introduccion´ al origami En Japón el origami estuvo reservado a las clases altas y el ámbito cere- Son muestras del mocial hasta el fin de la era Muromachi (1573); siendo durante la era Edo origami ceremonial los (1603-1867) donde se popularizó y comenzó su desarrollo en el sentido ac- noshi y las envolturas tual de origami6.
Recommended publications
  • Constructing Points Through Folding and Intersection
    CONSTRUCTING POINTS THROUGH FOLDING AND INTERSECTION The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Butler, Steve, Erik Demaine, Ron Graham and Tomohiro Tachi. "Constructing points through folding and intersection." International Journal of Computational Geometry & Applications, Vol. 23 (01) 2016: 49-64. As Published 10.1142/S0218195913500039 Publisher World Scientific Pub Co Pte Lt Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/121356 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Constructing points through folding and intersection Steve Butler∗ Erik Demaine† Ron Graham‡ Tomohiro Tachi§ Abstract Fix an n 3. Consider the following two operations: given a line with a specified point on the line we≥ can construct a new line through the point which forms an angle with the new line which is a multiple of π/n (folding); and given two lines we can construct the point where they cross (intersection). Starting with the line y = 0 and the points (0, 0) and (1, 0) we determine which points in the plane can be constructed using only these two operations for n =3, 4, 5, 6, 8, 10, 12, 24 and also consider the problem of the minimum number of steps it takes to construct such a point. 1 Introduction If an origami model is laid flat the piece of paper will retain a memory of the folds that went into the construction of the model as creases (or lines) in the paper.
    [Show full text]
  • Constructing Points Through Folding and Intersection
    Constructing points through folding and intersection Steve Butler∗ Erik Demaine† Ron Graham‡ Tomohiro Tachi§ Abstract Fix an n 3. Consider the following two operations: given a line with a specified point on the line we≥ can construct a new line through the point which forms an angle with the new line which is a multiple of π/n (folding); and given two lines we can construct the point where they cross (intersection). Starting with the line y = 0 and the points (0, 0) and (1, 0) we determine which points in the plane can be constructed using only these two operations for n =3, 4, 5, 6, 8, 10, 12, 24 and also consider the problem of the minimum number of steps it takes to construct such a point. 1 Introduction If an origami model is laid flat the piece of paper will retain a memory of the folds that went into the construction of the model as creases (or lines) in the paper. These creases will sometimes be reflected as places in the final model where the paper is bent and sometimes will be left over artifacts from early in the construction process. These creases can also be used in the construction of reference points, which play a useful role in the design of complicated origami models (see [6]). As such, tools to help efficiently construct reference points have been developed, i.e., ReferenceFinder [7]. The problem of finding which points can be constructed using origami has been extensively studied. In particular, using the Huzita-Hatori axioms it has been shown that all quartic polyno- mials can be solved using origami (see [4, pp.
    [Show full text]
  • Origami Design Secrets Reveals the Underlying Concepts of Origami and How to Create Original Origami Designs
    SECOND EDITION PRAISE FOR THE FIRST EDITION “Lang chose to strike a balance between a book that describes origami design algorithmically and one that appeals to the origami community … For mathematicians and origamists alike, Lang’s expository approach introduces the reader to technical aspects of folding and the mathematical models with clarity and good humor … highly recommended for mathematicians and students alike who want to view, explore, wrestle with open problems in, or even try their own hand at the complexity of origami model design.” —Thomas C. Hull, The Mathematical Intelligencer “Nothing like this has ever been attempted before; finally, the secrets of an origami master are revealed! It feels like Lang has taken you on as an apprentice as he teaches you his techniques, stepping you through examples of real origami designs and their development.” —Erik D. Demaine, Massachusetts Institute of Technology ORIGAMI “This magisterial work, splendidly produced, covers all aspects of the art and science.” —SIAM Book Review The magnum opus of one of the world’s leading origami artists, the second DESIGN edition of Origami Design Secrets reveals the underlying concepts of origami and how to create original origami designs. Containing step-by-step instructions for 26 models, this book is not just an origami cookbook or list of instructions—it introduces SECRETS the fundamental building blocks of origami, building up to advanced methods such as the combination of uniaxial bases, the circle/river method, and tree theory. With corrections and improved Mathematical Methods illustrations, this new expanded edition also for an Ancient Art covers uniaxial box pleating, introduces the new design technique of hex pleating, and describes methods of generalizing polygon packing to arbitrary angles.
    [Show full text]
  • A Survey of Folding and Unfolding in Computational Geometry
    Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Survey of Folding and Unfolding in Computational Geometry ERIK D. DEMAINE AND JOSEPH O’ROURKE Abstract. We survey results in a recent branch of computational geome- try: folding and unfolding of linkages, paper, and polyhedra. Contents 1. Introduction 168 2. Linkages 168 2.1. Definitions and fundamental questions 168 2.2. Fundamental questions in 2D 171 2.3. Fundamental questions in 3D 175 2.4. Fundamental questions in 4D and higher dimensions 181 2.5. Protein folding 181 3. Paper 183 3.1. Categorization 184 3.2. Origami design 185 3.3. Origami foldability 189 3.4. Flattening polyhedra 191 4. Polyhedra 193 4.1. Unfolding polyhedra 193 4.2. Folding polygons into convex polyhedra 196 4.3. Folding nets into nonconvex polyhedra 199 4.4. Continuously folding polyhedra 200 5. Conclusion and Higher Dimensions 201 Acknowledgements 202 References 202 Demaine was supported by NSF CAREER award CCF-0347776. O’Rourke was supported by NSF Distinguished Teaching Scholars award DUE-0123154. 167 168 ERIKD.DEMAINEANDJOSEPHO’ROURKE 1. Introduction Folding and unfolding problems have been implicit since Albrecht D¨urer [1525], but have not been studied extensively in the mathematical literature until re- cently. Over the past few years, there has been a surge of interest in these problems in discrete and computational geometry. This paper gives a brief sur- vey of most of the work in this area. Related, shorter surveys are [Connelly and Demaine 2004; Demaine 2001; Demaine and Demaine 2002; O’Rourke 2000]. We are currently preparing a monograph on the topic [Demaine and O’Rourke ≥ 2005].
    [Show full text]
  • Table of Contents
    Contents Part 1: Mathematics of Origami Introduction Acknowledgments I. Mathematics of Origami: Coloring Coloring Connections with Counting Mountain-Valley Assignments Thomas C. Hull Color Symmetry Approach to the Construction of Crystallographic Flat Origami Ma. Louise Antonette N. De las Penas,˜ Eduard C. Taganap, and Teofina A. Rapanut Symmetric Colorings of Polypolyhedra sarah-marie belcastro and Thomas C. Hull II. Mathematics of Origami: Constructibility Geometric and Arithmetic Relations Concerning Origami Jordi Guardia` and Eullia Tramuns Abelian and Non-Abelian Numbers via 3D Origami Jose´ Ignacio Royo Prieto and Eulalia` Tramuns Interactive Construction and Automated Proof in Eos System with Application to Knot Fold of Regular Polygons Fadoua Ghourabi, Tetsuo Ida, and Kazuko Takahashi Equal Division on Any Polygon Side by Folding Sy Chen A Survey and Recent Results about Common Developments of Two or More Boxes Ryuhei Uehara Unfolding Simple Folds from Crease Patterns Hugo A. Akitaya, Jun Mitani, Yoshihiro Kanamori, and Yukio Fukui v vi CONTENTS III. Mathematics of Origami: Rigid Foldability Rigid Folding of Periodic Origami Tessellations Tomohiro Tachi Rigid Flattening of Polyhedra with Slits Zachary Abel, Robert Connelly, Erik D. Demaine, Martin L. Demaine, Thomas C. Hull, Anna Lubiw, and Tomohiro Tachi Rigidly Foldable Origami Twists Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, and Larry L. Howell Locked Rigid Origami with Multiple Degrees of Freedom Zachary Abel, Thomas C. Hull, and Tomohiro Tachi Screw-Algebra–Based Kinematic and Static Modeling of Origami-Inspired Mechanisms Ketao Zhang, Chen Qiu, and Jian S. Dai Thick Rigidly Foldable Structures Realized by an Offset Panel Technique Bryce J. Edmondson, Robert J.
    [Show full text]
  • The Miura-Ori Opened out Like a Fan INTERNATIONAL SOCIETY for the INTERDISCIPLINARY STUDY of SYMMETRY (ISIS-SYMMETRY)
    The Quarterly of the Editors: International Society for the GyiSrgy Darvas and D~nes Nag¥ interdisciplinary Study of Symmetry (ISIS-Symmetry) Volume 5, Number 2, 1994 The Miura-ori opened out like a fan INTERNATIONAL SOCIETY FOR THE INTERDISCIPLINARY STUDY OF SYMMETRY (ISIS-SYMMETRY) President ASIA D~nes Nagy, lnslltute of Apphed Physics, University of China. t~R. Da-Fu Ding, Shangha~ Institute of Biochemistry. Tsukuba, Tsukuba Soence C~ty 305, Japan Academia Stoma, 320 Yue-Yang Road, (on leave from Eotvos Lot’find Umve~ty, Budapest, Hungary) Shanghai 200031, PR China IGeometry and Crystallography, H~story of Science and [Theoreucal B~ology] Tecbnology, Lmgmsucs] Le~Xiao Yu, Department of Fine Arts. Nanjmg Normal Umvers~ty, Nanjmg 210024, P.R China Honorary Presidents }Free Art, Folk Art, Calhgraphy] Konstantin V. Frolov (Moscow) and lndta. Kirti Trivedi, Industrial Design Cenlre, lndmn Maval Ne’eman (TeI-Avw) Institute of Technology, Powa~, Bombay 400076, India lDes~gn, lndmn Art] Vice-President Israel. Hanan Bruen, School of Education, Arthur L. Loeb, Carpenter Center for the V~sual Arts, Umvers~ty of Hallo, Mount Carmel, Haffa 31999, Israel Harvard Umverslty. Cambridge, MA 02138, [Educanon] U S A. [Crystallography, Chemical Physics, Visual Art~, Jim Rosen, School of Physics and Astronomy, Choreography, Music} TeI-Av~v Umvers~ty, Ramat-Avtv, Tel-Av~v 69978. Israel and [Theoretical Physms] Sergei V Petukhov, Instnut mashmovedemya RAN (Mechamcal Engineering Research Institute, Russian, Japan. Yasushi Kajfl~awa, Synergel~cs Institute. Academy of Scmnces 101830 Moskva, ul Griboedova 4, Russia (also Head of the Russian Branch Office of the Society) 206 Nakammurahara, Odawara 256, Japan }Design, Geometry] }B~omechanlcs, B~ontcs, Informauon Mechamcs] Koichtro Mat~uno, Department of BioEngineering.
    [Show full text]
  • GEOMETRIC FOLDING ALGORITHMS I
    P1: FYX/FYX P2: FYX 0521857570pre CUNY758/Demaine 0 521 81095 7 February 25, 2007 7:5 GEOMETRIC FOLDING ALGORITHMS Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s but have only recently been studied in the mathemat- ical literature. Over the past decade, there has been a surge of interest in these problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this comprehensive treatment of the geometry of folding and unfolding presents hundreds of results and more than 60 unsolved “open prob- lems” to spur further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Among the results in Part I is that there is a planar linkage that can trace out any algebraic curve, even “sign your name.” Part II features the “fold-and-cut” algorithm, establishing that any straight-line drawing on paper can be folded so that the com- plete drawing can be cut out with one straight scissors cut. In Part III, readers will see that the “Latin cross” unfolding of a cube can be refolded to 23 different convex polyhedra. Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from high school students to researchers. Erik D. Demaine is the Esther and Harold E. Edgerton Professor of Elec- trical Engineering and Computer Science at the Massachusetts Institute of Technology, where he joined the faculty in 2001. He is the recipient of several awards, including a MacArthur Fellowship, a Sloan Fellowship, the Harold E.
    [Show full text]
  • From Folds to Structures, a Review Arthur Lebée
    From Folds to Structures, a Review Arthur Lebée To cite this version: Arthur Lebée. From Folds to Structures, a Review. International Journal of Space Structures, Multi- Science Publishing, 2015, 30 (2), pp.55-74. 10.1260/0266-3511.30.2.55. hal-01266686 HAL Id: hal-01266686 https://hal-enpc.archives-ouvertes.fr/hal-01266686 Submitted on 3 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. From Folds to Structures, a Review Arthur Lebée* Université Paris-Est, Laboratoire Navier (ENPC, IFSTTAR, CNRS). École des Ponts ParisTech, 6 et 8 avenue Blaise Pascal. 77455 Marne-la-Vallée cedex2 (Submitted on 23/05/2015, Reception of revised paper 28/06/2015, Accepted on 02/07/2015) ABSTRACT: Starting from simple notions of paper folding, a review of current challenges regarding folds and structures is presented. A special focus is dedicated to folded tessellations which are raising interest from the scientific community. Finally, the different mechanical modeling of folded structures are investigated. This reveals efficient applications of folding concepts in the design of structures. Key Words: Origami, Folded Tessellations, Structures, Folds 1. INTRODUCTION drawn on the sheet will keep its length constant during The concept of fold covers many significations.
    [Show full text]
  • Valentina Beatini Cinemorfismi. Meccanismi Che Definiscono Lo Spazio Architettonico
    Università degli Studi di Parma Dipartimento di Ingegneria Civile, dell'Ambiente, del Territorio e Architettura Dottorato di Ricerca in Forme e Strutture dell'Architettura XXIII Ciclo (ICAR 08 - ICAR 09 - ICAR 10 - ICAR 14 - ICAR17 - ICAR 18 - ICAR 19 – ICAR 20) Valentina Beatini Cinemorfismi. Meccanismi che definiscono lo spazio architettonico. Kinematic shaping. Mechanisms that determine architecture of space. Tutore: Gianni Royer Carfagni Coordinatore del Dottorato: Prof. Aldo De Poli “La forma deriva spontaneamente dalle necessità di questo spazio, che si costruisce la sua dimora come l’animale che sceglie la sua conchiglia. Come quell’animale, sono anch’io un architetto del vuoto.” Eduardo Chillida Università degli Studi di Parma Dipartimento di Ingegneria Civile, dell'Ambiente, del Territorio e Architettura Dottorato di Ricerca in Forme e Strutture dell'Architettura (ICAR 08 - ICAR 09 – ICAR 10 - ICAR 14 - ICAR17 - ICAR 18 - ICAR 19 – ICAR 20) XXIII Ciclo Coordinatore: prof. Aldo De Poli Collegio docenti: prof. Bruno Adorni prof. Carlo Blasi prof. Eva Coisson prof. Paolo Giandebiaggi prof. Agnese Ghini prof. Maria Evelina Melley prof. Ivo Iori prof. Gianni Royer Carfagni prof. Michela Rossi prof. Chiara Vernizzi prof. Michele Zazzi prof. Andrea Zerbi. Dottorando: Valentina Beatini Titolo della tesi: Cinemorfismi. Meccanismi che definiscono lo spazio architettonico. Kinematic shaping. Mechanisms that determine architecture of space. Tutore: Gianni Royer Carfagni A Emilio, Maurizio e Carlotta. Ringrazio tutti i professori e tutti i colleghi coi quali ho potuto confrontarmi nel corso di questi anni, e in modo particolare il prof. Gianni Royer per gli interessanti confronti ed il prof. Aldo De Poli per i frequenti incoraggiamenti.
    [Show full text]
  • Marvelous Modular Origami
    www.ATIBOOK.ir Marvelous Modular Origami www.ATIBOOK.ir Mukerji_book.indd 1 8/13/2010 4:44:46 PM Jasmine Dodecahedron 1 (top) and 3 (bottom). (See pages 50 and 54.) www.ATIBOOK.ir Mukerji_book.indd 2 8/13/2010 4:44:49 PM Marvelous Modular Origami Meenakshi Mukerji A K Peters, Ltd. Natick, Massachusetts www.ATIBOOK.ir Mukerji_book.indd 3 8/13/2010 4:44:49 PM Editorial, Sales, and Customer Service Office A K Peters, Ltd. 5 Commonwealth Road, Suite 2C Natick, MA 01760 www.akpeters.com Copyright © 2007 by A K Peters, Ltd. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including photo- copying, recording, or by any information storage and retrieval system, without written permission from the copyright owner. Library of Congress Cataloging-in-Publication Data Mukerji, Meenakshi, 1962– Marvelous modular origami / Meenakshi Mukerji. p. cm. Includes bibliographical references. ISBN 978-1-56881-316-5 (alk. paper) 1. Origami. I. Title. TT870.M82 2007 736΄.982--dc22 2006052457 ISBN-10 1-56881-316-3 Cover Photographs Front cover: Poinsettia Floral Ball. Back cover: Poinsettia Floral Ball (top) and Cosmos Ball Variation (bottom). Printed in India 14 13 12 11 10 10 9 8 7 6 5 4 3 2 www.ATIBOOK.ir Mukerji_book.indd 4 8/13/2010 4:44:50 PM To all who inspired me and to my parents www.ATIBOOK.ir Mukerji_book.indd 5 8/13/2010 4:44:50 PM www.ATIBOOK.ir Contents Preface ix Acknowledgments x Photo Credits x Platonic & Archimedean Solids xi Origami Basics xii
    [Show full text]
  • 6Osme Program
    6OSME PROGRAM 11TH MON MORNING 1 9:00-10:40 A0 PLENARY SESSION Opening Ceremony Plenary Lecture: Gregory Epps Industrial Robotic Origami Session Chair: Koichi Tateishi 11TH MON MORNING 2 11:05-12:20 A1 SOFTWARE Session Chair: Ryuhei Uehara 87 Robert J. Lang Tessellatica: A Mathematica System for Origami Analysis 126 Erik D. Demaine and Jason Ku Filling a Hole in a Crease Pattern: Isometric Mapping of a Polygon given a Folding of its Boundary 96 Hugo Akitaya, Jun Mitani, Yoshihiro Kanamori and Yukio Fukui Generating Folding Sequences from Crease Patterns of Flat-Foldable Origami E1 SELF FOLDING 1 Session Chair: Eiji Iwase 94 Aaron Powledge, Darren Hartl and Richard Malak Experimental Analysis of Self-Folding SMA-based Sheets for Origami Engineering 183 Minoru Taya Design of the Origami-like Hinge Line of Space Deployable Structures 135 Daniel Tomkins, Mukulika Ghosh, Jory Denny, and Nancy Amato Planning Motions for Shape-Memory Alloy Sheets L1 DYNAMICS Session Chair: Zhong You 166 Megan Roberts, Sameh Tawfick, Matthew Shlian and John Hart A Modular Collapsible Folded Paper Tower 161 Sachiko Ishida, Hiroaki Morimura and Ichiro Hagiwara Sound Insulating Performance on Origami-based Sandwich Trusscore Panels 77 Jesse Silverberg, Junhee Na, Arthur A. Evans, Lauren McLeod, Thomas Hull, Chris D. Santangelo, Ryan C. Hayward, and Itai Cohen Mechanics of Snap-Through Transitions in Twisted Origami M1 EDUCATION 1 Session Chair: Patsy Wang-Iverson 52 Sue Pope Origami for Connecting Mathematical Ideas and Building Relational Understanding of Mathematics 24 Linda Marlina Origami as Teaching Media for Early Childhood Education in Indonesia (Training for Teachers) 78 Lainey McQuain and Alan Russell Origami and Teaching Language and Composition 11TH MON AFTERNOON 1 14:00-15:40 A2 SELF FOLDING 2 Session Chair: Kazuya Saito 31 Jun-Hee Na, Christian Santangelo, Robert J.
    [Show full text]
  • Existence of Pleated Folds: How Paper Folds Between Creases
    Noname manuscript No. (will be inserted by the editor) (Non)existence of Pleated Folds: How Paper Folds Between Creases Erik D. Demaine · Martin L. Demaine · Vi Hart · Gregory N. Price · Tomohiro Tachi Abstract We prove that the pleated hyperbolic paraboloid, a familiar origami model known since 1927, in fact cannot be folded with the standard crease pattern in the standard mathematical model of zero-thickness paper. In contrast, we show that the model can be folded with additional creases, suggesting that real paper \folds" into this model via small such creases. We conjecture that the circular version of this model, consisting simply of concentric circular creases, also folds without extra creases. At the heart of our results is a new structural theorem characterizing uncreased intrinsically flat surfaces|the portions of paper between the creases. Differential geometry has much to say about the local behavior of such surfaces when they are sufficiently smooth, e.g., that they are torsal ruled. But this classic result is simply false in the context of the whole surface. Our structural characterization tells the whole story, and even applies to surfaces with discontinuities in the second derivative. We use our theorem to prove fundamental properties about how paper folds, for example, that straight creases on the piece of paper must remain piecewise-straight (polygonal) by folding. Keywords origami, hypar, hyperbolic paraboloid, folding, developable surface 1 Introduction A fascinating family of pleated origami models use extremely simple crease patterns|repeated concentric shapes, alternating mountain and valley|yet automatically fold into interesting 3D shapes. The most well-known is the pleated hyperbolic paraboloid, shown in Figure 1, where the crease pattern is concentric squares and their diagonals.
    [Show full text]