From Folds to Structures, a Review Arthur Lebée

Total Page:16

File Type:pdf, Size:1020Kb

From Folds to Structures, a Review Arthur Lebée From Folds to Structures, a Review Arthur Lebée To cite this version: Arthur Lebée. From Folds to Structures, a Review. International Journal of Space Structures, Multi- Science Publishing, 2015, 30 (2), pp.55-74. 10.1260/0266-3511.30.2.55. hal-01266686 HAL Id: hal-01266686 https://hal-enpc.archives-ouvertes.fr/hal-01266686 Submitted on 3 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. From Folds to Structures, a Review Arthur Lebée* Université Paris-Est, Laboratoire Navier (ENPC, IFSTTAR, CNRS). École des Ponts ParisTech, 6 et 8 avenue Blaise Pascal. 77455 Marne-la-Vallée cedex2 (Submitted on 23/05/2015, Reception of revised paper 28/06/2015, Accepted on 02/07/2015) ABSTRACT: Starting from simple notions of paper folding, a review of current challenges regarding folds and structures is presented. A special focus is dedicated to folded tessellations which are raising interest from the scientific community. Finally, the different mechanical modeling of folded structures are investigated. This reveals efficient applications of folding concepts in the design of structures. Key Words: Origami, Folded Tessellations, Structures, Folds 1. INTRODUCTION drawn on the sheet will keep its length constant during The concept of fold covers many significations. In the transformation. This remarkable property nature, it is mostly related to specific shapes such as combined with the empirical observation that many creases or pleats and may be found at many different different shapes may be obtained from paper folding, scales from the folding of graphen layers [1, 2], to the suggests immediately that there are underlying rules unfolding of tree leaves [3] and the mountains and encourages the mathematical formalization of this building (orogeny). Pleated fabrics found on Egyptian process. The connection between origami and frescoes prove that, long ago, mankind also mathematics is deep and a dedicated new theoretical handcrafted folds. However, the abstract idea of a field of research emerged in the last decades: origami folded surface emerged rather recently. mathematics. For instance, noticing that crease lines The triggering ingredient was the invention of are geometric constructions Jacques Justin defined a paper in Asia. Notwithstanding its crucial role in the set of axioms which defines all geometric diffusion of knowledge, it allowed the achievement of constructions accessible by folding. It turns out that the first folded models. Folding paper had a sacred there are more possibilities than with the classical meaning in ancient Japan and was called origami, Euclid axioms: trisecting an angle is not possible with concatenating “oru” (fold) and “kami” (paper) [4]. rule and compass but it is possible with folding. There Because paper was extremely expensive at that time, are many other questions investigated in origami origami models were first confined to religious or mathematics such as flat foldability and continuous outstanding events such as weddings. It is only during rigid foldability and most active researchers gather the twentieth century that origami spread across the every four years at the international meeting of whole Japanese society and eventually worldwide. Origami Science, Math and Education (OSME [5]). Many flat materials may be folded such as fabrics Anyone that has folded paper noticed the extremely or parchment. However, paper is certainly the first rich motion which may come out from a simple material which was thin enough and yet inextensible organization of folds [6]. It is thus not surprising that a in its plane so that it was suitable for origami. wide variety of technological applications are Considering the geometrical transformation endured currently investigated. These many innovations by the sheet of paper, it appears clearly that any line combining mathematical, kinematic or structural *Corresponding author e-mail: A Lebée [email protected] International Journal of Space Structures Vol. 30 No. 2 2015 55 From Folds to Structures, a Review properties of folds are referred to Origamics [7]. There are many advantages to start from a flat sheet of material. For instance, since there are neither cuts and nor offcuts, this forming process might be rather inexpensive. Similarly, the kinematic properties of folds make them extremely good candidates for designing small robots [8] or MEMS (Micro Electro- Mechanical System). Many of these applications are not published in scientific journals and are often simply scattered on the Internet through blogs or shared videos. Because, origami concepts are extremely visual, this new way of sharing knowledge Figure 2. Josef Albers playing with Miura Ori photographed generated a strong enthusiasm in the last decade. by Henri Cartier Bresson, (Magnum Photos, 1968). Many professions are now investigating the fascinating properties of folds. However, architects transformation inspired many architects, designers and and designers were probably the firsts to identify the engineers such as Jean Prouvé or Pier Luigi Nervi. It key role of folding as a form-finding process. At the is an almost impossible task to give a fair account of end of the 19th century, the emergence of new all the applications of origami in design and construction materials and techniques such as concrete architecture. The kinematic properties of folds make and steel put deeply into question the academic them extremely versatile for designing packages and architectural style prevailing at that time. It became furniture with industrial materials such as cardboard or obvious that building and designing objects should be polypropylene. The moment of inertia given to a also driven by the fabrication process and not only by surface with pleats originally inspired many architects formal questions. Following this movement – from for designing wide roofings and recent developments which originated Modernism – Joseph Albers were reviewed [9, 10, 11]. introduced folds in his preliminary course of the Today, the combination of parametric graphical department of design at the Bauhaus in the 20’s tools, new fabrication process based on numerical (Figure 1 and Figure 2). control and 3D printers makes architects and designer Because folding is certainly the most simple and even closer to actual constructions. First, it is much inexpensive process for transforming matter, it is an faster to test the feasibility of a design thanks to rapid excellent starting point for teaching architecture and prototyping. The design cycle is thus strongly design. This process enables fast and easy accelerated. Second, provided the digital format is achievement of three dimensional shapes which compatible with the full scale fabrication process, clearly show better structural properties than the architects and designer are actually directly editing original sheet and defines directly an envelope, working-drawings from the beginning. This strongly separating the “inside” from the “outside”. Gathering encourages them to have direct interactions with so many interesting properties from such a simple manufacturers. Hence it is worth to consider these evolutions as a new construction paradigm providing a new geometrical freedom which remains yet close to the manufacturing process. In this extremely encouraging context for innovations in construction, it is worth to attempt a review focused on two key aspects: the form-finding process related to folding and the behavior as a structure of a folded shape. Starting from developable surfaces, section 2 provides an overview of interesting shapes which may be derived from folding techniques. A particular focus is provided on folded tessellations. Because a fold is the transformation of a surface, it is actually a mechanism. Hence the Figure 1. Josef Albers and his students at Bauhaus 1928 question of the link between folded surfaces and (photo: Bauhaus Archives). actual structures is not so simple and investigated in 56 International Journal of Space Structures Vol. 30 No. 2 2015 Arthur Lebée section 3. Even if new graphical tools offer much Since origamists start from a flat sheet of paper, the more freedom for finding shapes, it is worth to recall original Gauss curvature is zero. Whereas Theorema that in the end a construction will carry a load. Hence, Egregium sets a purely local constraint on the Gauss finding a relevant mechanical modeling for a folded curvature, in case the latter is zero everywhere on the surface will help the understanding of its structural surface this constraint may be integrated. Finally, the behavior. only C2 surfaces which may be obtained keeping constant lengths on the surface are developable 2. FOLDING AS A FORM-FINDING surfaces. Regular developable surfaces are limited to PROCESS three kinds: cones, cylinders and tangent developable Since no cuts are allowed, folding paper preserves the surfaces (Figure 3). Of course, keeping this high length of any curve drawn on its surface. This is regularity restricts strongly accessible shapes and it is actually a very particular
Recommended publications
  • Constructing Points Through Folding and Intersection
    CONSTRUCTING POINTS THROUGH FOLDING AND INTERSECTION The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Butler, Steve, Erik Demaine, Ron Graham and Tomohiro Tachi. "Constructing points through folding and intersection." International Journal of Computational Geometry & Applications, Vol. 23 (01) 2016: 49-64. As Published 10.1142/S0218195913500039 Publisher World Scientific Pub Co Pte Lt Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/121356 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Constructing points through folding and intersection Steve Butler∗ Erik Demaine† Ron Graham‡ Tomohiro Tachi§ Abstract Fix an n 3. Consider the following two operations: given a line with a specified point on the line we≥ can construct a new line through the point which forms an angle with the new line which is a multiple of π/n (folding); and given two lines we can construct the point where they cross (intersection). Starting with the line y = 0 and the points (0, 0) and (1, 0) we determine which points in the plane can be constructed using only these two operations for n =3, 4, 5, 6, 8, 10, 12, 24 and also consider the problem of the minimum number of steps it takes to construct such a point. 1 Introduction If an origami model is laid flat the piece of paper will retain a memory of the folds that went into the construction of the model as creases (or lines) in the paper.
    [Show full text]
  • Constructing Points Through Folding and Intersection
    Constructing points through folding and intersection Steve Butler∗ Erik Demaine† Ron Graham‡ Tomohiro Tachi§ Abstract Fix an n 3. Consider the following two operations: given a line with a specified point on the line we≥ can construct a new line through the point which forms an angle with the new line which is a multiple of π/n (folding); and given two lines we can construct the point where they cross (intersection). Starting with the line y = 0 and the points (0, 0) and (1, 0) we determine which points in the plane can be constructed using only these two operations for n =3, 4, 5, 6, 8, 10, 12, 24 and also consider the problem of the minimum number of steps it takes to construct such a point. 1 Introduction If an origami model is laid flat the piece of paper will retain a memory of the folds that went into the construction of the model as creases (or lines) in the paper. These creases will sometimes be reflected as places in the final model where the paper is bent and sometimes will be left over artifacts from early in the construction process. These creases can also be used in the construction of reference points, which play a useful role in the design of complicated origami models (see [6]). As such, tools to help efficiently construct reference points have been developed, i.e., ReferenceFinder [7]. The problem of finding which points can be constructed using origami has been extensively studied. In particular, using the Huzita-Hatori axioms it has been shown that all quartic polyno- mials can be solved using origami (see [4, pp.
    [Show full text]
  • Origami Design Secrets Reveals the Underlying Concepts of Origami and How to Create Original Origami Designs
    SECOND EDITION PRAISE FOR THE FIRST EDITION “Lang chose to strike a balance between a book that describes origami design algorithmically and one that appeals to the origami community … For mathematicians and origamists alike, Lang’s expository approach introduces the reader to technical aspects of folding and the mathematical models with clarity and good humor … highly recommended for mathematicians and students alike who want to view, explore, wrestle with open problems in, or even try their own hand at the complexity of origami model design.” —Thomas C. Hull, The Mathematical Intelligencer “Nothing like this has ever been attempted before; finally, the secrets of an origami master are revealed! It feels like Lang has taken you on as an apprentice as he teaches you his techniques, stepping you through examples of real origami designs and their development.” —Erik D. Demaine, Massachusetts Institute of Technology ORIGAMI “This magisterial work, splendidly produced, covers all aspects of the art and science.” —SIAM Book Review The magnum opus of one of the world’s leading origami artists, the second DESIGN edition of Origami Design Secrets reveals the underlying concepts of origami and how to create original origami designs. Containing step-by-step instructions for 26 models, this book is not just an origami cookbook or list of instructions—it introduces SECRETS the fundamental building blocks of origami, building up to advanced methods such as the combination of uniaxial bases, the circle/river method, and tree theory. With corrections and improved Mathematical Methods illustrations, this new expanded edition also for an Ancient Art covers uniaxial box pleating, introduces the new design technique of hex pleating, and describes methods of generalizing polygon packing to arbitrary angles.
    [Show full text]
  • A Survey of Folding and Unfolding in Computational Geometry
    Combinatorial and Computational Geometry MSRI Publications Volume 52, 2005 A Survey of Folding and Unfolding in Computational Geometry ERIK D. DEMAINE AND JOSEPH O’ROURKE Abstract. We survey results in a recent branch of computational geome- try: folding and unfolding of linkages, paper, and polyhedra. Contents 1. Introduction 168 2. Linkages 168 2.1. Definitions and fundamental questions 168 2.2. Fundamental questions in 2D 171 2.3. Fundamental questions in 3D 175 2.4. Fundamental questions in 4D and higher dimensions 181 2.5. Protein folding 181 3. Paper 183 3.1. Categorization 184 3.2. Origami design 185 3.3. Origami foldability 189 3.4. Flattening polyhedra 191 4. Polyhedra 193 4.1. Unfolding polyhedra 193 4.2. Folding polygons into convex polyhedra 196 4.3. Folding nets into nonconvex polyhedra 199 4.4. Continuously folding polyhedra 200 5. Conclusion and Higher Dimensions 201 Acknowledgements 202 References 202 Demaine was supported by NSF CAREER award CCF-0347776. O’Rourke was supported by NSF Distinguished Teaching Scholars award DUE-0123154. 167 168 ERIKD.DEMAINEANDJOSEPHO’ROURKE 1. Introduction Folding and unfolding problems have been implicit since Albrecht D¨urer [1525], but have not been studied extensively in the mathematical literature until re- cently. Over the past few years, there has been a surge of interest in these problems in discrete and computational geometry. This paper gives a brief sur- vey of most of the work in this area. Related, shorter surveys are [Connelly and Demaine 2004; Demaine 2001; Demaine and Demaine 2002; O’Rourke 2000]. We are currently preparing a monograph on the topic [Demaine and O’Rourke ≥ 2005].
    [Show full text]
  • Table of Contents
    Contents Part 1: Mathematics of Origami Introduction Acknowledgments I. Mathematics of Origami: Coloring Coloring Connections with Counting Mountain-Valley Assignments Thomas C. Hull Color Symmetry Approach to the Construction of Crystallographic Flat Origami Ma. Louise Antonette N. De las Penas,˜ Eduard C. Taganap, and Teofina A. Rapanut Symmetric Colorings of Polypolyhedra sarah-marie belcastro and Thomas C. Hull II. Mathematics of Origami: Constructibility Geometric and Arithmetic Relations Concerning Origami Jordi Guardia` and Eullia Tramuns Abelian and Non-Abelian Numbers via 3D Origami Jose´ Ignacio Royo Prieto and Eulalia` Tramuns Interactive Construction and Automated Proof in Eos System with Application to Knot Fold of Regular Polygons Fadoua Ghourabi, Tetsuo Ida, and Kazuko Takahashi Equal Division on Any Polygon Side by Folding Sy Chen A Survey and Recent Results about Common Developments of Two or More Boxes Ryuhei Uehara Unfolding Simple Folds from Crease Patterns Hugo A. Akitaya, Jun Mitani, Yoshihiro Kanamori, and Yukio Fukui v vi CONTENTS III. Mathematics of Origami: Rigid Foldability Rigid Folding of Periodic Origami Tessellations Tomohiro Tachi Rigid Flattening of Polyhedra with Slits Zachary Abel, Robert Connelly, Erik D. Demaine, Martin L. Demaine, Thomas C. Hull, Anna Lubiw, and Tomohiro Tachi Rigidly Foldable Origami Twists Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, and Larry L. Howell Locked Rigid Origami with Multiple Degrees of Freedom Zachary Abel, Thomas C. Hull, and Tomohiro Tachi Screw-Algebra–Based Kinematic and Static Modeling of Origami-Inspired Mechanisms Ketao Zhang, Chen Qiu, and Jian S. Dai Thick Rigidly Foldable Structures Realized by an Offset Panel Technique Bryce J. Edmondson, Robert J.
    [Show full text]
  • The Miura-Ori Opened out Like a Fan INTERNATIONAL SOCIETY for the INTERDISCIPLINARY STUDY of SYMMETRY (ISIS-SYMMETRY)
    The Quarterly of the Editors: International Society for the GyiSrgy Darvas and D~nes Nag¥ interdisciplinary Study of Symmetry (ISIS-Symmetry) Volume 5, Number 2, 1994 The Miura-ori opened out like a fan INTERNATIONAL SOCIETY FOR THE INTERDISCIPLINARY STUDY OF SYMMETRY (ISIS-SYMMETRY) President ASIA D~nes Nagy, lnslltute of Apphed Physics, University of China. t~R. Da-Fu Ding, Shangha~ Institute of Biochemistry. Tsukuba, Tsukuba Soence C~ty 305, Japan Academia Stoma, 320 Yue-Yang Road, (on leave from Eotvos Lot’find Umve~ty, Budapest, Hungary) Shanghai 200031, PR China IGeometry and Crystallography, H~story of Science and [Theoreucal B~ology] Tecbnology, Lmgmsucs] Le~Xiao Yu, Department of Fine Arts. Nanjmg Normal Umvers~ty, Nanjmg 210024, P.R China Honorary Presidents }Free Art, Folk Art, Calhgraphy] Konstantin V. Frolov (Moscow) and lndta. Kirti Trivedi, Industrial Design Cenlre, lndmn Maval Ne’eman (TeI-Avw) Institute of Technology, Powa~, Bombay 400076, India lDes~gn, lndmn Art] Vice-President Israel. Hanan Bruen, School of Education, Arthur L. Loeb, Carpenter Center for the V~sual Arts, Umvers~ty of Hallo, Mount Carmel, Haffa 31999, Israel Harvard Umverslty. Cambridge, MA 02138, [Educanon] U S A. [Crystallography, Chemical Physics, Visual Art~, Jim Rosen, School of Physics and Astronomy, Choreography, Music} TeI-Av~v Umvers~ty, Ramat-Avtv, Tel-Av~v 69978. Israel and [Theoretical Physms] Sergei V Petukhov, Instnut mashmovedemya RAN (Mechamcal Engineering Research Institute, Russian, Japan. Yasushi Kajfl~awa, Synergel~cs Institute. Academy of Scmnces 101830 Moskva, ul Griboedova 4, Russia (also Head of the Russian Branch Office of the Society) 206 Nakammurahara, Odawara 256, Japan }Design, Geometry] }B~omechanlcs, B~ontcs, Informauon Mechamcs] Koichtro Mat~uno, Department of BioEngineering.
    [Show full text]
  • GEOMETRIC FOLDING ALGORITHMS I
    P1: FYX/FYX P2: FYX 0521857570pre CUNY758/Demaine 0 521 81095 7 February 25, 2007 7:5 GEOMETRIC FOLDING ALGORITHMS Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s but have only recently been studied in the mathemat- ical literature. Over the past decade, there has been a surge of interest in these problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this comprehensive treatment of the geometry of folding and unfolding presents hundreds of results and more than 60 unsolved “open prob- lems” to spur further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Among the results in Part I is that there is a planar linkage that can trace out any algebraic curve, even “sign your name.” Part II features the “fold-and-cut” algorithm, establishing that any straight-line drawing on paper can be folded so that the com- plete drawing can be cut out with one straight scissors cut. In Part III, readers will see that the “Latin cross” unfolding of a cube can be refolded to 23 different convex polyhedra. Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from high school students to researchers. Erik D. Demaine is the Esther and Harold E. Edgerton Professor of Elec- trical Engineering and Computer Science at the Massachusetts Institute of Technology, where he joined the faculty in 2001. He is the recipient of several awards, including a MacArthur Fellowship, a Sloan Fellowship, the Harold E.
    [Show full text]
  • Valentina Beatini Cinemorfismi. Meccanismi Che Definiscono Lo Spazio Architettonico
    Università degli Studi di Parma Dipartimento di Ingegneria Civile, dell'Ambiente, del Territorio e Architettura Dottorato di Ricerca in Forme e Strutture dell'Architettura XXIII Ciclo (ICAR 08 - ICAR 09 - ICAR 10 - ICAR 14 - ICAR17 - ICAR 18 - ICAR 19 – ICAR 20) Valentina Beatini Cinemorfismi. Meccanismi che definiscono lo spazio architettonico. Kinematic shaping. Mechanisms that determine architecture of space. Tutore: Gianni Royer Carfagni Coordinatore del Dottorato: Prof. Aldo De Poli “La forma deriva spontaneamente dalle necessità di questo spazio, che si costruisce la sua dimora come l’animale che sceglie la sua conchiglia. Come quell’animale, sono anch’io un architetto del vuoto.” Eduardo Chillida Università degli Studi di Parma Dipartimento di Ingegneria Civile, dell'Ambiente, del Territorio e Architettura Dottorato di Ricerca in Forme e Strutture dell'Architettura (ICAR 08 - ICAR 09 – ICAR 10 - ICAR 14 - ICAR17 - ICAR 18 - ICAR 19 – ICAR 20) XXIII Ciclo Coordinatore: prof. Aldo De Poli Collegio docenti: prof. Bruno Adorni prof. Carlo Blasi prof. Eva Coisson prof. Paolo Giandebiaggi prof. Agnese Ghini prof. Maria Evelina Melley prof. Ivo Iori prof. Gianni Royer Carfagni prof. Michela Rossi prof. Chiara Vernizzi prof. Michele Zazzi prof. Andrea Zerbi. Dottorando: Valentina Beatini Titolo della tesi: Cinemorfismi. Meccanismi che definiscono lo spazio architettonico. Kinematic shaping. Mechanisms that determine architecture of space. Tutore: Gianni Royer Carfagni A Emilio, Maurizio e Carlotta. Ringrazio tutti i professori e tutti i colleghi coi quali ho potuto confrontarmi nel corso di questi anni, e in modo particolare il prof. Gianni Royer per gli interessanti confronti ed il prof. Aldo De Poli per i frequenti incoraggiamenti.
    [Show full text]
  • Marvelous Modular Origami
    www.ATIBOOK.ir Marvelous Modular Origami www.ATIBOOK.ir Mukerji_book.indd 1 8/13/2010 4:44:46 PM Jasmine Dodecahedron 1 (top) and 3 (bottom). (See pages 50 and 54.) www.ATIBOOK.ir Mukerji_book.indd 2 8/13/2010 4:44:49 PM Marvelous Modular Origami Meenakshi Mukerji A K Peters, Ltd. Natick, Massachusetts www.ATIBOOK.ir Mukerji_book.indd 3 8/13/2010 4:44:49 PM Editorial, Sales, and Customer Service Office A K Peters, Ltd. 5 Commonwealth Road, Suite 2C Natick, MA 01760 www.akpeters.com Copyright © 2007 by A K Peters, Ltd. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including photo- copying, recording, or by any information storage and retrieval system, without written permission from the copyright owner. Library of Congress Cataloging-in-Publication Data Mukerji, Meenakshi, 1962– Marvelous modular origami / Meenakshi Mukerji. p. cm. Includes bibliographical references. ISBN 978-1-56881-316-5 (alk. paper) 1. Origami. I. Title. TT870.M82 2007 736΄.982--dc22 2006052457 ISBN-10 1-56881-316-3 Cover Photographs Front cover: Poinsettia Floral Ball. Back cover: Poinsettia Floral Ball (top) and Cosmos Ball Variation (bottom). Printed in India 14 13 12 11 10 10 9 8 7 6 5 4 3 2 www.ATIBOOK.ir Mukerji_book.indd 4 8/13/2010 4:44:50 PM To all who inspired me and to my parents www.ATIBOOK.ir Mukerji_book.indd 5 8/13/2010 4:44:50 PM www.ATIBOOK.ir Contents Preface ix Acknowledgments x Photo Credits x Platonic & Archimedean Solids xi Origami Basics xii
    [Show full text]
  • An Overview of Mechanisms and Patterns with Origami David Dureisseix
    An Overview of Mechanisms and Patterns with Origami David Dureisseix To cite this version: David Dureisseix. An Overview of Mechanisms and Patterns with Origami. International Journal of Space Structures, Multi-Science Publishing, 2012, 27 (1), pp.1-14. 10.1260/0266-3511.27.1.1. hal- 00687311 HAL Id: hal-00687311 https://hal.archives-ouvertes.fr/hal-00687311 Submitted on 22 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An Overview of Mechanisms and Patterns with Origami by David Dureisseix Reprinted from INTERNATIONAL JOURNAL OF SPACE STRUCTURES Volume 27 · Number 1 · 2012 MULTI-SCIENCE PUBLISHING CO. LTD. 5 Wates Way, Brentwood, Essex CM15 9TB, United Kingdom An Overview of Mechanisms and Patterns with Origami David Dureisseix* Laboratoire de Mécanique des Contacts et des Structures (LaMCoS), INSA Lyon/CNRS UMR 5259, 18-20 rue des Sciences, F-69621 VILLEURBANNE CEDEX, France, [email protected] (Submitted on 07/06/10, Reception of revised paper 08/06/11, Accepted on 07/07/11) SUMMARY: Origami (paperfolding) has greatly progressed since its first usage for design of cult objects in Japan, and entertainment in Europe and the USA.
    [Show full text]
  • 6Osme Program
    6OSME PROGRAM 11TH MON MORNING 1 9:00-10:40 A0 PLENARY SESSION Opening Ceremony Plenary Lecture: Gregory Epps Industrial Robotic Origami Session Chair: Koichi Tateishi 11TH MON MORNING 2 11:05-12:20 A1 SOFTWARE Session Chair: Ryuhei Uehara 87 Robert J. Lang Tessellatica: A Mathematica System for Origami Analysis 126 Erik D. Demaine and Jason Ku Filling a Hole in a Crease Pattern: Isometric Mapping of a Polygon given a Folding of its Boundary 96 Hugo Akitaya, Jun Mitani, Yoshihiro Kanamori and Yukio Fukui Generating Folding Sequences from Crease Patterns of Flat-Foldable Origami E1 SELF FOLDING 1 Session Chair: Eiji Iwase 94 Aaron Powledge, Darren Hartl and Richard Malak Experimental Analysis of Self-Folding SMA-based Sheets for Origami Engineering 183 Minoru Taya Design of the Origami-like Hinge Line of Space Deployable Structures 135 Daniel Tomkins, Mukulika Ghosh, Jory Denny, and Nancy Amato Planning Motions for Shape-Memory Alloy Sheets L1 DYNAMICS Session Chair: Zhong You 166 Megan Roberts, Sameh Tawfick, Matthew Shlian and John Hart A Modular Collapsible Folded Paper Tower 161 Sachiko Ishida, Hiroaki Morimura and Ichiro Hagiwara Sound Insulating Performance on Origami-based Sandwich Trusscore Panels 77 Jesse Silverberg, Junhee Na, Arthur A. Evans, Lauren McLeod, Thomas Hull, Chris D. Santangelo, Ryan C. Hayward, and Itai Cohen Mechanics of Snap-Through Transitions in Twisted Origami M1 EDUCATION 1 Session Chair: Patsy Wang-Iverson 52 Sue Pope Origami for Connecting Mathematical Ideas and Building Relational Understanding of Mathematics 24 Linda Marlina Origami as Teaching Media for Early Childhood Education in Indonesia (Training for Teachers) 78 Lainey McQuain and Alan Russell Origami and Teaching Language and Composition 11TH MON AFTERNOON 1 14:00-15:40 A2 SELF FOLDING 2 Session Chair: Kazuya Saito 31 Jun-Hee Na, Christian Santangelo, Robert J.
    [Show full text]
  • Origami in Engineering and Architecture
    Origami in Engineering and Architecture An art and science spanning Mathematics, Engineering and Architecture Dr Mark Schenk ([email protected]) Objectives: get a glimpse of the underlying intricacies and fundamental mathematics involved in something as seemingly innocent as origami. Furthermore, get a feel for the engineering challenges when applying origami to engineering and architectural applications; in other words, when scaling up from paper models to the real world. Origami Art Origami is the name for the ancient Japanese art of paper folding. The word comes from Japanese, and is a combination of ‘oru', which means ‘fold' and ‘kami’, which means `paper'. For centuries origami has been practiced in the far East, and in the twentieth century it also gained popularity in the western world. Although most people associate origami with simple models such as the classic origami crane, in the past twenty or so years origami folding has reached unprecedented heights. Increasingly complex and life-like art pieces are being created, which beggar belief that they can be folded from a single sheet of paper. Perhaps surprisingly, many of the recent advances in origami design are a result of the growing mathematical understanding of origami, and newly developed computational design tools. We shall briefly highlight some of the fundamental underlying mathematics in a later section, but first focus on a few recent developments in origami art. A field of origami that has blossomed over the last few years is origami tessellations, where a fold pattern is tiled across the plane. Pioneered in the late eighties and early nineties, it has only recently entered mainstream folding.
    [Show full text]