The Solar Twin 18 Sco and the Sun G

Total Page:16

File Type:pdf, Size:1020Kb

The Solar Twin 18 Sco and the Sun G Boletim da Sociedade Astronômica Brasileira, 30, no. 1, 89-90 c SAB 2018 A study of likeness: The solar twin 18 Sco and the Sun G. T. Ponte & G. F. Porto de Mello 1 Observatório do Valongo, Universidade Federal do Rio de Janeiro e-mail: [email protected], [email protected] Abstract. The objective of this work is to make a direct empirical comparison between the solar twin 18 Sco and the Sun, using spectra of high signal-to-noise ratio (S/N), high resolution (R) and wide spectral coverage. Resumo. O objetivo deste trabalho é fazer uma comparação empírica direta entre a gêmea solar 18 Sco e o Sol, usando espectros de alta sinal ruído (S/N), alta resolução (R) e ampla cobertura espectral. Keywords. Stars: fundamental parameters – Stars: abundances – Stars: solar-type – Techniques: spectroscopic 1. Introduction may have a distinct perspective of the spectra when inspecting and fitting a low-degree polynomial to estimate its continuum. The detailed study of solar twins has direct applications both in the understanding of the chemical evolution of the Galaxy and the evolution of the properties of the Sun over time (such 2.4. Careful manual measurements as Monroe et al., 2013), besides being a powerful tool in the study of exoplanetary systems. Due to their characteristics sim- It has been shown in the literature that manual fitting profiles ilar to solar, the detailed spectroscopic analysis of these stars (such as Gaussian and Voigt), line by line, seems to be more becomes less dependent on the uncertainties present in the mod- precise than automatic methods. (e.g. Tucci Maia et al., 2017) eling of theoretical parameters, maximizing small spectral dif- ferences and making it possible to detail features of distinction or similarity. The objective of this work is to make a direct em- 3. Analysis pirical comparison between the solar twin 18 Sco and the Sun. First of all, we made a careful analysis of our data searching for gaps in spectra (such as very strong lines or instrumental problems), and then we split the spectra into 16 blocks (∆λ = 2. Working sample 70-200 Å). In this process, we used Solar Atlas (Kurucz et al., Using spectra of high signal-to-noise ratio (S/N), high resolution 1984, Wallace et al., 2011) looking for suitable solar continuum (R) and wide spectral coverage, we evaluate how the impact regions with the view to anchor a global consistency. Later, the of different sources of error in the analysis can influence the spectra were normalized using IRAF/Pyraf interactive curve classification of a particular star as a solar twin. fitting package “continuum”. Then, we started to fit manually, line-by-line, Gaussian profiles in alpha elements, iron peak and Instrument: FEROS/ESO, R = 48.000 s-process lines: Ca I, Co I, Cr I, Cr II, Fe I, Fe II, Mn I, Ni I, Sc I, Sc II, Ti I, Ti II, YI, and Y II in order to measure full Spectral coverage: 4500 to 6850 Å with S/N > 350 width half maximum (FWHM), line depth (dr) and equivalent widths (EW). Below (Fig. 1 and Fig. 2) we can see how different Objects: Ganymede, Vesta, 18 Sco, HD 150248, spectra can result in similar distributions and spreads. However, HD 164595, HD 138573, HD 98649, HD 118598 its similarity allows us to understand its differences. 2.1. More than one solar proxy We are using Ganymede and Vesta as solar proxy to test if their 4. Results and perspectives intrinsic caracteristics (e.g. chemical composition, albedo) influ- One basic criteria to determine how close is a star to the Sun is ence the obtained solar spectra. to look at the similarities between their spectral lines. A perfect solar twin should have median <dr> = 0 (Meléndez et al., 2006) 2.2. Wide spectral coverage and although we can see (Fig. 3 and 4) 18 Sco compared to Sun (with Ganymede as our best proxy) show some differences. To minimize the uncertainties, we are analysing a sufficient num- Another aspect of this work is to analyze the correlation be- ber of isolated lines of same species (Fe I, Fe II, Cr I, etc.) (Porto tween line-depth differences and their respective excitation po- de Mello, 1996) tentials. We will apply this method to the new twins HD 150248, HD 164595, HD 138573, HD 98649 and HD 118598 proposed 2.3. Systematics in continum normalization by Porto de Mello et al., 2014. This approach will allow us to map some of the sources of uncertainties and degrees of sub- This allows us to estimate biases induced by systematic particu- jectivity involved in determinations of spectroscopic similarity lar choices of continuum on manual normalization. Each person between the twins stars. 89 G. T. Ponte & G. F. Porto de Mello: The solar twin 18 Sco and the Sun Figure 1. Testing line-depth vs EW/λ to 18 Sco (two different spectra) and Sun (Ganymede) at 2σ confidence level. Figure 2. Test FWHM/λ vs EW showing us lines to be eliminated (out of 2σ) at the same spectra seen above in Fig. 1. References Kurucz, R. L., Furenlid, I.,& Brault, J, 1984, Solar Flux Atlas from 296 to 1300 nm, NSO Atlas No. 1. Meléndez, J., Dodds-Eden, K. & Robles., J. A., 2006, ApJ, 641, L133-L136 Monroe, T., Meléndez, J., Ramírez, I. et al. 2013, ApJL, 774, L32 Porto de Mello, G. F., 1996, PhD Thesis, Observatório Nacional, Rio de Janeiro Porto de Mello, G. F., Da Silva, R., & Nader, R., 2014, A&A, 563, A52 Tucci Maia, M., Meléndez, J., Spina, L. & Lorenzo-Oliveira, D., 2017, MNRAS, submited Wallace, L., Hinkle, K., Livingston, W., & Davis, S. P., 2011, A Solar Flux Atlas for the Visible and Near Infrared, NSO Tech. Figure 3. Line-depth differences of a solar spectrum (Ganymede) and 18 Sco. Figure 4. Line-depth ratios of a solar spectrum (Ganymede) and 18 Sco. 90.
Recommended publications
  • Download This Article in PDF Format
    A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60).
    [Show full text]
  • The CORALIE Survey for Southern Extrasolar Planets XVII
    Astronomy & Astrophysics manuscript no. coralieXVII c ESO 2019 July 1, 2019 The CORALIE survey for southern extrasolar planets XVII. New and updated long period and massive planets ? ?? M. Marmier1, D. Segransan´ 1, S. Udry1, M. Mayor1, F. Pepe1, D. Queloz1, C. Lovis1, D. Naef1, N.C. Santos2;3;1, R. Alonso4;5;1, S. Alves8;1, S. Berthet1, B. Chazelas1, B-O. Demory9;1, X. Dumusque1, A. Eggenberger1, P. Figueira2;1, M. Gillon6;1, J. Hagelberg1, M. Lendl1, R. A. Mardling7;1, D. Megevand´ 1, M. Neveu1, J. Sahlmann1, D. Sosnowska1, M. Tewes10, and A. H.M.J. Triaud1 1 Observatoire astronomique de l’Universite´ de Geneve,` 51 ch. des Maillettes - Sauverny -, CH-1290 Versoix, Switzerland 2 Centro de Astrof´ısica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 3 Departamento de F´ısica e Astronomia, Faculdade de Ciencias,ˆ Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 4 Instituto de Astrof´ısica de Canarias, C/ V´ıa Lactea´ S/N, E-38200 La Laguna, Spain 5 Departamento de Astrof´ısica, Universidad de La Laguna, E-38205 La Laguna, Spain 6 Universite´ de Liege,` Allee´ du 6 aoutˆ 17, Sart Tilman, Liege` 1, Belgium 7 School of Mathematical Sciences, Monash University, Victoria, 3800, Australia 8 Departamento de F´ısica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN., Brazil 9 Department of Earth, Atmospheric and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA 10 Laboratoire d’astrophysique, Ecole Polytechnique Fed´ erale´ de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland Received month day, year; accepted month day, year ABSTRACT Context.
    [Show full text]
  • A Spectroscopic Analysis in the Violet and Ultraviolet M
    Boletim da Sociedade Astronômica Brasileira, 30, no. 1, 87-88 c SAB 2018 Solar analogs and twins: a spectroscopic analysis in the violet and ultraviolet M. L. Ubaldo-Melo1, G. F. Porto de Mello1, D. Lorenzo-Oliveira2, & R. E. Giribaldi1;3 1 Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira do Pedro Antônio 43, CEP 20080-090 Rio de Janeiro, RJ, Brazil, e-mail: [email protected], [email protected] 2 Departamento de Astronomia do IAG, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, CEP 05508-900 São Paulo, SP, Brazil, e-mail: [email protected] 3 ESO – European Southern Observatory, Karl-Schwarzhild-Strasse 2, 85748 Garching bei München, Germany, e-mail: [email protected] Abstract. Solar type stars are fundamental objects in astrophysics. We perform a spectroscopic analysis in the regime bellow 4500 Å of 85 solar type stars aiming to determine which solar analog and twin candidates of our sample, characterized by means of a spectroscopic analysis in the visible, are similar to the Sun in the mentioned region. The violet/ultraviolet region is very sensitive to small variations of the atmospheric parameters of the stars and is still poorly explored in the literature in the context of solar type stars. We use the spectral indexes method with a principal component analysis calibration to derive the atmospheric parameters of a select sample of objetcs and determine that the stars HD 98649, HD 118598, HD 138573 and HD 140690 are the most similar to the Sun between 3995 and 4500 Å.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]
  • Table A1. Planets Discovered by Measuring the Radial Velocities of the Parent Stars Before 17 Oct
    Table A1. Planets discovered by measuring the radial velocities of the parent stars before 17 oct. 2017 Minimum detectable projective Upper Lower Minimum Orbital mass of the Orbital Projective error limit error limit Radius projective Duration of Mass of period for planet with period, mass of the of the of the of the (O-C), mass of the Group No. Planet observations, the star, the orbit the orbital days planet, projective projective star, m/s planet number days mʘ at 3R*, period equal mJ mass of the mass of the mʘ detectable days to the planet planet at 3R*, mE duration of observations, mE 1 Kepler-407 c 3000 12,6 6,3 6,3 1,00 1,01 – 2 BD+20 2457 c 621,99 1833 12,47 2,8 49 60,00 123,358 928,4 2282,4 1, 4 3 HD 87646 b 13,481 12,4 0,7 0,7 1,12 1,55 – 4 HIP 67537 b 2557 4419 11,1 0,4 1,1 2,41 8,69 8,0 16,501 57,3 369,2 1, 4 5 HD 220074 b 672,1 1360 11,1 1,8 1,8 1,2 49,7 57,40 192,485 585,5 1123,4 1, 4 6 HD 110014 b 835,5 2950 11,09 1 1 2,17 20,9 45,8 39,306 408,3 1722,5 1, 4 7 HD 1062701 b 2890 1484 11,0? 0,8 0,8 1,32 2,5 8 HD 114762 b 83,915 6901 10,98 0,09 0,09 0,83 1,24 27,40 0,912 36,8 721,6 1, 4 9 TYC 4282-00605-1 b 101,54 1203 10,78 0,12 0,12 0,97 16,2 23,02 40,492 121,2 375,4 1, 4 10 HD 38801 b 696,3 1143 10,7 0,5 0,5 1,36 2,53 6,5 2,077 15,9 130,7 1, 2, 3 11 BD-13 2130 b 714,3 10,6 2,4 – 12 HD 156846 b 359,555 2686 10,57 0,29 0,29 1,35 2,12 6,06 1,599 13,6 161,2 1, 3 13 11 Umi b 516 1287 10,50 2,47 2,47 1,80 24,08 27,5 53,003 239,3 692,9 1, 4 14 HD 219077 b 5501 4850 10,39 0,09 0,09 1,05 1,91 7,63 1,55 14,2 208,2 1, 3 15 18 Del b 993
    [Show full text]
  • Eccentricity in Planetary Systems and the Role of Binarity C
    Eccentricity in planetary systems and the role of binarity C. Moutou, Arthur Vigan, D. Mesa, S. Desidera, P. Thebault, A. Zurlo, G. Salter To cite this version: C. Moutou, Arthur Vigan, D. Mesa, S. Desidera, P. Thebault, et al.. Eccentricity in planetary systems and the role of binarity: Sample definition, initial results, and the system of HD 211847. Astronomy and Astrophysics - A&A, EDP Sciences, 2017, 602, pp.A87. 10.1051/0004-6361/201630173. hal- 01678371 HAL Id: hal-01678371 https://hal.archives-ouvertes.fr/hal-01678371 Submitted on 16 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A&A 602, A87 (2017) Astronomy DOI: 10.1051/0004-6361/201630173 & c ESO 2017 Astrophysics Eccentricity in planetary systems and the role of binarity Sample definition, initial results, and the system of HD 211847? C. Moutou1; 2, A. Vigan2, D. Mesa3, S. Desidera3, P. Thébault4, A. Zurlo5; 6, and G. Salter2 1 CNRS, CFHT, 65-1238 Mamalahoa Hwy, Kamuela HI 96743, USA e-mail: [email protected] 2 Aix Marseille Univ., CNRS, LAM, Laboratoire d’Astrophysique de Marseille, 13284 Marseille, France 3 INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 4 LESIA, CNRS, Observatoire de Paris, Université Paris Diderot, UPMC, 5 place J.
    [Show full text]
  • Universidade Federal Do Rio De Janeiro Centro De Ciências
    Universidade Federal do Rio de Janeiro Centro de Ciˆencias Matem´aticas e da Natureza Observat´orio do Valongo Propriedades estat´ısticas de sistemas planet´arios Aluno: Jo˜ao Antˆonio S. do Amarante Orientador: Dr. Helio Jaques Rocha-Pinto Disserta¸c˜ao para a obten¸c˜ao do t´ıtulo de Mestre em Astronomia Rio de Janeiro Julho/2012 ”Estes mundos no espa¸co s˜ao incont´aveis assim como todos os gr˜aos de areia de todas as praias da Terra. Cada um desses mundos s˜ao t˜ao reais quanto o nosso e cada um deles ´e uma sucess˜ao de incidentes, eventos, ocorrˆencias que influencia o seu futuro. Incont´aveis mundos, inumer´aveis momentos, uma imensid˜ao de espa¸co e tempo. E nosso pequeno planeta neste momento, aqui n´os enfrentamos um ponto cr´ıtico na hist´oria: o que n´os fazemos com nosso mundo, agora mesmo, ir´apropagar-se atrav´es dos s´eculos e afetar poderosamente o destino de nossos descendentes. Est´asob nosso comando o poder de destruir nossa civiliza¸c˜ao e talvez nossas esp´ecies tamb´em.” (Carl Sagan) Dedico aos meus pais e ao meu professor e orientador Helio Jaques. i Agradecimentos Agrade¸co primeiramente aos meus pais, Jo˜ao e Regina, e minha irm˜a, Joana, por todo apoio, carinho e amor que me deram durante minha vida; Agrade¸co a todos meus amigos e colegas por todos os bons e maus momentos passados durante esta fase do Mestrado. Um agradecimento em especial aos meus amigos de sala e companheiros no cafezinho Carlos Molina e Edgar, e a Ihani, Loloano, Lygia, Stefano e Victor que sempre me alegram; Agrade¸co a todos meus familiares que me apoiaram e as minhas fam´ılias cariocas ‘emprestadas’: os Ribeiro e os Almeida; Agrade¸co a Virg´ınia Valiate Gonzalez por todo carinho e amor; al´em de seu brilho no olhar que me apaixona e incentiva meus estudos.
    [Show full text]
  • Multiple Populations of Extrasolar Gas Giants
    Draft version March 15, 2019 Typeset using LATEX twocolumn style in AASTeX62 Multiple Populations of Extrasolar Gas Giants Shohei Goda1 and Taro Matsuo1, 2 1Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1, Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan; [email protected], [email protected] 2NASA Ames Research Center, Space Science and Astrobiology Division, Moffett Field, CA 94035, USA (Received February 11, 2019; Revised March 6, 2019; Accepted March 12, 2019) ABSTRACT There are two planetary formation scenarios: core accretion and gravitational disk instability. Based on the fact that gaseous objects are preferentially observed around metal-rich host stars, most extra- solar gaseous objects discovered to date are thought to have been formed by core accretion. Here, we present 569 samples of gaseous planets and brown dwarfs found in 485 planetary systems that span three mass regimes with boundary values at 4 and 25 Jupiter-mass masses through performing cluster analyses of these samples regarding the host-star metallicity, after minimizing the impact of the selection effect of radial-velocity measurement on the cluster analysis. The larger mass is thought to be the upper mass limit of the objects that were formed during the planetary formation processes. In contrast, the lower mass limit appears to reflect the difference between planetary formation processes around early-type and G-type stars; disk instability plays a greater role in the planetary formation process around early-type stars than that around G-type stars. Population with masses between 4 and 25 Jupiter masses that orbit early-type stars comprise planets formed not only via the core-accretion process but also via gravitational disk instability because the population preferentially orbits metal- poor stars or is independent of the host-star metallicity.
    [Show full text]
  • La Ricerca Dei Mondi Extra-Solari: Implicazioni Filosofiche Ed Aspetti Metodologici Nell’Astrofisica Moderna
    ALMA Mater Studiorum Università degli Studi Bologna SCUOLA DI SCIENZE Corso di Laurea Magistrale in Astrofisica e Cosmologia Dipartimento di Fisica e Astronomia La ricerca dei mondi extra-solari: implicazioni filosofiche ed aspetti metodologici nell’Astrofisica moderna Tesi di Laurea di: Relatore: Chiar.mo Prof.: Fabio Antonelli Alberto Buzzoni Co-relatore: Prof. Orsola De Marco Sessione II Anno Accademico 2012/2013 1 INDICE 1 INTRODUZIONE p.3 2 STORIOGRAFIA ED ASPETTI FILOSOFICI p.6 2.1 Premessa p.6 2.2 Filosofia e mondi extra-solari p.8 2.3 Le prime possibili scoperte di esopianeti p.11 2.4 Storia recente p.14 3 METODI DI RICERCA DEGLI ESOPIANETI p.21 3.1 Possibili approcci osservativi p.21 3.2 I metodi di detezione astrometrica p.23 3.3 Lenti gravitazionali p.31 3.4 Esempi rilevanti di micro-lensing planetario p.33 3.4.1 OGLE-2012-BLG-0026 p.36 3.4.2 OGLE-2011-BLG-0251 p.41 3.4.3 MOA-2010-BLG-311 p.47 3.5 Il metodo delle velocità radiali e dei transiti planetari p.52 3.6 Immagine diretta p.59 3.7 Fondamenti matematici dei transiti planetari p.64 4 STRUMENTI DI DETEZIONE E PROGRAMMI DI RICERCA IN CORSO p.67 4.1 Strumenti di ultima generazione p.67 4.2 Programmi in corso ed a medio termine da terra e dallo spazio p.81 4.2.1 Il gruppo ExoPAG SAG#5 p.81 4.2.2 La missione Kepler p.82 4.2.3 La missione CoRot p.83 4.2.4 La missione GAIA p.84 4.2.5 Altri programmi e progetti di ricerca p.85 2 5 NUOVE LINEE DI RICERCA SULL’INTERAZIONE DINAMICA TRA PIANETI E STELLE: VERSO UNA RIVOLUZIONE DEL PARADIGMA EVOLUTIVO STELLARE? p.87 5.1 Stelle binarie
    [Show full text]
  • Eccentricity in Planetary Systems and the Role of Binarity Sample Definition, Initial Results, and the System of HD 211847?
    A&A 602, A87 (2017) Astronomy DOI: 10.1051/0004-6361/201630173 & c ESO 2017 Astrophysics Eccentricity in planetary systems and the role of binarity Sample definition, initial results, and the system of HD 211847? C. Moutou1; 2, A. Vigan2, D. Mesa3, S. Desidera3, P. Thébault4, A. Zurlo5; 6, and G. Salter2 1 CNRS, CFHT, 65-1238 Mamalahoa Hwy, Kamuela HI 96743, USA e-mail: [email protected] 2 Aix Marseille Univ., CNRS, LAM, Laboratoire d’Astrophysique de Marseille, 13284 Marseille, France 3 INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 4 LESIA, CNRS, Observatoire de Paris, Université Paris Diderot, UPMC, 5 place J. Janssen, 92190 Meudon, France 5 Nucleo de Astronoma, Facultad de Ingeniera, Univ. D. Portales, Av. Ejercito 441, 1515 Santiago, Chile 6 Universidad de Chile, Camino del Observatorio, 1515 Santiago, Chile Received 1 December 2016 / Accepted 17 December 2016 ABSTRACT We explore the multiplicity of exoplanet host stars with high-resolution images obtained with VLT/SPHERE. Two different samples of systems were observed: one containing low-eccentricity outer planets, and the other containing high-eccentricity outer planets. We find that 10 out of 34 stars in the high-eccentricity systems are members of a binary, while the proportion is 3 out of 27 for circular systems. Eccentric-exoplanet hosts are, therefore, significantly more likely to have a stellar companion than circular-exoplanet hosts. The median magnitude contrast over the 68 data sets is 11.26 and 9.25, in H and K, respectively, at 0.30 arcsec. The derived detection limits reveal that binaries with separations of less than 50 au are rarer for exoplanet hosts than for field stars.
    [Show full text]
  • 2019-03-26 ESO 50Ième
    A survey with the HARPS spectrograph : From gaseous giant planets to rocky planets ESO-3.6m @ La Silla • δλ/λ = 10 (-9) >>>> 0.3 m/s HARPS Michel Mayor , University of Geneva A survey with the HARPS spectrograph : From gaseous giant planets to rocky planets HARPS GTO • δλ/λ = 10 (-9) >>>> 0.3 m/s Built : by Geneva and Haute-Provence Observatories +ESO (Pi : M.Mayor, Project manager : F.Pepe) - Statistical survey of southern sky - ( F(metallicity, period, planetary mass, ecc. )) - HARPS survey combined with CORALIE survey (EULER tel) - Planets hosted by M Stars (cf T.Forveille) - Host star metallicity versus planetary frequency. - RV follow-up of CoRoT candidates (CoRoT-7) Michel Mayor , University of Geneva HD10180 : a planetary system with 7 planets P1 = 1.18 day P7 = 2150 days e1 = 0 e7 = 0.15 P4 = 49.7 days m1 sini = 1.5 M⊕ m7 sini = 67 M⊕ e4 = 0.06 m sini = 24.8 M P2 = 5.76 days 4 ⊕ e2 = 0.07 P5 = 122.7 days m2 sini = 13.2 M⊕ e5 = 0.13 m sini = 23.4 M P3 = 16.4 days 5 ⊕ e3 = 0.16 P6 = 595 days m3 sini = 11.8 M⊕ e6 = 0.0 m6 sini = 22 M⊕ Lovis et al. 2010 Mayor, Marmier, Lovis et al.2011 HARPS GTO Marmier et al. 2013, A&A 551,90 Diaz et al. 2016, A&A 585,134 Udry et al. 2019, A&A 622,37 Rickman et al. 2019, A&A submitted Discovery of the exoplanet population of SuperEarths Smaller-mass planets 3 < M < 100 M⊕ P < 1yr fsyst = 51 +/- 8 % (Mayor et al.2011) Orbital periods < 50 days: => increase of f(m) towards low masses HD 92987 P= 10355 days Rickman et al.
    [Show full text]