Table A1. Planets Discovered by Measuring the Radial Velocities of the Parent Stars Before 17 Oct

Total Page:16

File Type:pdf, Size:1020Kb

Table A1. Planets Discovered by Measuring the Radial Velocities of the Parent Stars Before 17 Oct Table A1. Planets discovered by measuring the radial velocities of the parent stars before 17 oct. 2017 Minimum detectable projective Upper Lower Minimum Orbital mass of the Orbital Projective error limit error limit Radius projective Duration of Mass of period for planet with period, mass of the of the of the of the (O-C), mass of the Group No. Planet observations, the star, the orbit the orbital days planet, projective projective star, m/s planet number days mʘ at 3R*, period equal mJ mass of the mass of the mʘ detectable days to the planet planet at 3R*, mE duration of observations, mE 1 Kepler-407 c 3000 12,6 6,3 6,3 1,00 1,01 – 2 BD+20 2457 c 621,99 1833 12,47 2,8 49 60,00 123,358 928,4 2282,4 1, 4 3 HD 87646 b 13,481 12,4 0,7 0,7 1,12 1,55 – 4 HIP 67537 b 2557 4419 11,1 0,4 1,1 2,41 8,69 8,0 16,501 57,3 369,2 1, 4 5 HD 220074 b 672,1 1360 11,1 1,8 1,8 1,2 49,7 57,40 192,485 585,5 1123,4 1, 4 6 HD 110014 b 835,5 2950 11,09 1 1 2,17 20,9 45,8 39,306 408,3 1722,5 1, 4 7 HD 1062701 b 2890 1484 11,0? 0,8 0,8 1,32 2,5 8 HD 114762 b 83,915 6901 10,98 0,09 0,09 0,83 1,24 27,40 0,912 36,8 721,6 1, 4 9 TYC 4282-00605-1 b 101,54 1203 10,78 0,12 0,12 0,97 16,2 23,02 40,492 121,2 375,4 1, 4 10 HD 38801 b 696,3 1143 10,7 0,5 0,5 1,36 2,53 6,5 2,077 15,9 130,7 1, 2, 3 11 BD-13 2130 b 714,3 10,6 2,4 – 12 HD 156846 b 359,555 2686 10,57 0,29 0,29 1,35 2,12 6,06 1,599 13,6 161,2 1, 3 13 11 Umi b 516 1287 10,50 2,47 2,47 1,80 24,08 27,5 53,003 239,3 692,9 1, 4 14 HD 219077 b 5501 4850 10,39 0,09 0,09 1,05 1,91 7,63 1,55 14,2 208,2 1, 3 15 18 Del b 993 1772 10,3 2,3 8,5 15,4 9,834 90,0 508,2 1, 4 16 HD 39091 b 2151 10,27 0,84 0,84 1,1 – 17 TYC 1422-614-1 c 559,3 3651 10 1 1 1,15 6,85 18,94 10,061 70,2 500,4 1, 4 18 HD 208527 b 875,5 1352 9,9 1,7 1,7 1,6 51,1 39,3 173,79 469,3 929,9 1, 4 19 30 Ari B b 335,1 1537 9,88 0,94 0,94 1,16 1,13 135,00 0,671 204,2 2691 1, 4 20 Kepler-94 c 820,3 9,84 0,63 0,63 0,81 0,76 21 HD 139357 b 1125,7 1287 9,76 2,15 2,15 1,35 11,47 14,14 20,12 73,4 293,7 1, 3 22 HD 156279 b 131,05 9,71 0,66 0,66 0,93 – 1 23 HD 106515A b 3630 4800 9,61 0,14 0,14 0,97 1,62 9,63 1,26 16,0 249,7 1, 3 24 WASP-8 c 4323 2099 9,45 2,26 1,04 1,03 0,945 2,91 0,54 3,7 58,9 1, 2, 3 25 HD 24064 b 535,6 1921 9,4 1,3 1,3 1 38 34,5 140,97 281 671,3 1, 4 26 HD 141937 b 653,2 882 9,316 0,33 0,33 1,03 0,99 8,7 0,584 11,6 133,3 1, 2, 3 27 HIP 63242 b 124,6 9,18 1,54 – 28 HD 33564 b 388 9,1 1,25 – 29 HIP 70849 b 17337 9 6 6 – – 30 HIP 75458 b 511,1 8,82 0,72 0,72 1,05 – 31 Gam1 Leo b 428,5 2195 8,78 1,0 1,0 1,23 31,88 43,0 97,674 355,5 1003,3 1, 4 32 HD 191806 b 1606,3 8,52 0,63 0,63 1,14 – 33 HD 89744 b 256,78 8,44 0,23 0,23 1,56 – 34 HD 104985 b 199,5 8,3 – – 35 HIP 105854 b 184,2 8,2 0,2 0,2 2,1 – 36 HD 30177 b 2524,4 8,08 0,1 0,1 0,988 – 37 HD 74156 c 2473 8,06 0,37 0,37 1,24 – 38 Beta Cnc b 605,2 3460 7,8 0,8 0,8 1,7 47,2 47,2 149,672 558,6 1591,1 1, 4 39 HD 175167 b 1290 7,8 3,5 3,5 1,102 – 40 HD 14067 b 1455 2302 7,8 0,7 0,7 2,4 2,4 12,7 16,962 91,5 470,1 1, 4 41 Pr 0211 c 4850 1200 7,79 0,33 0,33 0,935 0,827 26,0 0,469 30,3 414,4 1, 4 42 HD 222582 b 572,4 7,75 0,65 0,65 0,99 – 43 HD 23596 b 1561 7,71 0,39 0,39 1,16 – 44 HD 168443 b 58,1125 5360 7,66 0,098 0,098 0,995 1,51 3,81 1,122 6,1 103,3 1, 2, 3 45 Eps Tau b 594,9 938 7,6 0,2 0,2 2,7 13,7 9,9 18,572 79,4 293,7 1, 3 46 HD 5891 b 177,1 1393 7,6 0,4 0,4 1,91 8,7 28,4 11,174 152,9 763,7 1, 4 47 HD 30177 c 11613 7,6 3,1 3,1 0,988 – 48 70 Vir b 116,6926 9480 7,40 0,02 0,02 1,09 1,94 6,08 1,558 11,7 213,8 1, 3 49 HD 475362 b 712,13? 7,32? 2,36 2,36 0,91 22,39 50 HD 125612 d 3008 7,2 1,091 – 51 4 UMa b 269,3 890 7,1 1,6 1,6 1,234 18,11 28,8 41,819 179,5 497,3 1, 4 52 HD 178911B b 71,484 7,03 0,28 0,28 1,014 – 53 HD 86264 b 1475 7,0 1,6 1,6 – – 54 Kepler-424 c 223,3 653 6,97 0,62 0,62 1,01 0,94 20,0 0,546 25,7 273,3 1, 3 55 HD 59686A b 299,36 4500 6,92 0.18 0,24 1,9 13,2 19,49 20,938 129,0 772,7 1, 4 56 HD 106252 b 1531 6,92 0,16 0,16 1,007 – 57 HD 196067 b 3638 4900 6,9 3,9 1,1 1,29 1,73 9,92 1,206 19,6 312,5 1, 3 58 HD 81040 b 1001,7 2227 6,86 0,71 0,71 0,96 0,86 26,0 0,490 31,2 517,1 1, 4 59 HD 98649 b 4951 3420 6,8 0,5 0,5 1,00 1,0 10,3 0,602 13,6 242,6 1, 3 60 HD 111232 b 1143 6,8 0,78 – 61 GJ 676A c 7337 6,8 0,1 0,1 0,71 – 62 Eps CrB b 417,9 2503 6,7 0,3 0,3 1,7 21 25,0 44,418 197,3 756,3 1, 4 63 GJ 676A b 1051,1 6,7 1,8 1,5 0,71 – 64 HD 233604 b 192,0 2956 6,575 1,5 10,9 19,13 17,683 102,1 562,6 1, 4 2 65 HD 147018 c 1008 6,56 0,32 0,32 0,927 – 66 HD 11977 b 621,6 3864 6,5 0,2 0,2 1,91 10,09 11,2 14,03 64,6 420,5 1, 4 67 HD 11755 b 433,7 1716 6,5 1,0 1,0 0,9 27,3 27,7 90,485 181,4 483,7 1, 4 68 Alf Tau b 629,0 11314 6,47 0,53 0,53 1,13 45,1 98,0 171,466 933,2 3733,3 1, 4 69 HD 1666 b 270,0 3165 6,43 0,31 0,22 1,50 1,93 35,6 1,317 80,0 1071,8 1, 4 70 BD+03 2562 b 481,9 4159 6,4 1,3 1,3 1,14 32,35 69,8 104,432 561,3 1916,9 1, 4 71 BD+20 1790 b 7,7829 6,37 1,35 1,35 0,63 0,71 – 72 HD 10697 b 1075,2 6,21 0,15 0,15 1,112 – 73 HD 2039 b 1120 6,11 0,82 0,82 1,17 – 74 Bet UMi b 522,3 2920 6,1 1,0 1,0 1,4 38,3 40,5 120,555 391,7 1133,4 1, 4 75 HD 70573 b 851,8 6,1 0,4 0,4 1,0 – 76 HD 1690 b 533,0 2547 6,1 0,9 0,9 1,09 16,7 29,0 39,338 163,6 656,9 1, 4 77 HIP 65891 b 1084,5 1733 6,00 0,49 0,49 2,50 8,93 9,3 10,157 58,0 321,9 1, 4 78 HD 66141 b 480,5 2605 6,0 0,3 0,3 1,1 21,4 38,8 56,804 248,7 890,2 1, 4 79 HIP 67851 c 2132 4017 5,98 0,76 0,76 1,63 5,92 8,9 6,790 36,5 306,8 1, 3 80 HD 224538 b 1189 4128 5,97 0,42 0,42 1,34 1,54 5,2 0,994 9,9 158,8 1, 2, 3 81 HD 102329 b 778,1 1484 5,9 0,3 0,3 1,95 6,3 7,2 6,815 33,4 200,8 1, 3 82 HD 102272 b 127,58 1450 5,9 0,2 0,2 1,9 10,1 15,4 14,014 89,2 418,8 1, 4 83 HD 5583 b 139,35 3225 5,78 0,53 0,53 1,01 9,09 69,5 16,411 278,3 1618,0 1, 4 84 HD 145377 b 103,95 1106 5,76 0,10 0,10 1,12 1,14 15,3 0,692 22,8 266,8 1, 3 85 Kepler-56 d 1002 5,61 0,38 0,38 1,32 4,23 – 86 HD 132406 b 974 5,61 – – 87 HD 28185 b 385,9 5,59 0,33 0,33 0,98 – 88 HIP 8541 b 1560 2194 5,5 1,0 1,0 1,17 7,83 9,1 12,190 36,4 205,3 1, 3 89 HD 72892 b 39,475 1486 5,45 0,37 0,37 1,02 1,22 4,5 0,803 6,6 81,0 1, 2, 3 90 HD 27894 d 5174 5,415 0,239 1,214 0,8 – 91 TYC 3667-1280-1 b 26,468 2844 5,4 0,4 0,4 1,87 6,26 28,3 6,893 127,9 952,1 1, 4 92 HD 240237 b 745,7 1930 5,3 1,69 32 36,0 83,798 349,6 994,8 1, 4 93 HD 142 c 6005 5067 5,3 0,7 0,7 1,23 1,47 11,2 0,967 19,9 345,2 1, 4 94 81 Cet b 952,7 1638 5,3 2,4 11 9,2 14,172 62,4 304,1 1, 3 95 HD 240210 b 501,75 5,21 0,82 – 96 HD 147873 b 116,6 3995 5,14 0,34 0,34 1,38 2,29 2,6 1,775 6,1 79,3 1, 2, 3 97 HD 13908 c 931 1589 5,13 0,25 0,25 1,29 1,67 9,6 1,143 18,6 207,7 1, 3 98 HD 142022A b 1928 5,1 2,6 1,5 0,99 – 99 BD-17 63 b 655,6 1760 5,1 0,12 0,12 0,74 0,69 4,1 0,401 3,8 62,8 1, 2, 3 100 HD 95127 b 482 2929 5,01 0,61 0,44 1,20 20 50,9 49,137 329,3 1286,3 1, 4 101 HD 50554 b 1293 1293 4,954 0,389 0,389 1,04 1,02 12,0 0,608 16,4 210,3 1, 3 102 HD 67087 c 2374 3423 4,85 10,0 3,61 1,36 1,55 11,8 0,996 22,7 342,1 1, 4 103 14 And b 185,84 1486 4,8 2,2 11 20,3 14,802 131,9 612,8 1, 4 104 HD 16175 b 995,4 4,77 0,37 0,37 1,34 – 105 HD 154672 b 163,967 3693 4,73 0,32 0,32 1,08 1,44 3,6 1,001 5,9 91,2 1, 2, 3 106 14 Her b 1773,4 4,64 0,19 0,19 0,90 – 3 107 HD 95872 b 4375 4,6 0,3 0,3 0,95 – 108 HD 17092 b 359,9 4,6 0,3 0,3 2,3 – 109 HD 111998 b 825,9 2989 4,51 0,50 0,50 1,18 1,45 17,35 0,967 30,0 436,5 1, 4 110 HD 213240 b 951 4,5 – – 111 HD 120084 b 2082 3530 4,5 2,39 9,12 5,8 10,721 35,7 246,7 1, 3 112 Kepler-454 c 523,9 4,46 0,12 0,12 1,028 1,066 – 113 Tau Boo b 3,31246 3287 4,32 0,04 0,04 1,34 1,46 13,9 0,917 25,6 392,5 1, 4 114 HD 204313 b 2024 4,28 0,30 0,30 1,02 – 115 HD 11506 b 1627,5 3574 4,21 0,07 0,07 1,24 1,33 4,8 0,829 8,2 133,0 1, 2, 3 116 BD+20 274 b 578,2 2548 4,2 0,8 17,3 35,8 48,415 176,0 659,7 1, 4 117 Ups And d 1276,46 7383 4,13 0,03 0,03 1,3 1,56 13,76 1,028 25,8 498,5 1, 4 118 Omi UMa b 1630 2625 4,1 3,09 14,1 7,6 18,126 66,2 347,6 1, 4 119 HD 169830 c 2102 4,04 1,40 – 120 HD 40979 b 264,15 4,01 0,13 0,13 1,154 – 121 HD 24040 b 3668 4,01 0,49 0,49 1,18 – 122 HD 96127 b 647,3 1844 4,0 0,91 35 50,0 130,627 372,9 901,3 1, 4 123 HAT-P-443 c ? 4,0 1,4 0,8 0,942 0,949 124 HD 806064 b 111,4357 840 3,94 0,11 0,11 0,97 0,978 13,5 195,3 1, 3 125 GJ 86 b 15,7649 3,91 0,32 0,32 0,77 – 126 HIP 14810 b 6,67386 1112 3,88 0,32 0,32 0,99 1,0 2,0 0,605 2,6 32,1 1, 2, 3 127 42 Dra b 479,1 1209 3,88 0,85 0,85 0,98 22,03 26,0 62,858 159,4 427,2 1, 4 128 55 Cnc5 d 4825 4800 3,878 0,068 0,068 0,905 0,943 5,3 0,583 6,5 131,6 1, 2, 3 129 HD 128311 c 921,54 4566 3,789 0,924 0,432 0,828 0,76 9,37 0,438 9,8 214,0 1, 3 130 HD 35759 b 82,467 3,76 0,17 0,17 1,15 – 131 KELT-6 c 1276 1185 3,71 0,21 0,21 1,126 1,529 17,0 1,071 29,6 305,8 1, 3 132 HD 195019 b 18,2013 3,69 0,30 0,30 1,07 – 133 HD 183263 b 626,5 3,67 0,30 0,30 1,17 – 134 HD 86950 b 1270 2594 3,6 0,7 0,7 1,66 8,8 6,10 12,193 30,8 184,1 1, 3 135 HD 92788 b 325 3,58 1,10 – 136 HD 183263 c 3070 3,57 0,55 0,55 1,17 – 137 HD 166724 b 5144 3,53 0,11 0,11 0,81 – 138 HD 108341 b 1129 3770 3,5 3,4 1,2 0,843 0,79 1,5 0,461 1,6 32,7 1, 2, 3 139 HD 1605 c 2111 3281 3,48 0,13 0,11 1,31 3,8 6,4 3,895 18,9 178,3 1, 3 140 HD 143361 b 1046,2 4417 3,48 0,24 0,24 0,95 0,99 2,8 0,608 3,6 68,9 1, 2, 3 141 HAT-P-176 c 5584 3,4 1,1 0,7 0,857 0,838 – 142 GJ 3021 b 133,71 462 3,37 0,09 0,09 0,9 0,9 19,2 0,542 22,8 216,5 1, 3 143 HD 37605 c 2720 2841 3,366 0,072 0,072 1,00 0,901 7,61 0,514 9,5 168,5 1, 3 144 HD 17156 b 21,2166 3,22 0,08 0,08 1,24 1,44 – 145 91 Aqr b 181,4 4150 3,2 1,4 11,0 18,9 18,556 98,0 594,6 1, 4 146 WASP-41 c 421 1253 3,18 0,20 0,20 0,93 0,87 20,0 0,506 23,7 321,3 1, 4 147 HD 220842 b 218,47 3,18 0,15 0,15
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Homogeneous Spectroscopic Parameters for Bright Planet Host Stars from the Northern Hemisphere the Impact on Stellar and Planetary Mass (Research Note)
    A&A 576, A94 (2015) Astronomy DOI: 10.1051/0004-6361/201425227 & c ESO 2015 Astrophysics Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere The impact on stellar and planetary mass (Research Note) S. G. Sousa1,2,N.C.Santos1,2, A. Mortier1,3,M.Tsantaki1,2, V. Adibekyan1, E. Delgado Mena1,G.Israelian4,5, B. Rojas-Ayala1,andV.Neves6 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK 4 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 5 Departamento de Astrofísica, Universidade de La Laguna, 38205 La Laguna, Tenerife, Spain 6 Departamento de Física, Universidade Federal do Rio Grande do Norte, Brazil Received 27 October 2014 / Accepted 19 February 2015 ABSTRACT Aims. In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods. To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius.
    [Show full text]
  • Enabling Science with Gaia Observations of Naked-Eye Stars
    Enabling science with Gaia observations of naked-eye stars J. Sahlmanna,b, J. Mart´ın-Fleitasb,c, A. Morab,c, A. Abreub,d, C. M. Crowleyb,e, E. Jolietb,f aEuropean Space Agency, STScI, 3700 San Martin Drive, Baltimore, MD 21218, USA; bEuropean Space Agency, ESAC, P.O. Box 78, Villanueva de la Canada,˜ 28691 Madrid, Spain; cAurora Technology, Crown Business Centre, Heereweg 345, 2161 CA Lisse, The Netherlands; dElecnor Deimos Space, Ronda de Poniente 19, Ed. Fiteni VI, 28760 Tres Cantos, Madrid, Spain; eHE Space Operations BV, Huygensstraat 44, 2201 DK Noordwijk, The Netherlands; fCalifornia Institute of Technology, Pasadena, CA, 91125, USA ABSTRACT ESA’s Gaia space astrometry mission is performing an all-sky survey of stellar objects. At the beginning of the nominal mission in July 2014, an operation scheme was adopted that enabled Gaia to routinely acquire observations of all stars brighter than the original limit of G∼6, i.e. the naked-eye stars. Here, we describe the current status and extent of those observations and their on-ground processing. We present an overview of the data products generated for G<6 stars and the potential scientific applications. Finally, we discuss how the Gaia survey could be enhanced by further exploiting the techniques we developed. Keywords: Gaia, Astrometry, Proper motion, Parallax, Bright Stars, Extrasolar planets, CCD 1. INTRODUCTION There are about 6000 stars that can be observed with the unaided human eye. Greek astronomer Hipparchus used these stars to define the magnitude system still in use today, in which the faintest stars had an apparent visual magnitude of 6.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • A Search for Planets Around Intermediate Mass Stars with the Hobby–Eberly Telescope
    EPJ Web of Conferences 16, 02005 (2011) DOI: 10.1051/epjconf/20111602005 C Owned by the authors, published by EDP Sciences, 2011 A search for planets around intermediate Mass Stars with the Hobby–Eberly Telescope M. Adamów1,a, S. Gettel2,3, G. Nowak1,P. Zielinski´ 1, A. Niedzielski1 and A. Wolszczan2,3 1Torun´ Centre for Astronomy, Nicolaus Copernicus University, Torun,´ Poland 2Department for Astronomy and Astrophysics, Pennsylvania State University 3Center for Exoplanets and Habitable Worlds Abstract. We present the discovery of sub-stellar mass companions to three stars by the ongoing Penn State – Torun´ Planet Search (PTPS) conducted with the 9.2 m Hobby-Eberly Telescope. 1. INTRODUCTION Searches for planets around giant stars extend studies of planetary system formation and evolution to stars substantially more massive than 1 M (Hatzes et al. 2006; Sato et al. 2008; Niedzielski et al. 2009). Although searches for massive sub-stellar companions to early-type stars are possible (Galland 2005), it is much more efficient to utilize the power of the radial velocity (RV) method by exploiting the many narrow spectral lines of GK-giants, the descendants of the main sequence A-F type stars, sufficient to achieve a < 10 ms−1 RV measurement precision. The GK-giant surveys provide constraints on the efficiency of planet formation as a function of stellar mass and chemical composition. In fact, analyses by Johnson et al. (2007) and Lovis & Mayor (2007) extend to giants the correlation between planetary masses and primary mass that is observed for the lower-mass stars. This is most likely because massive stars tend to have more massive disks.
    [Show full text]
  • The GAPS Programme with HARPS-N at TNG XII
    A&A 599, A90 (2017) Astronomy DOI: 10.1051/0004-6361/201629484 & c ESO 2017 Astrophysics The GAPS Programme with HARPS-N at TNG XII. Characterization of the planetary system around HD 108874?,?? S. Benatti1, S. Desidera1, M. Damasso2, L. Malavolta3; 1, A. F. Lanza4, K. Biazzo4, A. S. Bonomo2, R. U. Claudi1, F. Marzari3, E. Poretti5, R. Gratton1, G. Micela6, I. Pagano4, G. Piotto3; 1, A. Sozzetti2, C. Boccato1, R. Cosentino7, E. Covino8, A. Maggio6, E. Molinari7, R. Smareglia9, L. Affer6, G. Andreuzzi7, A. Bignamini9, F. Borsa5, L. di Fabrizio7, M. Esposito8, A. Martinez Fiorenzano7, S. Messina4, P. Giacobbe2, A. Harutyunyan7, C. Knapic9, J. Maldonado6, S. Masiero1, V. Nascimbeni1, M. Pedani7, M. Rainer5, G. Scandariato4, and R. Silvotti2 1 INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy e-mail: [email protected] 2 INAF–Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese, Italy 3 Dipartimento di Fisica e Astronomia Galileo Galilei – Università di Padova, via Francesco Marzolo, 8, Padova, Italy 4 INAF–Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy 5 INAF–Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy 6 INAF–Osservatorio Astronomico di Palermo, Piazza del Parlamento, 1, 90134 Palermo, Italy 7 Fundación Galileo Galilei – INAF, Rambla José Ana Fernandez Pérez 7, 38712 Breña Baja, TF, Spain 8 INAF–Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy 9 INAF–Osservatorio Astronomico di Trieste, via Tiepolo 11, 34143 Trieste, Italy Received 5 August 2016 / Accepted 21 November 2016 ABSTRACT In order to understand the observed physical and orbital diversity of extrasolar planetary systems, a full investigation of these objects and of their host stars is necessary.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Dynamical Stability and Habitability of a Terrestrial Planet in HD74156
    A dynamic search for potential habitable planets amongst the extrasolar planets 1,2 1 1 1,3 1, 4 P. Hinds , A. Munro , S. T. Maddison , C. Tan , and M. C. Gino [1] Swinburne University, Australia [2] Pierce College, USA [3] Methodist Ladies’ College, Australia [4] Dudley Observatory, USA ABSTRACT: While the detection of habitable terrestrial planets around nearby stars is currently beyond our observational capabilities, dynamical studies can help us locate potential candidates. Following from the work of Menou & Tabachnik (2003), we use a symplectic integrator to search for potential stable terrestrial planetary orbits in the habitable zones of known extrasolar planetary systems. A swarm of massless test particles is initially used to identify stability zones, and then an Earth-mass planet is placed within these zones to investigate their dynamical stability. We investigate 22 new systems discovered since the work of Menou & Tabachnik, as well as simulate some of the previous 85 extrasolar systems whose orbital parameters have been more precisely constrained. In particular, we model three systems that are now confirmed or potential double planetary systems: HD169830, HD160691 and eps Eridani. The results of these dynamical studies can be used as a potential target list for the Terrestrial Planet Finder. Introduction Numerical Technique Results & Discussion To date 122 extrasolar planets have been detected around 107 stars, with 13 of them To follow the evolution of the planetary systems, we use the SWIFT integration software package1. This The systems we have investigated broadly fall in four categories: (1) unstable being multiple planet systems (Schneider, 2004). Observational evidence for the allows us to model a planetary system and a swarm of massless test particles in orbit around a central star.
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • Arxiv:1904.05358V1 [Astro-Ph.EP] 10 Apr 2019
    Draft version April 12, 2019 Typeset using LATEX default style in AASTeX62 The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10{100 AU Eric L. Nielsen,1 Robert J. De Rosa,1 Bruce Macintosh,1 Jason J. Wang,2, 3, ∗ Jean-Baptiste Ruffio,1 Eugene Chiang,3 Mark S. Marley,4 Didier Saumon,5 Dmitry Savransky,6 S. Mark Ammons,7 Vanessa P. Bailey,8 Travis Barman,9 Celia´ Blain,10 Joanna Bulger,11 Jeffrey Chilcote,1, 12 Tara Cotten,13 Ian Czekala,3, 1, y Rene Doyon,14 Gaspard Duchene^ ,3, 15 Thomas M. Esposito,3 Daniel Fabrycky,16 Michael P. Fitzgerald,17 Katherine B. Follette,18 Jonathan J. Fortney,19 Benjamin L. Gerard,20, 10 Stephen J. Goodsell,21 James R. Graham,3 Alexandra Z. Greenbaum,22 Pascale Hibon,23 Sasha Hinkley,24 Lea A. Hirsch,1 Justin Hom,25 Li-Wei Hung,26 Rebekah Ilene Dawson,27 Patrick Ingraham,28 Paul Kalas,3, 29 Quinn Konopacky,30 James E. Larkin,17 Eve J. Lee,31 Jonathan W. Lin,3 Jer´ ome^ Maire,30 Franck Marchis,29 Christian Marois,10, 20 Stanimir Metchev,32, 33 Maxwell A. Millar-Blanchaer,8, 34 Katie M. Morzinski,35 Rebecca Oppenheimer,36 David Palmer,7 Jennifer Patience,25 Marshall Perrin,37 Lisa Poyneer,7 Laurent Pueyo,37 Roman R. Rafikov,38 Abhijith Rajan,37 Julien Rameau,14 Fredrik T. Rantakyro¨,39 Bin Ren,40 Adam C. Schneider,25 Anand Sivaramakrishnan,37 Inseok Song,13 Remi Soummer,37 Melisa Tallis,1 Sandrine Thomas,28 Kimberly Ward-Duong,25 and Schuyler Wolff41 1Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 2Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 3Department of Astronomy, University of California, Berkeley, CA 94720, USA 4NASA Ames Research Center, Mountain View, CA 94035, USA 5Los Alamos National Laboratory, P.O.
    [Show full text]
  • Today in Astronomy 106: Exoplanets
    Today in Astronomy 106: exoplanets The successful search for extrasolar planets Prospects for determining the fraction of stars with planets, and the number of habitable planets per planetary system (fp and ne). T. Pyle, SSC/JPL/Caltech/NASA. 26 May 2011 Astronomy 106, Summer 2011 1 Observing exoplanets Stars are vastly brighter and more massive than planets, and most stars are far enough away that the planets are lost in the glare. So astronomers have had to be more clever and employ the motion of the orbiting planet. The methods they use (exoplanets detected thereby): Astrometry (0): tiny wobble in star’s motion across the sky. Radial velocity (399): tiny wobble in star’s motion along the line of sight by Doppler shift. Timing (9): tiny delay or advance in arrival of pulses from regularly-pulsating stars. Gravitational microlensing (10): brightening of very distant star as it passes behind a planet. 26 May 2011 Astronomy 106, Summer 2011 2 Observing exoplanets (continued) Transits (69): periodic eclipsing of star by planet, or vice versa. Very small effect, about like that of a bug flying in front of the headlight of a car 10 miles away. Imaging (11 but 6 are most likely to be faint stars): taking a picture of the planet, usually by blotting out the star. Of these by far the most useful so far has been the combination of radial-velocity and transit detection. Astrometry and gravitational microlensing of sufficient precision to detect lots of planets would need dedicated, specialized observatories in space. Imaging lots of planets will require 30-meter-diameter telescopes for visible and infrared wavelengths.
    [Show full text]
  • The ELODIE Survey for Northern Extra-Solar Planets?,??,???
    A&A 410, 1039–1049 (2003) Astronomy DOI: 10.1051/0004-6361:20031340 & c ESO 2003 Astrophysics The ELODIE survey for northern extra-solar planets?;??;??? I. Six new extra-solar planet candidates C. Perrier1,J.-P.Sivan2,D.Naef3,J.L.Beuzit1, M. Mayor3,D.Queloz3,andS.Udry3 1 Laboratoire d’Astrophysique de Grenoble, Universit´e J. Fourier, BP 53, 38041 Grenoble, France 2 Observatoire de Haute-Provence, 04870 St-Michel L’Observatoire, France 3 Observatoire de Gen`eve, 51 Ch. des Maillettes, 1290 Sauverny, Switzerland Received 17 July 2002 / Accepted 1 August 2003 Abstract. Precise radial-velocity observations at Haute-Provence Observatory (OHP, France) with the ELODIE echelle spec- trograph have been undertaken since 1994. In addition to several discoveries described elsewhere, including and following that of 51 Peg b, they reveal new sub-stellar companions with essentially moderate to long periods. We report here about such companions orbiting five solar-type stars (HD 8574, HD 23596, HD 33636, HD 50554, HD 106252) and one sub-giant star (HD 190228). The companion of HD 8574 has an intermediate period of 227.55 days and a semi-major axis of 0.77 AU. All other companions have long periods, exceeding 3 years, and consequently their semi-major axes are around or above 2 AU. The detected companions have minimum masses m2 sin i ranging from slightly more than 2 MJup to 10.6 MJup. These additional objects reinforce the conclusion that most planetary companions have masses lower than 5 MJup but with a tail of the mass dis- tribution going up above 15 MJup.
    [Show full text]