Status Survey of Batagur Baska and Pelochelys Cantorii in the State of Odisha
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AC26 Inf. 5 (English Only / Únicamente En Inglés / Seulement En Anglais)
AC26 Inf. 5 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-sixth meeting of the Animals Committee Geneva (Switzerland), 15-20 March 2012 and Dublin (Ireland), 22-24 March 2012 EXTRACT FROM THE PRELIMINARY REPORT WITH RECOMMENDATIONS AND CONCLUSIONS FROM THE SINGAPORE WORKSHOP ON ASIAN TORTOISES AND FRESHWATER TURTLES The attached information document has been submitted by the United States of America in relation to agenda item 18*. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC26 Inf. 5 – p. 1 Extract from the Preliminary Report with Recommendations and Conclusions from the Singapore Workshop on Asian Tortoises and Freshwater Turtles The attached information document has been submitted by the United States in relation to a workshop on “Conservation of Asian Tortoises and Freshwater Turtles: Setting Priorities for the Next Ten Years” held in Singapore, February 21st – 24th, 2011. Recalling the findings and recommendations of the Animal Committee’s Technical Workshop on Conservation of and Trade in Freshwater Turtles and Tortoises (Kunming, China; March 2002) (see AC18 Inf. 12), and also Doc AC19 Doc 15.1 (Conservation and trade in freshwater turtles and tortoises: Addressing recommendations from the Kunming Workshop) which makes extensive listing discussion and recommendations. -
Cantor's Giant Softshell Turtle, Pelochelys Cantorii
M Cantor’s Giant Softshell turtle, Pelochelys cantorii Compiler: Ayushi Jain Suggested citation: Jain, A., Das, A., V. Deepak., Cavada-Blanco, F. 2021. A Survival Blueprint for the Cantor’s Giant Softshell Turtle Pelochelys cantorii in India. EDGE of Existence programme, Zoological Society of London, UK 1. STATUS REVIEW 1.1 Taxonomy: Class : Reptilia Order : Testudines Family : Trionychidae Genus : Pelochelys Species : Pelocheys cantorii (Gray, 1864) Common Name : Cantor’s Giant softshell turtle/ Asian Giant softshell turtle/ Local name : Bheemanama, Paala poovan (Malayalam) Synonyms: Pelochelys clivepalmeri (Hoser, 2014), P. cumingii (Gray, 1864), P. poljakowii (Strauch, 1890), P. telstraorum (Hoser, 2014), P. cantoris (Boulenger, 1889) Pelochelys cantorii (Gray, 1864) is one of the three species in the genus Pelochelys. The other two species are P. bibroni and P. signifera known only from Papua New Guinea and Indonesia (Papua), respectively. P. cantorii has a large distribution across south and south-east Asia (Das, 2008). It is among the largest freshwater turtles in the world with adults reaching a carapace length of around 100 cm (Das, 2008). Sexual dimorphism is present with males having longer and thicker tales than females; something common for other softshell turtles. Females are also larger in size than males (Das, 2008). According to the last IUCN Red List of threatened species assessment for the species, Pelochelys cantorii might hide a complex of several different species (ATTWG, 2000) A B Figure 1. An adult Pelochelys cantorii on the banks of Chandragiri river caught as by-catch in a fishing line (A), and a close-up head shot showing the keratinized sheath or “teeth” of the species (B). -
Nilssonia Leithii (Gray 1872) – Leith's Softshell Turtle
Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project ofTrionychidae the IUCN/SSC Tortoise— Nilssonia and Freshwater leithii Turtle Specialist Group 075.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.075.leithii.v1.2014 © 2014 by Chelonian Research Foundation • Published 17 February 2014 Nilssonia leithii (Gray 1872) – Leith’s Softshell Turtle INDRANE I L DAS 1, SHASHWAT SI RS I 2, KARTH ik EYAN VASUDE V AN 3, AND B.H.C.K. MURTHY 4 1Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia [[email protected]]; 2Turtle Survival Alliance-India, D-1/316 Sector F, Janakipuram, Lucknow 226 021, India [[email protected]]; 3Laboratory for Conservation of Endangered Species, Centre for Cellular and Molecular Biology, Pillar 162, PVNR Expressway, Hyderguda, Hyderabad 500 048, India [[email protected]]; 4Zoological Survey of India, J.L. Nehru Road, Kolkata 700 016, India [[email protected]] SU mm ARY . – Leith’s Softshell Turtle, Nilssonia leithii (Family Trionychidae), is a large turtle, known to attain at least 720 mm in carapace length (bony disk plus fibrocartilage flap), and possibly as much as 1000 mm. The species inhabits the rivers and reservoirs of southern peninsular India, replacing the more familiar Indian Softshell Turtle, N. gangetica, of northern India. The turtle is apparently rare within its range, even within protected areas, which is suspected to be due to a past history of exploitation. -
A Case Study of Nilssonia Gangetica (Cuvier, 1825) in Kashipur Village, Uttar Pradesh, India
Herpetology Notes, volume 12: 631-636 (2019) (published online on 20 June 2019) ‘Community ponds: a tool for conservation’. A case study of Nilssonia gangetica (Cuvier, 1825) in Kashipur village, Uttar Pradesh, India Debanjan Sarkar¹, Anuja Mital¹, Raja Mandal², R. Suresh Kumar¹, and Gautam Talukdar¹,* Abstract. Ganges Softshell turtle (Nilssonia gangetica), a species listed as Vulnerable (IUCN Red List, A1d+2d, Ver 2.3), is generally associated with the major river systems of northern India. However, anecdotal records indicate this species has strong associations with community and temple ponds. Connectivity between rivers and these ponds play an important role in the exchange of individuals between wetlands thus maintaining viable healthy populations of the species in the landscape. This article details a survey of a pond (area 3381 m²) in Kashipur village, Uttar Pradesh, India, to investigate the current status of a large population of Nilssonia gangetica. The ponds were found to be extremely polluted with solid and liquid garbage and under several landscape level pressures impeding connectivity which threatens the survival and fitness of this population. We also review the implications of such community and temple ponds and their future in conserving these threatened turtles. Keywords. Freshwater turtles, Ganges River, seasonal wetlands, temple ponds, biological connectivity Introduction for its major flooding events that happen once every few years. The frequency and magnitude of such flooding The freshwater turtles of India inhabit a wide range events are of immense significance as they cause the of aquatic habitats, and due to their diverse life-history water from the main river to flow across the floodplains, traits and role as transformers of biomass, they are often temporarily connecting small wetlands to the river (Junk considered keystone species of aquatic ecosystems et al., 1989). -
Indian Freshwater Turtles, Which Are Usually Bigger
Fantastic Facts Indian Part 3 Freshwater Turtles Conservation / Threat Status of Turtles Many turtles, terrapins and tortoises are threatened with extinction, that is, dying out completely. Listed below are the turtles discussed in this article (from Part 1 to 3), with their status, or prospects of survival. Name Status (Global) Assam Roofed Turtle Endangered Cochin Forest Cane Turtle Endangered Crowned River Turtle Vulnerable Rock Terrapin Near Threatened Indian Flapshell Turtle Least Concern Indian Softshell Turtle Vulnerable Indian Narrow-headed Softshell Turtle Endangered Red-crowned Roofed Turtle Critically Endangered Northern River Terrapin Critically Endangered THE CATEGORIES Critically Endangered -- This is the highest category that a species can be assigned before “extinction”. It represents a “last ditch” effort to provide a warning to wildlife agencies and governments to activate management measures to protect the species before it disappears from the face of the earth. When a species is Critically Endangered, usually its chances of living for the next 100 years are very low. Often, its chances of surviving even for 10 years are not good at all ! Endangered -- This is the second highest threat category that a species can be assigned before it becomes further threatened e.g. Critically Endangered or Extinct. When a species is Endangered, its chances of survival as a species for the next 100 years are low. Vulnerable -- The IUCN Red List defines Vulnerable as when a species is not Critically Endangered or Endangered, but is still facing a high risk of extinction in the wild. This is the first threat category for ranking a species when it has some serious problems from human-related threats. -
Aquatic Conservation: Marine and Freshwater Ecosystems, 14, Ately in the Study Areas Because Fishing Represents the Most Impor- 237–246
Received: 21 May 2019 Revised: 20 October 2019 Accepted: 28 January 2020 DOI: 10.1002/aqc.3317 RESEARCH ARTICLE Fishers, dams, and the potential survival of the world's rarest turtle, Rafetus swinhoei, in two river basins in northern Vietnam Olivier Le Duc1 | Thong Pham Van1 | Benjamin Leprince1 | Cedric Bordes1 | Anh Nguyen Tuan2 | John Sebit Benansio3 | Nic Pacini4,5 | Vinh Quang Luu6 | Luca Luiselli7,8,9 1Turtle Sanctuary and Conservation Center, Paris, France Abstract 2Biodiversity Conservation, Thanh Hoa 1. Next to cetaceans and megafishes, freshwater turtles are the most iconic endan- Provincial Forest Protection, Thanh Hoa City, gered freshwater species. Thanh Hoa Province, Vietnam 3Alliance for Environment and Rural 2. A detailed questionnaire survey conducted with more than 100 individuals from Development (AERD), Juba, South Sudan fishing communities in northern Vietnam was used to investigate the current sta- 4 Department of Environmental and Chemical tus of Southeast Asian turtles and provides new hope concerning the survival of Engineering, University of Calabria, Arcavacata di Rende, Cosenza, Italy Rafetus swinhoei, for which recent official records in the wild are limited to a single 5Department of Geography, University of individual in Vietnam. Leicester, Leicester, UK 3. The survey included the entire Vietnamese portion of the Da River in Hoa Binh 6Vietnam National University of Forestry, Hanoi, Vietnam and Son La provinces, as well as the Chu and Ma river system in Thanh Hoa 7Institute for Development, Ecology, Province, as they are the last sites where the world's rarest and largest Asian soft- Conservation and Cooperation, Rome, Italy shell turtle has been seen. -
Comparative Mitogenomics of Two Critically
Comparative Mitogenomics of Two Critically Endangered Turtles, Batagur Kachuga and Batagur Dhongoka (Testudines: Geoemydidae): Implications in Phylogenetics of Freshwater Turtles Ajit Kumar Wildlife Institute of India Prabhaker Yadav Wildlife Institute of India Aftab Usmani Wildlife Institute of India Syed Ainul Hussain Wildlife Institute of India Sandeep Kumar Gupta ( [email protected] ) Wildlife Institute of India Research Article Keywords: Mitochondrial genome, freshwater turtles, phylogenetic analysis, genetic relationship, evolutionary patterns Posted Date: July 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-690457/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/14 Abstract The Red-crowned roofed turtle (Batagur kachuga) and Three-striped roofed turtle (B. dhongoka) are ‘critically endangered’ turtles in the Geoemydidae family. Herein, we generated the novel mitochondrial genome sequence of B. kachuga (16,155) and B. dhongoka (15,620) and compared it with other turtles species. Batagur mitogenome has 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), and one control region (CR). The genome composition was biased toward A + T, with positive AT-skew and negative GC-skew. In the examined species, all 13 PCGs were started by ATG codons, except COI gene, which was initiated by GTG. The majority of mito-genes were encoded on the heavy strand, except eight tRNAs and the ND6 region. We observed a typical cloverleaf structure for all tRNA, excluding tRNASer (AGN), where the base pairs of the dihydrouridine (DHU) arm were abridged. Bayesian Inference (BI) based phylogenetic analysis was constructed among 39 species from six Testudines families, exhibited a close genetic relationship between Batagur and Pangshura with a high supporting value (PP ~ 0.99). -
India: Tigers, Taj, & Birds Galore
INDIA: TIGERS, TAJ, & BIRDS GALORE JANUARY 30–FEBRUARY 17, 2018 Tiger crossing the road with VENT group in background by M. Valkenburg LEADER: MACHIEL VALKENBURG LIST COMPILED BY: MACHIEL VALKENBURG VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM INDIA: TIGERS, TAJ, & BIRDS GALORE January 30–February 17, 2018 By Machiel Valkenburg This tour, one of my favorites, starts in probably the busiest city in Asia, Delhi! In the afternoon we flew south towards the city of Raipur. In the morning we visited the Humayan’s Tomb and the Quitab Minar in Delhi; both of these UNESCO World Heritage Sites were outstanding, and we all enjoyed them immensely. Also, we picked up our first birds, a pair of Alexandrine Parakeets, a gorgeous White-throated Kingfisher, and lots of taxonomically interesting Black Kites, plus a few Yellow-footed Green Pigeons, with a Brown- headed Barbet showing wonderfully as well. Rufous Treepie by Machiel Valkenburg From Raipur we drove about four hours to our fantastic lodge, “the Baagh,” located close to the entrance of Kanha National Park. The park is just plain awesome when it comes to the density of available tigers and birds. It has a typical central Indian landscape of open plains and old Sal forests dotted with freshwater lakes. In the early mornings when the dew would hang over the plains and hinder our vision, we heard the typical sounds of Kanha, with an Indian Peafowl displaying closely, and in the far distance the song of Common Hawk-Cuckoo and Southern Coucal. -
Distribution, Osteology, and Natural History of the Asian Giant Softshelt Turtle, Pelochelys Bibroni, in Papua New Guinea
i,n3' ttute ro u rr* or.n",fi ll'J.l'#3,i Distribution, Osteology, and Natural History of the Asian Giant Softshelt Turtle, Pelochelys bibroni, in Papua New Guinea Axprns G.J. RHonmr'3, Russnr,l A. MrrrERMErER2'3,lNo Psrr,rp M. Har,r,a5 I C he lonian Re s earch F oundation, Lunenbur g, M as sac hus e t t s 0 I 46 2 U S A ; 2Conservation International, Washington, D. C. 2003 6 U SA; 3Museurn of Comparative hology, Haward University, Cambridge, Massachusetts 02138 IISA; lFlorida Musewn of Natural History, University of Florida, Gainesville, Florida 3261 I USA; sAlemaya University of Agriculture, Faculty of Forestry Resources, Dire Dawa, Alemaya, Ethiopia Arstnecr. - The Asian giant softshell turtle, Pelochelys bibroni (Cryptodira: Trionychidae), is distributed widely from southeast Asia to the island of New Guinea. In Papua New Guinea it occurs in two apparently disjunct populations in the northern and southern lowlands. This report extends the known distribution eastwards in the northern lowlands, augments the known distribution in the southern lowlands, and describes differences in osteology and color pattern between the two geographic isolates. Preliminary findings also suggest that the southern New Guinean population is different from southeast Asian populations of P. bibroni, and may represent a new and undescribed species. Notes on habitat, natural history, reproduction, body size, human utilization, and vernacular names are also presented. The Asian giant softshell turtle Pelochelys bibroni recorded from Sumatra and Java, it is unreported from a (Testudines: Trionychidae) is an extremely wide-ranging large section of the Indonesian archipelago that includes species, distributed from eastern peninsular India across Sulawesi, the Lesser Sundas, Halmahera, and the Moluccas. -
Phylogenetic Relationships Within the Batagur Complex (Testudines: Emydidae: Batagurinae) Jean M
Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1993 Phylogenetic Relationships Within the Batagur Complex (Testudines: Emydidae: Batagurinae) Jean M. Capler This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more about the program. Recommended Citation Capler, Jean M., "Phylogenetic Relationships Within the Batagur Complex (Testudines: Emydidae: Batagurinae)" (1993). Masters Theses. 2114. https://thekeep.eiu.edu/theses/2114 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. THESIS REPRODUCTION CERTIFICATE TO: Graduate Degree Candidat.es who have written formal theses. SUBJECT: Permi~sion to reproduce theses. The University Library is r~c;:eiving a number of requests from other institutions asklng permission to reproduce dissertations for inclusion in thelr library holdings. Although no copyr~ght laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. Date I respectfully request Booth Library of Easter,n Illinois University not ~llow my thesis be reproduced because ---~~~~--~~~~~---........ Date Author m L Phylogenetic Relationships Within The Batagur Complex (Testudines: Emydidae: Batagurinae) (TITLE) BY Jean M. Capler THESIS SUBMITIED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master Of Science IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS 1993 YEAR I HEREBY RECOMMEND THIS THESIS BE ACCEPTED AS FULFILLING 17 ~ \'\93 DA . -
Comparative Bone Histology of the Turtle Shell (Carapace and Plastron)
Comparative bone histology of the turtle shell (carapace and plastron): implications for turtle systematics, functional morphology and turtle origins Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn Vorgelegt von Dipl. Geol. Torsten Michael Scheyer aus Mannheim-Neckarau Bonn, 2007 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn 1 Referent: PD Dr. P. Martin Sander 2 Referent: Prof. Dr. Thomas Martin Tag der Promotion: 14. August 2007 Diese Dissertation ist 2007 auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. Rheinische Friedrich-Wilhelms-Universität Bonn, Januar 2007 Institut für Paläontologie Nussallee 8 53115 Bonn Dipl.-Geol. Torsten M. Scheyer Erklärung Hiermit erkläre ich an Eides statt, dass ich für meine Promotion keine anderen als die angegebenen Hilfsmittel benutzt habe, und dass die inhaltlich und wörtlich aus anderen Werken entnommenen Stellen und Zitate als solche gekennzeichnet sind. Torsten Scheyer Zusammenfassung—Die Knochenhistologie von Schildkrötenpanzern liefert wertvolle Ergebnisse zur Osteoderm- und Panzergenese, zur Rekonstruktion von fossilen Weichgeweben, zu phylogenetischen Hypothesen und zu funktionellen Aspekten des Schildkrötenpanzers, wobei Carapax und das Plastron generell ähnliche Ergebnisse zeigen. Neben intrinsischen, physiologischen Faktoren wird die -
Table 7: Species Changing IUCN Red List Status (2020-2021)
IUCN Red List version 2021-1: Table 7 Last Updated: 25 March 2021 Table 7: Species changing IUCN Red List Status (2020-2021) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2020 (IUCN Red List version 2020-3) and 2021 (IUCN Red List version 2021-1) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered [CR(PE) - Critically Endangered (Possibly Extinct), CR(PEW) - Critically Endangered (Possibly Extinct in the Wild)], EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2020) List (2021) change version Category