Journal of Clinical Microbiology

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Clinical Microbiology JOURNAL OF CLINICAL MICROBIOLOGY Volume 46 April 2008 No. 4 BACTERIOLOGY Reductions in Workload and Reporting Time by Use of Philippe R. S. Lagace´-Wiens, 1174–1177 Methicillin-Resistant Staphylococcus aureus Screening with Michelle J. Alfa, Kanchana MRSASelect Medium Compared to Mannitol-Salt Medium Manickam, and Godfrey K. M. Supplemented with Oxacillin Harding Rapid Antimicrobial Susceptibility Determination of Vesna Ivancˇic´, Mitra Mastali, Neil 1213–1219 Uropathogens in Clinical Urine Specimens by Use of ATP Percy, Jeffrey Gornbein, Jane T. Bioluminescence Babbitt, Yang Li, Elliot M. Landaw, David A. Bruckner, Bernard M. Churchill, and David A. Haake High-Resolution Genotyping of Campylobacter Species by James C. Hannis, Sheri M. Manalili, 1220–1225 Use of PCR and High-Throughput Mass Spectrometry Thomas A. Hall, Raymond Ranken, Neill White, Rangarajan Sampath, Lawrence B. Blyn, David J. Ecker, Robert E. Mandrell, Clifton K. Fagerquist, Anna H. Bates, William G. Miller, and Steven A. Hofstadler Development and Evaluation of Immunochromatographic Kentaro Kawatsu, Yuko Kumeda, 1226–1231 Assay for Simple and Rapid Detection of Campylobacter Masumi Taguchi, Wataru jejuni and Campylobacter coli in Human Stool Specimens Yamazaki-Matsune, Masashi Kanki, and Kiyoshi Inoue Evaluation of an Automated Instrument for Inoculating and J. H. Glasson, L. H. Guthrie, D. J. 1281–1284 Spreading Samples onto Agar Plates Nielsen, and F. A. Bethell New Immuno-PCR Assay for Detection of Low Wenlan Zhang, Martina 1292–1297 Concentrations of Shiga Toxin 2 and Its Variants Bielaszewska, Matthias Pulz, Karsten Becker, Alexander W. Friedrich, Helge Karch, and Thorsten Kuczius Suppression-Subtractive Hybridization as a Strategy To Laure Maigre, Christine Citti, Marc 1307–1316 Identify Taxon-Specific Sequences within the Mycoplasma Marenda, Franc¸ois Poumarat, and mycoides Cluster: Design and Validation of an M. capricolum Florence Tardy subsp. capricolum-Specific PCR Assay Prevalence of Plasmid-Mediated AmpC ␤-Lactamases in a Yi Li, Qing Li, Yuzhen Du, Xiaofei 1317–1321 Chinese University Hospital from 2003 to 2005: First Report Jiang, Jin Tang, Jianqiang Wang, of CMY-2-Type AmpC ␤-Lactamase Resistance in China Guilan Li, and Yanqun Jiang Etiological Analysis of Initial Colonization of Periodontal Jose Roberto Cortelli, Davi 1322–1329 Pathogens in Oral Cavity Romeiro Aquino, Sheila Cavalca Cortelli, Camila Borges Fernandes, Jonas de Carvalho-Filho, Gilson Ce´sar Nobre Franco, Fernando Oliveira Costa, and Toshihisa Kawai Salmonella enterica Serovar Senftenberg Human Clinical Qinghua Hu, Bryan Coburn, 1330–1336 Isolates Lacking SPI-1 Wanyin Deng, Yuling Li, Xiaolu Shi, Quanxue Lan, Bing Wang, Brian K. Coombes, and B. Brett Finlay Continued on following page Continued from preceding page Timing of Specimen Collection for Blood Cultures from Stefan Riedel, Paul Bourbeau, 1381–1385 Febrile Patients with Bacteremia Brandi Swartz, Steven Brecher, Karen C. Carroll, Paul D. Stamper, W. Michael Dunne, Timothy McCardle, Nathan Walk, Kristin Fiebelkorn, David Sewell, Sandra S. Richter, Susan Beekmann, and Gary V. Doern Rapid PCR-Based Diagnosis of Septic Arthritis by Early Samuel Yang, Padmini 1386–1390 Gram-Type Classification and Pathogen Identification Ramachandran, Andrew Hardick, Yu-Hsiang Hsieh, Celeste Quianzon, Marcos Kuroki, Justin Hardick, Aleksandar Kecojevic, Avanthi Abeygunawardena, Jonathan Zenilman, Johan Melendez, Vishal Doshi, Charlotte Gaydos, and Richard E. Rothman Bacteria of Dental Caries in Primary and Permanent Teeth Jørn A. Aas, Ann L. Griffen, Sara 1407–1417 in Children and Young Adults R. Dardis, Alice M. Lee, Ingar Olsen, Floyd E. Dewhirst, Eugene J. Leys, and Bruce J. Paster Diagnostic Approach to Acute Diarrheal Illness in a David R. Tribble, Shahida Baqar, 1418–1425 Military Population on Training Exercises in Thailand, a Lorrin W. Pang, Carl Mason, Huo- Region of Campylobacter Hyperendemicity Shu H. Houng, Chittima Pitarangsi, Carlos Lebron, Adam Armstrong, Orntipa Sethabutr, and John W. Sanders Multiple-Locus Variable-Number Tandem-Repeat Analysis Katharine E. Volpe Sperry, Sophia 1435–1450 as a Tool for Subtyping Listeria monocytogenes Strains Kathariou, Justin S. Edwards, and Leslie A. Wolf Escherichia coli Strains of Serotype O51:H40 Comprise Fabiana C. Moreira, Moˆnica A. M. 1462–1465 Typical and Atypical Enteropathogenic E. coli Strains and Vieira, Antonio J. P. Ferreira, Are Potentially Diarrheagenic Dennys M. Gira˜o, Taˆnia M. I. Vaz, Ana Cla´udia P. Rosa, Terezinha Knobl, Kinue Irino, Edna Freymu¨ller, and Taˆnia A. T. Gomes Differential Mucoid Exopolysaccharide Production by James E. A. Zlosnik, Trevor J. Hird, 1470–1473 Members of the Burkholderia cepacia Complex Monica C. Fraenkel, Leonilde M. Moreira, Deborah A. Henry, and David P. Speert Prevalence of Virulence Genes and Cytolethal Distending Kaisar A. Talukder, Mohammad 1485–1488 Toxin Production in Campylobacter jejuni Isolates from Aslam, Zhahirul Islam, Ishrat J. Diarrheal Patients in Bangladesh Azmi, Dilip K. Dutta, Sabir Hossain, Alam Nur-E-Kamal, Gopinath B. Nair, Alejandro Cravioto, David A. Sack, and Hubert P. Endtz Comparative Analysis of Human and Canine Campylobacter Peter Damborg, Luca Guardabassi, 1504–1506 upsaliensis Isolates by Amplified Fragment Length Karl Pedersen, and Branko Polymorphism Kokotovic Rapid Detection of the Pandemic Methicillin-Resistant Edward J. Feil, Emma K. 1520–1522 Staphylococcus aureus Clone ST 239, a Dominant Strain in Nickerson, Narisara Chantratita, Asian Hospitals Vanaporn Wuthiekanun, Pramot Srisomang, Richard Cousins, WuBin Pan, Ge Zhang, BangLao Xu, Nicholas P. J. Day, and Sharon J. Peacock Continued on following page Continued from preceding page Is a Two-Step Glutamate Dehyrogenase Antigen-Cytotoxicity Peter H. Gilligan 1523–1525 Neutralization Assay Algorithm Superior to the Premier Toxin A and B Enzyme Immunoassay for Laboratory Detection of Clostridium difficile? Genetic Features of Clinical Isolates of Streptococcus Daisuke Tanaka, Junko Isobe, 1526–1529 dysgalactiae subsp. equisimilis Possessing Lancefield’s Group Masanori Watahiki, Yoshiyuki A Antigen Nagai, Chihiro Katsukawa, Ryuji Kawahara, Miyoko Endoh, Rumi Okuno, Nanako Kumagai, Masakado Matsumoto, Yoshiro Morikawa, Tadayoshi Ikebe, Haruo Watanabe, and the Working Group for Group A Streptococci in Japan Increased Sporulation Rate of Epidemic Clostridium difficile Thomas Åkerlund, Ingela Persson, 1530–1533 Type 027/NAP1 Magnus Unemo, Torbjo¨rn Nore´n, Bo Svenungsson, Marlene Wullt, and Lars G. Burman Identification of Staphylococcus aureus and Determination of James Goldmeyer, Haijing Li, 1534–1536 Methicillin Resistance Directly from Positive Blood Cultures Melinda McCormac, Steve Cook, by Isothermal Amplification and a Disposable Detection Charles Stratton, Bertrand Lemieux, Device Huimin Kong, Wen Tang, and Yi- Wei Tang CHLAMYDIOLOGY AND RICKETTSIOLOGY Optimal Method of Collection of First-Void Urine for Craig A. Wisniewski, John A. 1466–1469 Diagnosis of Chlamydia trachomatis Infection in Men White, Claude-Edouard C. Michel, Lourdes Mahilum-Tapay, Jose Paolo V. Magbanua, Elpidio Cesar B. Nadala, Jr., Penelope J. Barber, Beng T. Goh, and Helen H. Lee New Diagnostic Real-Time PCR for Specific Detection of Nicola Casson, Klara M. Posfay- 1491–1493 Parachlamydia acanthamoebae DNA in Clinical Samples Barbe, Alain Gervaix, and Gilbert Greub MYCOBACTERIOLOGY AND AEROBIC ACTINOMYCETES Nocardia wallacei sp. nov. and Nocardia blacklockiae sp. nov., Patricia S. Conville, June M. Brown, 1178–1184 Human Pathogens and Members of the “Nocardia Arnold G. Steigerwalt, Barbara A. transvalensis Complex” Brown-Elliott, and Frank G. Witebsky Sequence Polymorphisms in a Surface PPE Protein Tanya A. Griffiths, Kevin Rioux, 1207–1212 Distinguish Types I, II, and III of Mycobacterium avium and Jeroen De Buck subsp. paratuberculosis Genetic Diversity of Mycobacterium avium Isolates Recovered Julio A´ lvarez, Ignacio Go´mez 1246–1251 from Clinical Samples and from the Environment: Garcı´a, Alicia Aranaz, Javier Bezos, Molecular Characterization for Diagnostic Purposes Beatriz Romero, Lucı´a de Juan, Ana Mateos, Enrique Go´mez- Mampaso, and Lucas Domı´nguez Continued on following page Continued from preceding page Application of Sensitive and Specific Molecular Methods To A. L. Gibson, R. C. Huard, N. C. 1259–1267 Uncover Global Dissemination of the Major RDRio Gey van Pittius, L. C. O. Lazzarini, Sublineage of the Latin American-Mediterranean J. Driscoll, N. Kurepina, T. Zozio, Mycobacterium tuberculosis Spoligotype Family C. Sola, S. M. Spindola, A. L. Kritski, D. Fitzgerald, K. Kremer, H. Mardassi, P. Chitale, J. Brinkworth, D. Garcia de Viedma, B. Gicquel, J. W. Pape, D. van Soolingen, B. N. Kreiswirth, R. M. Warren, P. D. van Helden, N. Rastogi, P. N. Suffys, J. Lapa e Silva, and J. L. Ho Relationship between Mycobacterium tuberculosis Genotype Guy Thwaites, Maxine Caws, Tran 1363–1368 and the Clinical Phenotype of Pulmonary and Meningeal Thi Hong Chau, Anthony D’Sa, Tuberculosis Nguyen Thi Ngoc Lan, Mai Nguyet Thu Huyen, Sebastien Gagneux, Phan Thi Hoang Anh, Dau Quang Tho, Estee Torok, Nguyen Thi Quynh Nhu, Nguyen Thi Hong Duyen, Phan Minh Duy, Jonathan Richenberg, Cameron Simmons, Tran Tinh Hien, and Jeremy Farrar Fluorometric Assay for Testing Rifampin Susceptibility of K. G. P. Hoek, N. C. Gey van 1369–1373 Mycobacterium tuberculosis Complex Pittius, H. Moolman-Smook, K. Carelse-Tofa, A. Jordaan, G. D. van der Spuy, E. Streicher, T. C. Victor, P. D. van Helden, and R. M. Warren
Recommended publications
  • (Scrub Typhus). Incubation Period 1 to 3
    TYPHUS Causative Agents TYPHUS Rickettsia typhi (murine typhus) and Orientia tsutsugamushi (scrub typhus). Causative Agents IncubationRickettsia typhi Period (murine typhus) and Orientia tsutsugamushi (scrub typhus). 1 to 3 weeks Incubation Period Infectious1 to 3 weeks Period Zoonoses with no human-to-human transmission. Infectious Period TransmissionZoonoses with no human-to-human transmission. Scrub typhus: Bite of grass mites (larval trombiculid mites) MurineTransmission typhus: Bite of rat fleas (also cat and mice fleas) RodentsScrub typhus: are the Bite preferred of grass and mites normal (larval hosts. trombiculid mites) Murine typhus: Bite of rat fleas (also cat and mice fleas) EpidemiologyRodents are the preferred and normal hosts. Distributed throughout the Asia-Pacific rim and is a common cause of pyrexia of unknownEpidemiology origin throughout SE Asia. Occupational contact with rats (e.g. construDistributedction throughout workers inthe makeAsia-Pshiftacific container rim and isfacilities, a common shop cause owners, of pyrexia granary of workers,unknown andorigin garbage throughout collectors) SE orAsia. exposure Occupational to mite habitat contacts in lonwithg grassrats (e.g. hikersconstru andction so ldiers)workers are inrisk make factors.-shift container facilities, shop owners, granary workers, and garbage collectors) or exposure to mite habitats in long grass (e.g. Inhikers Singapore, and soldiers) a total are ofrisk 13 factors. laboratory confirmed cases of murine typhus were r eported in 2008. The majority of cases were foreign workers. In Singapore, a total of 13 laboratory confirmed cases of murine typhus were Clinicalreported Featuresin 2008. The majority of cases were foreign workers. Fever Clinical Headache Features (prominent) MyalgiaFever ConjunctiHeadache val(prominent) suffusion MaculopapularMyalgia rash Conjunctival suffusion Scrub Maculopapular typhus may alsorash have: relative bradycardia, eschar (80%), painful regional adenopathy, hepatosplenomegaly, meningoencephalitis and renal failure.
    [Show full text]
  • Scrub Typhus and Molecular Characterization of Orientia Tsutsugamushi from Central Nepal
    pathogens Article Scrub Typhus and Molecular Characterization of Orientia tsutsugamushi from Central Nepal Rajendra Gautam 1, Keshab Parajuli 1, Mythili Tadepalli 2, Stephen Graves 2, John Stenos 2,* and Jeevan Bahadur Sherchand 1 1 Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Kathmandu 44600, Nepal; [email protected] (R.G.); [email protected] (K.P.); [email protected] (J.B.S.) 2 Australian Rickettsial Reference Laboratory, Geelong, VIC 3220, Australia; [email protected] (M.T.); [email protected] (S.G.) * Correspondence: [email protected]; Tel.: +61-342151357 Abstract: Scrub typhus is a vector-borne, acute febrile illness caused by Orientia tsutsugamushi. Scrub typhus continues to be an important but neglected tropical disease in Nepal. Information on this pathogen in Nepal is limited to serological surveys with little information available on molecular methods to detect O. tsutsugamushi. Limited information exists on the genetic diversity of this pathogen. A total of 282 blood samples were obtained from patients with suspected scrub typhus from central Nepal and 84 (30%) were positive for O. tsutsugamushi by 16S rRNA qPCR. Positive samples were further subjected to 56 kDa and 47 kDa molecular typing and molecularly compared to other O. tsutsugamushi strains. Phylogenetic analysis revealed that Nepalese O. tsutsugamushi strains largely cluster together and cluster away from other O. tsutsugamushi strains from Asia and elsewhere. One exception was the sample of Nepal_1, with its partial 56 kDa sequence clustering Citation: Gautam, R.; Parajuli, K.; more closely with non-Nepalese O. tsutsugamushi 56 kDa sequences, potentially indicating that Tadepalli, M.; Graves, S.; Stenos, J.; homologous recombination may influence the genetic diversity of strains in this region.
    [Show full text]
  • Seroconversions for Coxiella and Rickettsial Pathogens Among US Marines Deployed to Afghanistan, 2001–2010
    Seroconversions for Coxiella and Rickettsial Pathogens among US Marines Deployed to Afghanistan, 2001–2010 Christina M. Farris, Nhien Pho, Todd E. Myers, SFGR (10) highlight the inherent risk of contracting rick- Allen L. Richards ettsial-like diseases in Afghanistan. We estimated the risk for rickettsial infections in military personnel deployed to We assessed serum samples from 1,000 US Marines de- Afghanistan by measuring the rate of seroconversion for ployed to Afghanistan during 2001–2010 to find evidence SFGR, TGR, scrub typhus group Orientiae (STGO), and C. of 4 rickettsial pathogens. Analysis of predeployment and burnetii among US Marines stationed in Afghanistan dur- postdeployment samples showed that 3.4% and 0.5% of the Marines seroconverted for the causative agents of Q fever ing 2001–2010. and spotted fever group rickettsiosis, respectively. The Study Serum samples from US Marines 18–45 years of age who ickettsial and rickettsial-like diseases have played served >180 days in Afghanistan during 2001–2010 were Ra considerable role in military activities through- obtained from the US Department of Defense Serum Re- out much of recorded history (1). These diseases, which pository (DoDSR). Documentation of prior exposure to Q have worldwide distribution and cause a high number of fever or rickettsioses and sample volume <0.5 mL were deaths and illnesses, include the select agents (http://www. exclusion criteria. We selected the most recent 1,000 selectagents.gov/SelectAgentsandToxinsList.html) Rickett- postdeployment specimens that fit the inclusion criteria sia prowazekii and Coxiella burnetii, the causative agents for our study. of epidemic typhus and Q fever, respectively.
    [Show full text]
  • Orientia Tsutsugamushi in Conventional Hemocultures
    DISPATCHES Survival and Growth of Orientia tsutsugamushi in Conventional Hemocultures Sabine Dittrich, Elizabeth Card, culture at Biosafety Level 3, which is only available at a Weerawat Phuklia, Williams E. Rudgard, limited number of specialized centers. Therefore, molecu- Joy Silousok, Phonelavanh Phoumin, lar detection of O. tsutsugamushi in patients’ EDTA-blood Latsaniphone Bouthasavong, Sarah Azarian, buffy coat has become the tool of choice for routine diag- Viengmon Davong, David A.B. Dance, nosis and epidemiologic studies (11,12). In other pathogens Manivanh Vongsouvath, with low bacterial loads, propagation of the organism be- Rattanaphone Phetsouvanh, Paul N. Newton fore molecular amplification has increased target density and improved sensitivity of diagnostic tools such as quanti- Orientia tsutsugamushi, which requires specialized facilities tative PCR (qPCR) or isolation in cell cultures (13). In line for culture, is a substantial cause of disease in Asia. We with these findings, we hypothesized thatO. tsutsugamushi demonstrate that O. tsutsugamushi numbers increased for can survive and potentially grow in conventional hemocul- up to 5 days in conventional hemocultures. Performing such a culture step before molecular testing could increase the ture media within the co-inoculated human host cells and sensitivity of O. tsutsugamushi molecular diagnosis. that this capacity for growth could be used to improve di- agnostic and analytical sensitivities. rientia tsutsugamushi, the causative agent of scrub ty- The Study Ophus, has long been a pathogen of major public health We conducted this study at the Microbiology Laboratory, concern in the Asia-Pacific region (1,2). Reports from In- Mahosot Hospital, Vientiane, Laos, the only microbiology dia, China, and Southeast Asia suggest that a substantial laboratory in Vientiane with a routine, accessible hemo- proportion of fevers and central nervous system infections culture service for sepsis diagnosis (4,14).
    [Show full text]
  • Orientia Tsutsugamushi Ankyrin Repeat-Containing Protein Family
    Virginia Commonwealth University VCU Scholars Compass Microbiology and Immunology Publications Dept. of Microbiology and Immunology 2015 Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffico t the host cell endoplasmic reticulum Lauren VieBrock Virginia Commonwealth University, [email protected] Sean M. Evans Virginia Commonwealth University, [email protected] Andrea R. Beyer Virginia Commonwealth University, [email protected] See next page for additional authors Follow this and additional works at: http://scholarscompass.vcu.edu/micr_pubs Part of the Medicine and Health Sciences Commons This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Downloaded from http://scholarscompass.vcu.edu/micr_pubs/51 This Article is brought to you for free and open access by the Dept. of Microbiology and Immunology at VCU Scholars Compass. It has been accepted for inclusion in Microbiology and Immunology Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Authors Lauren VieBrock, Sean M. Evans, Andrea R. Beyer, Charles L. Larson, Paul A. Beare, Hong Ge, Smita Singh, Kyle G. Rodino, Robert A. Heinzen, Allen L. Richards, and Jason A. Carlyon This article is available at VCU Scholars Compass: http://scholarscompass.vcu.edu/micr_pubs/51 ORIGINAL RESEARCH ARTICLE published: 03 February 2015 CELLULAR AND INFECTION MICROBIOLOGY doi: 10.3389/fcimb.2014.00186 Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum Lauren VieBrock 1†, Sean M.
    [Show full text]
  • Single-Cell Genomics of a Rare Environmental Alphaproteobacterium Provides Unique Insights Into Rickettsiaceae Evolution
    The ISME Journal (2015) 9, 2373–2385 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution Joran Martijn1, Frederik Schulz2, Katarzyna Zaremba-Niedzwiedzka1, Johan Viklund1, Ramunas Stepanauskas3, Siv GE Andersson1, Matthias Horn2, Lionel Guy1,4 and Thijs JG Ettema1 1Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; 2Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria; 3Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA and 4Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden The bacterial family Rickettsiaceae includes a group of well-known etiological agents of many human and vertebrate diseases, including epidemic typhus-causing pathogen Rickettsia prowazekii. Owing to their medical relevance, rickettsiae have attracted a great deal of attention and their host-pathogen interactions have been thoroughly investigated. All known members display obligate intracellular lifestyles, and the best-studied genera, Rickettsia and Orientia, include species that are hosted by terrestrial arthropods. Their obligate intracellular lifestyle and host adaptation is reflected in the small size of their genomes, a general feature shared with all other families of the Rickettsiales. Yet, despite that the Rickettsiaceae and other Rickettsiales families have been extensively studied for decades, many details of the origin and evolution of their obligate host-association remain elusive. Here we report the discovery and single-cell sequencing of ‘Candidatus Arcanobacter lacustris’, a rare environmental alphaproteobacterium that was sampled from Damariscotta Lake that represents a deeply rooting sister lineage of the Rickettsiaceae.
    [Show full text]
  • Genotyping of Orientia Tsutsugamushi from Humans with Scrub Typhus
    LETTERS Acknowledgments viron Microbiol. 2004;70:3733–5. DOI: scrub typhus (3). Two amplifi cation We thank the following persons and 10.1128/AEM.70.6.3733-3735.2004 reactions were performed, a real-time institutions for their assistance in obtain- quantitative PCR with a probe target- Address for correspondence: Julie R. Sinclair, ing and identifying specimens: Amy Han- ing the O. tsutsugamushi 47-kDa outer CDC Quarantine Station–Philadelphia, P.O. cock-Ronemus, Paul Mead, Ted Nuttall, membrane protein gene with appropri- Box 144, Essington, PA 19029, USA; email: Brigette Husband, and Kerry Pollard; the ate primers and probes (4) and a stan- [email protected] Department of Parasitology, College of dard PCR targeting a 372-nt fragment Veterinary Medicine, University of Penn- of the 56-kDa protein gene (3). sylvania; the Schuylkill Wildlife Rehabili- Buffy coat samples from 11 tation Center; and the Philadelphia Depart- (17.5%) patients were positive for O. ment of Public Health. tsutsugamushi in the real-time quanti- tative PCR and 56-kDa antigen gene Julie R. Sinclair, Alisa Newton, PCR (Table). All 11 patients were Keith Hinshaw, George Fraser, Genotyping from Vientiane or Vientiane Prov- Patrina Ross, Esther Chernak, of Orientia ince. PCR products for the 56-kDa Caroline Johnson, tsutsugamushi from gene fragments were purifi ed and se- quenced as described (3). Comparison and Nancy Warren Humans with Scrub Author affi liations: Centers for Disease (3,5) of amplicons for the 11 patients Control and Prevention, Atlanta, Geor- Typhus, Laos with each other and with GenBank gia, USA (J.R. Sinclair); Philadelphia Zoo, sequences identifi ed 6 genotypes.
    [Show full text]
  • Orientia Tsutsugamushi Comb
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1995, p. 589-591 Vol. 45, No. 3 0020-7713/95/$04.00+0 Copyright 0 1995, International Union of Microbiological Societies Classification of Rickettsia tsutsugamushi in a New Genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. AKIRA TAMURA,* NOR10 OHASHI, HIROSHI URAKAMI, AND SADAO MIYAMURA Department of Mictobiology, Niigata College of Pharmacy, Niigata, Niigata 950-21, Japan Recent studies of Rickettsia tsutsugamushi have demonstrated clearly the phenotypic and genotypic differ- ences between this microorganism and other species belonging to the genus Rickettsia. Therefore, classification of R. tsutsugamushi in a new genus, Orientiu gen. nov., is proposed. The genus Rickettsia includes etiological agents of human the species (9,lO). Three proteins that range in size from 20 to diseases, including typhus, spotted fever, and scrub typhus. All 32 kDa and 120-kDa proteins are heat modifiable (8, 12, 13). of the microbes belonging to this genus are similar in the R. tsutsugamushi can be cultivated in the yolk sacs of devel- following respects: they exhibit obligate intracellular parasit- oping chicken embryos and can be grown in culture in various ism, they are morphologically similar to gram-negative bacte- cell lines, including the HeLa, BHK, Vero, and L929 cell lines. ria, they survive in both vertebrate and arthropod hosts, and Most of the microorganisms grow in the perinuclear cytoplasm human infection is mediated by arthropods. However, recent of host cells, and they release themselves by pushing out the studies of Rickettsia tsutsugamushi, which is the only species in host cytoplasmic membrane from the inside like the budding the scrub typhus group, have revealed some differences be- process observed with enveloped viruses (49,50).
    [Show full text]
  • Biosafety in Microbiological and Biomedical Laboratories—6Th Edition
    Section VIII—Agent Summary Statements The agent summary statements contained in Section VIII of the sixth edition of Biosafety in Microbiological and Biomedical Laboratories (BMBL) are designed to assist the reader with the risk assessment for their work, as directed in Section II. The statements are assembled by subject matter experts and represent a summary of key information regarding pathogens with significance to the biomedical community. Although the statements provide recommendations regarding containment for specific activities, they should serve only as the starting point for a laboratory’s risk assessment and should not serve as a substitute for an assessment. The statements cannot fully factor in the change in risk due to the size of a sample, concentration of agent present, change in virulence or pathogenicity, nor any change in ability to provide medical countermeasures due to antibiotic or antiviral resistance. The following list of agents is also not comprehensive, and the reader is directed to other information to assist in the risk assessment, including the Public Health Agency of Canada’s Pathogen Safety Data Sheets (PSDS),1 the American Public Health Association’s Control of Communicable Diseases Manual,2 American Society for Microbiology Manual of Clinical Microbiology,3 and the ABSA Interna- tional Risk Group Database.4 References 1. Government of Canada [Internet]. Canada: Public Health Agency of Canada; c2018 [cited 2018 Dec 20]. Pathogen Safety Data Sheets. Available from: https://www.canada.ca/en/public-health/services/laboratory- biosafety-biosecurity/pathogen-safety-data-sheets-risk-assessment.html 2. Heymann DL, editor. Control of Communicable Diseases Manual. 20th ed.
    [Show full text]
  • Seroprevalence and Clinical Features of Scrub Typhus Among Febrile Patients Attending a Referral Hospital in Kathmandu, Nepal
    Tropical Medicine and Infectious Disease Article Seroprevalence and Clinical Features of Scrub Typhus among Febrile Patients Attending a Referral Hospital in Kathmandu, Nepal Anil Pokhrel 1 , Binod Rayamajhee 2, Saroj Khadka 1 , Sandeep Thapa 3, Samjhana Kapali 1 , Sher Bahadur Pun 4, Megha Raj Banjara 1, Prakash Joshi 5 , Binod Lekhak 1 and Komal Raj Rijal 1,* 1 Central Department of Microbiology, Tribhuvan University, Kirtipur 44618, Nepal; [email protected] (A.P.); [email protected] (S.K.); [email protected] (S.K.); [email protected] (M.R.B.); [email protected] (B.L.) 2 Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences (KRIBS), Kathmandu 44700, Nepal; [email protected] 3 Kathmandu Centre for Genomic Research Laboratory (KCGRL), Kathmandu 44700, Nepal; [email protected] 4 Sukraraj Tropical and Infectious Disease Hospital, Kathmandu 44600, Nepal; [email protected] 5 Kanti Children’s Hospital, Kathmandu 44600, Nepal; [email protected] * Correspondence: [email protected] Abstract: (1) Background: Scrub typhus (ST) is endemic to Nepal. It is often underdiagnosed and misdiagnosed due to non-specific clinical presentation coupled with limited microbiological facilities, leading to adverse clinical outcomes. This study aimed to assess the seroprevalence of scrub typhus in febrile patients attending Sukraraj Tropical and Infectious Disease Hospital (STIDH), Nepal, Citation: Pokhrel, A.; Rayamajhee, from August 2018 to April 2019. (2) Materials and Method: Blood/serum samples and clinical B.; Khadka, S.; Thapa, S.; Kapali, S.; and demographic data of adult febrile patients (≥19 years) who attended or were referred to the Pun, S.B.; Banjara, M.R.; Joshi, P.; hospital were collected after obtaining written informed consent from the participants excluding Lekhak, B.; Rijal, K.R.
    [Show full text]
  • Orientia Tsutsugamushi
    SUPPLEMENT ARTICLE Scrub Typhus: The Geographic Distribution of Phenotypic and Genotypic Variants of Orientia tsutsugamushi Daryl J. Kelly,1 Paul A. Fuerst,1 Wei-Mei Ching,2 and Allen L. Richards2 1Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus; and 2Viral and Rickettsial Disease Department, Naval Medical Research Center, Silver Spring, Maryland Orientia tsutsugamushi is the etiological agent of scrub typhus, an acute, mite-borne, febrile illness that occurs in the Asia-Pacific region. Historically, strain characterization used serological analysis and revealed dramatic antigenic diversity. Eyeing a recommendation of potential vaccine candidates for broad protection, we review geographic diversity and serological and DNA prevalences. DNA analysis together with immunological analysis suggest that the prototype Karp strain and closely related strains are the most common throughout the region of endemicity. According to serological analysis, ∼50% of isolates are seroreactive to Karp antisera, and approximately one-quarter of isolates are seroreactive to antisera against the prototype Gilliam strain. Molecular methods reveal greater diversity. By molecular methods, strains phylogenetically similar to Karp make up ∼40% of all genotyped isolates, followed by the JG genotype group (Japan strains serotypically similar to the Gilliam strain but genetically non-Gilliam; 18% of all genotyped isolates). Three other genotype groups (Kato- related, Kawasaki-like, and TA763-like) each represent ∼10% of genotyped
    [Show full text]
  • Using Core Genome Alignments to Assign Bacterial Species 2
    bioRxiv preprint doi: https://doi.org/10.1101/328021; this version posted May 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Using Core Genome Alignments to Assign Bacterial Species 2 3 Matthew Chunga,b, James B. Munroa, Julie C. Dunning Hotoppa,b,c,# 4 a Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, MD 21201, USA 5 b Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 6 21201, USA 7 c Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD 21201, 8 USA 9 10 Running Title: Core Genome Alignments to Assign Bacterial Species 11 12 #Address correspondence to Julie C. Dunning Hotopp, [email protected]. 13 14 Word count Abstract: 371 words 15 Word count Text: 4,833 words 16 1 bioRxiv preprint doi: https://doi.org/10.1101/328021; this version posted May 22, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 17 ABSTRACT 18 With the exponential increase in the number of bacterial taxa with genome sequence data, a new 19 standardized method is needed to assign bacterial species designations using genomic data that is 20 consistent with the classically-obtained taxonomy.
    [Show full text]