Journal of Chitwan Medical College 2016; 6(18): 1-6 F IC O a L L a C Available Online At: O N L R

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Chitwan Medical College 2016; 6(18): 1-6 F IC O a L L a C Available Online At: O N L R ISSN 2091-2889 (Online) ISSN 2091-2412 (Print) ITWAN ME CH D Journal of Chitwan Medical College 2016; 6(18): 1-6 F IC O A L L A C Available online at: www.jcmc.cmc.edu.np O N L R L U E O G J E JCMC ESTD 2010 ORIGINAL RESEARCH ARTICLE THREAT OF SCRUB TYPHUS IN POST-EARTHQUAKE NEPAL S Thapa1*, LB Sapkota2, P Hamal1 1 Department of Clinical Microbiology and Immunology, Chitwan Medical College, Bharatpur, Nepal. 2 Department of Biochemistry, Chitwan Medical College, Bharatpur, Nepal. *Correspondence to: Dr. Sangita Thapa, Department of Clinical Microbiology and Immunology, Chitwan Medical College, Bharatpur, Nepal. E-mail: [email protected] ABSTRACT Scrub typhus is a potentially fatal zoonotic infection, reported from many parts of Asia including Nepal. There is in- creasing reports of outbreak of Scrub typhus, after the earthquake hit Nepal on April 25, 2015. The recent outbreak of Scrub typhus posed problems in diagnosis and treatment of the disease. It may be related to poor awareness of the disease or lack of suspicion for Scrub typhus which often presents with clinical features indistinguishable from typhoid fever. Since, various parts of Nepal appeared to be suitable hubs for Scrub typhus, the clinical suspicion of Scrub typhus in the differential diagnosis of fever of unknown origin (FUO) is of utmost importance to prevent mortality and morbidity. This is a prospective study conducted in Chitwan Medical College (CMC), Chitwan, Nepal. This study was carried out over a period of 4 months extending from June 2016 to September 2016. A total of 410 serum samples were collected from all patients visiting CMC, clinically suspected of having Scrub typhus infec- tion. The samples were processed for the detection of IgM antibodies for Scrub typhus by ELISA. Results: A total of 410 samples from patients suspected with Scrub typhus infection were processed which included 200 males and 210 females. Out of total 410 samples tested, 181 (44.1%) were seropositive for Scrub typhus. Seropositivity was highest 25.9% among the age group 11-20 years of age. Females were infected more than males. This study implies the re-emergence of Scrub typhus in different regions of Nepal. Although the disease is endemic in our country, it is grossly underdiagnosed owing to non-specific clinical presentation and lack of diagnostic facilities. It is thus suggested that high index of suspicion should be maintained for cases presenting with febrile illness. Infection with Scrub typhus was found high and this calls for an urgent need to introduce vaccine against Scrub typhus. Key words: ELISA, Febrile illness, Scrub typhus. INTRODUCTION Scrub typhus is an acute, febrile, rickettsial than one million cases occur annually and as disease which has re-emerged as a major many as one billion people living in endemic public health problem resulting in significant areas may have been infected at some time. mortality, morbidity and economic loss. It is a Many studies from Nepal reported outbreak potentially fatal bacterial zoonotic infection, of Scrub typhus or isolated reports of Scrub reported from many parts of Asia including Nepal.1 typhus in the past.6,7 In Nepal, the infection from Orienta tsutsugamushi, a Gram negative obligate Scrub typhus has been documented from Nuwakot, intracellular coccobacilli belonging to the family Gorkha, Dhading, Nawalparasi, Sindhupalchowk, Rickettsiaceae is the causative agent of Scrub Bara, Parsa, Kailali, Dhankuta, Sarlahi, Sindhuli, Ilam, typhus. Scrub typhus is endemic disease confined Morang, Makwanpur, Rukum, Sankhuwasabha, geographically to the regions of eastern Asia and Baglung, Chitwan, Bhojpur and other four districts the southwestern Pacific (Korea to Australia) and according to Epidemiology and Disease Control from Japan to India and Pakistan.2-5 Globally, more Division (EDCD).8 Although the disease is spreading © 2016, JCMC. All Rights Reserved 1 Thapa et al, Journal of Chitwan Medical College 2016; 6(18) in our country, it is grossly underdiagnosed due groin, axilla, genitalia or neck. An eschar is often to non-specific clinical presentation, low index of seen in humans at the site of the chigger bite.13 suspicion by the clinicians and lack of access to Eschars are rare in patients in countries of South- the specific diagnostic facilities.9 East Asia and persons of typhus-endemic areas commonly have less severe illness, often without Scrub typhus is common in particular geographical rash or eschar.14 Mortality rates in untreated locations which are conducive to the survival patients range from 0% to 30% and tend to vary and multiplication of the mite population as well with different geographical regions.15 as the reservoir hosts. These regions abundant with scrub jungles, offer the best ecological Scrub typhus that has been identified in various niche for the existence of a sylvatic cycle among districts across the Nepal since, post- earthquake the chiggers and rodents. It is also known as last few months might be a true reflection of the chigger borne typhus, because humans and other above ecological niche and epidemiologic behavior vertebrate hosts usually get infection by the bite of the vector due to altered environmental factors. of infected larval trombiculid mites (also known The growth of the disease has been suspected as chiggers) harboring Orienta tsutsugamushi.10 due to direct human contact with rats that have The disease is transmitted from mites to ‘rats and come out of their usual underground habitat mice’ and the mites in their larval stage contract after many houses collapsed during the massive the disease organism by biting these rodents. earthquake on April 25, 2015. Following tragic Man is an accidental host. The disease is not directly earthquake, many people were homeless and transmitted from person to person. Chigger is the shifted to temporary shelters. This was further only form in the life cycle of the mite that bites accompanied by poor sanitation and overcrowding the warm blooded animals for its blood meal, which provided the close proximity between whereas the other life forms i.e. nymph and adults humans, vectors, and reservoir hosts.16 live on soil and plants. The chiggers after getting Fever remains one of the commonest reasons infected exhibit high degree of potential for for seeking medical advice in Nepal. Although the transmission of Orientia tsutsugamushi. This there are many reports on cases of FUO, these happens because of the transfer of the causative remain underdiagnosed due to lack of diagnostic agent, O. tsutsugamushi in-between different facilities. Since, various parts of Nepal appeared stages of the vector (transstadial transmission) as to be suitable hubs for Scrub typhus, the clinical well as transmission of the agent from adult to suspicion of scrub typhus in the differential the offspring (transovarial transmission). In this diagnosis of FUO is of utmost importance to way, the vector is able to maintain the infectivity prevent mortality and morbidity.17 for a prolonged time period. Therefore, it is now believed that mites, apart from being vectors Scrub typhus, which has been growing as an may behave as reservoirs as much as the rodents epidemic threat in various parts of the country, do.11 has indicated laboratory confirmation as essential tool to prevent and restrict the spread of disease. The clinical manifestations can range from sub- Currently, serology continues to be the mainstay clinical disease to multiorgan failure. It affects for diagnosis of Scrub typhus. In Nepal, the people of all ages; out of these peadiatric Scrub 12 burden of rickettsiosis is under estimated as there typhus is quite common and reported in past. is lack of both community based studies and Febrile illness typically begins after the bite of an availability of specific laboratory tests. Probably infected chigger and lasts for 7-10 days presenting this is the first study done on the seroprevalence with high fever, chills, headache, rash, and eschar of Scrub typhus in Chitwan. Therefore, this study usually develop in infected persons. The chigger was undertaken to determine the prevalence of bite is painless and may become noticed as a Scrub typhus in all patients suspected with Scrub transient localized itch. A necrotic eschar at the typhus infection. inoculating site of the mite is pathognomonic of Scrub typhus. Bites are often found on the 2 © 2016, JCMC. All Rights Reserved Thapa et al, Journal of Chitwan Medical College 2016; 6(18) MATERIAL AND METHODS Table 1: Age wise distribution of Scrub typhus cases. STUDY DESIGN AND PARTICIPANTS Age No. of No. of group Male Female suspected positives This is a prospective study conducted in Chitwan (years) cases Medical College, Chitwan, Nepal. Quantative 0-10 48 31 79 (19.2%) 32 (17.6%) study was carried out to access infection with Scrub typhus. Blood samples were collected from 11-20 49 36 85 (20.7%) 47 (25.9%) patients visiting CMC clinically suspected to be 21-30 32 41 73 (17.8%) 30 (16.5%) suffering with Scrub typhus. The samples were 31-40 14 28 42 (10.2%) 19 (10.4%) processed for the detection of IgM antibodies for 41-50 12 31 43 (10.4%) 20 (11%) Scrub typhus by ELISA. 51-60 22 23 45 (10.9%) 22 (12.1) Sample collection and storage >61 23 20 43 (10.4%) 11 (6%) Total 200 210 410 (100%) 181 (100%) About 2-3 ml of blood was collected from patients clinically suspected of having Scrub typhus, using Table 2 shows that out of total confirmed cases, strict aseptic precautions and serum was separated highest seropositivity was found among females using standard methods. Aliquots for ELISA were 93/181 (51.3%) as compared to males 88/181 o made and stored at 2-8 C until tested. (48.6%).
Recommended publications
  • (Scrub Typhus). Incubation Period 1 to 3
    TYPHUS Causative Agents TYPHUS Rickettsia typhi (murine typhus) and Orientia tsutsugamushi (scrub typhus). Causative Agents IncubationRickettsia typhi Period (murine typhus) and Orientia tsutsugamushi (scrub typhus). 1 to 3 weeks Incubation Period Infectious1 to 3 weeks Period Zoonoses with no human-to-human transmission. Infectious Period TransmissionZoonoses with no human-to-human transmission. Scrub typhus: Bite of grass mites (larval trombiculid mites) MurineTransmission typhus: Bite of rat fleas (also cat and mice fleas) RodentsScrub typhus: are the Bite preferred of grass and mites normal (larval hosts. trombiculid mites) Murine typhus: Bite of rat fleas (also cat and mice fleas) EpidemiologyRodents are the preferred and normal hosts. Distributed throughout the Asia-Pacific rim and is a common cause of pyrexia of unknownEpidemiology origin throughout SE Asia. Occupational contact with rats (e.g. construDistributedction throughout workers inthe makeAsia-Pshiftacific container rim and isfacilities, a common shop cause owners, of pyrexia granary of workers,unknown andorigin garbage throughout collectors) SE orAsia. exposure Occupational to mite habitat contacts in lonwithg grassrats (e.g. hikersconstru andction so ldiers)workers are inrisk make factors.-shift container facilities, shop owners, granary workers, and garbage collectors) or exposure to mite habitats in long grass (e.g. Inhikers Singapore, and soldiers) a total are ofrisk 13 factors. laboratory confirmed cases of murine typhus were r eported in 2008. The majority of cases were foreign workers. In Singapore, a total of 13 laboratory confirmed cases of murine typhus were Clinicalreported Featuresin 2008. The majority of cases were foreign workers. Fever Clinical Headache Features (prominent) MyalgiaFever ConjunctiHeadache val(prominent) suffusion MaculopapularMyalgia rash Conjunctival suffusion Scrub Maculopapular typhus may alsorash have: relative bradycardia, eschar (80%), painful regional adenopathy, hepatosplenomegaly, meningoencephalitis and renal failure.
    [Show full text]
  • CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India
    CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India May - July 2009 Vol. 13 : No. 1 SCRUB TYPHUS & OTHER RICKETTSIOSES it lacks lipopolysaccharide and peptidoglycan RICKETTSIAL DISEASES and does not have an outer slime layer. It is These are the diseases caused by rickettsiae endowed with a major surface protein (56kDa) which are small, gram negative bacilli adapted and some minor surface protein (110, 80, 46, to obligate intracellular parasitism, and 43, 39, 35, 25 and 25kDa). There are transmitted by arthropod vectors. These considerable differences in virulence and organisms are primarily parasites of arthropods antigen composition among individual strains such as lice, fleas, ticks and mites, in which of O.tsutsugamushi. O.tsutsugamushi has they are found in the alimentary canal. In many serotypes (Karp, Gillian, Kato and vertebrates, including humans, they infect the Kawazaki). vascular endothelium and reticuloendothelial GLOBAL SCENARIO cells. Commonly known rickettsial disease is Scrub Typhus. Geographic distribution of the disease occurs within an area of about 13 million km2 including- The family Rickettsiaeceae currently comprises Afghanistan and Pakistan to the west; Russia of three genera – Rickettsia, Orientia and to the north; Korea and Japan to the northeast; Ehrlichia which appear to have descended Indonesia, Papua New Guinea, and northern from a common ancestor. Former members Australia to the south; and some smaller of the family, Coxiella burnetii, which causes islands in the western Pacific. It was Q fever and Rochalimaea quintana causing first observed in Japan where it was found to trench fever have been excluded because the be transmitted by mites.
    [Show full text]
  • The Difference in Clinical Characteristics Between Acute Q Fever and Scrub Typhus in Southern Taiwan
    International Journal of Infectious Diseases (2009) 13, 387—393 http://intl.elsevierhealth.com/journals/ijid The difference in clinical characteristics between acute Q fever and scrub typhus in southern Taiwan Chung-Hsu Lai a,b, Chun-Kai Huang a, Hui-Ching Weng c, Hsing-Chun Chung a, Shiou-Haur Liang a, Jiun-Nong Lin a,b, Chih-Wen Lin d, Chuan-Yuan Hsu d, Hsi-Hsun Lin a,* a Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital/I-Shou University, 1 E-Da Road, Jiau-Shu Tsuen, Yan-Chau Shiang, Kaohsiung County, 824 Taiwan, Republic of China b Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung County, Taiwan, Republic of China c Department of Health Management, I-Shou University, Kaohsiung County, Taiwan, Republic of China d Section of Gastroenterology, Department of Internal Medicine, E-Da Hospital/I-Shou University, Kaohsiung County, Taiwan, Republic of China Received 14 April 2008; received in revised form 17 July 2008; accepted 29 July 2008 Corresponding Editor: Craig Lee, Ottawa, Canada KEYWORDS Summary Acute Q fever; Objective: To identify the differences in clinical characteristics between acute Q fever and scrub Coxiella burnetii; typhus in southern Taiwan. Scrub typhus; Methods: A prospective observational study was conducted in which serological tests for acute Q Orientia tsutsugamushi; fever and scrub typhus were performed simultaneously regardless of which disease was suspected Clinical characteristics; clinically. From April 2004 to December 2007, 80 and 40 cases of serologically confirmed acute Q Taiwan fever and scrub typhus, respectively, were identified and included in the study for comparison.
    [Show full text]
  • Scrub Typhus and Molecular Characterization of Orientia Tsutsugamushi from Central Nepal
    pathogens Article Scrub Typhus and Molecular Characterization of Orientia tsutsugamushi from Central Nepal Rajendra Gautam 1, Keshab Parajuli 1, Mythili Tadepalli 2, Stephen Graves 2, John Stenos 2,* and Jeevan Bahadur Sherchand 1 1 Department of Microbiology, Maharajgunj Medical Campus, Institute of Medicine, Kathmandu 44600, Nepal; [email protected] (R.G.); [email protected] (K.P.); [email protected] (J.B.S.) 2 Australian Rickettsial Reference Laboratory, Geelong, VIC 3220, Australia; [email protected] (M.T.); [email protected] (S.G.) * Correspondence: [email protected]; Tel.: +61-342151357 Abstract: Scrub typhus is a vector-borne, acute febrile illness caused by Orientia tsutsugamushi. Scrub typhus continues to be an important but neglected tropical disease in Nepal. Information on this pathogen in Nepal is limited to serological surveys with little information available on molecular methods to detect O. tsutsugamushi. Limited information exists on the genetic diversity of this pathogen. A total of 282 blood samples were obtained from patients with suspected scrub typhus from central Nepal and 84 (30%) were positive for O. tsutsugamushi by 16S rRNA qPCR. Positive samples were further subjected to 56 kDa and 47 kDa molecular typing and molecularly compared to other O. tsutsugamushi strains. Phylogenetic analysis revealed that Nepalese O. tsutsugamushi strains largely cluster together and cluster away from other O. tsutsugamushi strains from Asia and elsewhere. One exception was the sample of Nepal_1, with its partial 56 kDa sequence clustering Citation: Gautam, R.; Parajuli, K.; more closely with non-Nepalese O. tsutsugamushi 56 kDa sequences, potentially indicating that Tadepalli, M.; Graves, S.; Stenos, J.; homologous recombination may influence the genetic diversity of strains in this region.
    [Show full text]
  • Seroconversions for Coxiella and Rickettsial Pathogens Among US Marines Deployed to Afghanistan, 2001–2010
    Seroconversions for Coxiella and Rickettsial Pathogens among US Marines Deployed to Afghanistan, 2001–2010 Christina M. Farris, Nhien Pho, Todd E. Myers, SFGR (10) highlight the inherent risk of contracting rick- Allen L. Richards ettsial-like diseases in Afghanistan. We estimated the risk for rickettsial infections in military personnel deployed to We assessed serum samples from 1,000 US Marines de- Afghanistan by measuring the rate of seroconversion for ployed to Afghanistan during 2001–2010 to find evidence SFGR, TGR, scrub typhus group Orientiae (STGO), and C. of 4 rickettsial pathogens. Analysis of predeployment and burnetii among US Marines stationed in Afghanistan dur- postdeployment samples showed that 3.4% and 0.5% of the Marines seroconverted for the causative agents of Q fever ing 2001–2010. and spotted fever group rickettsiosis, respectively. The Study Serum samples from US Marines 18–45 years of age who ickettsial and rickettsial-like diseases have played served >180 days in Afghanistan during 2001–2010 were Ra considerable role in military activities through- obtained from the US Department of Defense Serum Re- out much of recorded history (1). These diseases, which pository (DoDSR). Documentation of prior exposure to Q have worldwide distribution and cause a high number of fever or rickettsioses and sample volume <0.5 mL were deaths and illnesses, include the select agents (http://www. exclusion criteria. We selected the most recent 1,000 selectagents.gov/SelectAgentsandToxinsList.html) Rickett- postdeployment specimens that fit the inclusion criteria sia prowazekii and Coxiella burnetii, the causative agents for our study. of epidemic typhus and Q fever, respectively.
    [Show full text]
  • Journal of Clinical Microbiology
    JOURNAL OF CLINICAL MICROBIOLOGY Volume 46 April 2008 No. 4 BACTERIOLOGY Reductions in Workload and Reporting Time by Use of Philippe R. S. Lagace´-Wiens, 1174–1177 Methicillin-Resistant Staphylococcus aureus Screening with Michelle J. Alfa, Kanchana MRSASelect Medium Compared to Mannitol-Salt Medium Manickam, and Godfrey K. M. Supplemented with Oxacillin Harding Rapid Antimicrobial Susceptibility Determination of Vesna Ivancˇic´, Mitra Mastali, Neil 1213–1219 Uropathogens in Clinical Urine Specimens by Use of ATP Percy, Jeffrey Gornbein, Jane T. Bioluminescence Babbitt, Yang Li, Elliot M. Landaw, David A. Bruckner, Bernard M. Churchill, and David A. Haake High-Resolution Genotyping of Campylobacter Species by James C. Hannis, Sheri M. Manalili, 1220–1225 Use of PCR and High-Throughput Mass Spectrometry Thomas A. Hall, Raymond Ranken, Neill White, Rangarajan Sampath, Lawrence B. Blyn, David J. Ecker, Robert E. Mandrell, Clifton K. Fagerquist, Anna H. Bates, William G. Miller, and Steven A. Hofstadler Development and Evaluation of Immunochromatographic Kentaro Kawatsu, Yuko Kumeda, 1226–1231 Assay for Simple and Rapid Detection of Campylobacter Masumi Taguchi, Wataru jejuni and Campylobacter coli in Human Stool Specimens Yamazaki-Matsune, Masashi Kanki, and Kiyoshi Inoue Evaluation of an Automated Instrument for Inoculating and J. H. Glasson, L. H. Guthrie, D. J. 1281–1284 Spreading Samples onto Agar Plates Nielsen, and F. A. Bethell New Immuno-PCR Assay for Detection of Low Wenlan Zhang, Martina 1292–1297 Concentrations of Shiga Toxin 2 and Its Variants Bielaszewska, Matthias Pulz, Karsten Becker, Alexander W. Friedrich, Helge Karch, and Thorsten Kuczius Suppression-Subtractive Hybridization as a Strategy To Laure Maigre, Christine Citti, Marc 1307–1316 Identify Taxon-Specific Sequences within the Mycoplasma Marenda, Franc¸ois Poumarat, and mycoides Cluster: Design and Validation of an M.
    [Show full text]
  • IAP Guidelines on Rickettsial Diseases in Children
    G U I D E L I N E S IAP Guidelines on Rickettsial Diseases in Children NARENDRA RATHI, *ATUL KULKARNI AND #VIJAY Y EWALE; FOR INDIAN A CADEMY OF PEDIATRICS GUIDELINES ON RICKETTSIAL DISEASES IN CHILDREN COMMITTEE From Smile Healthcare, Rehabilitation and Research Foundation, Smile Institute of Child Health, Ramdaspeth, Akola; *Department of Pediatrics, Ashwini Medical College, Solapur; and #Dr Yewale Multispeciality Hospital for Children, Navi Mumbai; for Indian Academy of Pediatrics “Guidelines on Rickettsial Diseases in Children” Committee. Correspondence to: Dr Narendra Rathi, Consultant Pediatrician, Smile Healthcare, Rehabilitation & Research Foundation, Smile Institute of Child Health, Ramdaspeth, Akola, Maharashtra, India. [email protected]. Objective: To formulate practice guidelines on rickettsial diseases in children for pediatricians across India. Justification: Rickettsial diseases are increasingly being reported from various parts of India. Due to low index of suspicion, nonspecific clinical features in early course of disease, and absence of easily available, sensitive and specific diagnostic tests, these infections are difficult to diagnose. With timely diagnosis, therapy is easy, affordable and often successful. On the other hand, in endemic areas, where healthcare workers have high index of suspicion for these infections, there is rampant and irrational use of doxycycline as a therapeutic trial in patients of undifferentiated fevers. Thus, there is a need to formulate practice guidelines regarding rickettsial diseases in children in Indian context. Process: A committee was formed for preparing guidelines on rickettsial diseases in children in June 2016. A meeting of consultative committee was held in IAP office, Mumbai and scientific content was discussed. Methodology and results were scrutinized by all members and consensus was reached.
    [Show full text]
  • Infectious Diseases and the Development of Health Systems in Thailand
    20 Infectious Diseases and the Development of Health Systems in Thailand Visanu Thamlikitkul1, Viroj Tangcharoensathien2, and Natth Bhamarapravati3 1 Siriraj Hostpital, Mahidol University, Bangkok, Thailand 2Ministry of Public Health, Nonthaburi, Thailand 3 Mahidol University Salaya, Nakhonpathom, Thailand HISTORY AND CURRENT STATUS with emerging infectious diseases, especially OF INFECTIOUS DISEASES HIV/ AIDS, and re-emerging diseases such IN THAILAND as leptospirosis. Several emerging infectious diseases originating in neighboring countries Infectious diseases have been a major such as severe acute respiratory syndrome public health problem in Thailand for the past (SARS), avian flu, and Nipah virus infections several centuries. Most infectious diseases in are also a threat to Thai people. Moreover, in­ earlier days were food and water-borne dis­ fectious diseases due to drug resistant micro­ eases, vector-borne diseases, and infectious organisms e.g., drug resistant Streptococcus diseases related to poor sanitation (Wright and pneumoniae, methicillin-resistant Staphylo­ Breakspears, 1903; Beek, 2001). Some infec­ coccus aureus, and multi-drug resistant gram­ tious diseases have now been eradicated, for negative bacilli have also been increasing. example smallpox. The last case of small­ There are 47 infectious diseases docu­ pox in Thailand was documented in 1962. mented in the current Thai Communicable Some diseases have been brought under con­ Diseases Act. These include cholera, plaque, trol by vaccines, such as diphtheria, pertus­
    [Show full text]
  • Clinical Presentation of Scrub Typhus During a Major Outbreak in Central Nepal
    ORIGINAL ARTICLE ASIAN JOURNAL OF MEDICAL SCIENCES Clinical presentation of scrub typhus during a major outbreak in central Nepal Arun Sedhain1, Gandhi R Bhattarai2 1Associate Professor, Department of Medicine, Nephrology unit, Chitwan Medical College, Bharatpur, Chitwan, Nepal, 2Director, Health Services Research, United Health Group, OptumInsight, CT, USA. Submitted: 15-04-2017 Revised: 23-05-2017 Published: 01-07-2017 ABSTRACT Background: Scrub typhus, an emerging rickettsial disease caused by the organism Access this article online Orientiatsutsugamushi, is associated with multi-organ involvement. We prospectively Website: studied the clinical manifestations of the disease during a major outbreak in central http://nepjol.info/index.php/AJMS part of Nepal. Aims and Objective: This study was carried out with an aim to analyze the clinical presentations, laboratory parameters, complications and outcomes of scrub DOI: 10.3126/ajms.v8i4.17163 2091-0576 typhus. Materials and Methods: A prospective observational study was conducted in the E-ISSN: P-ISSN: 2467-9100 Department of Medicine in a tertiary teaching hospital. A total of 1398 patients admitted with acute febrile illness were subjected for Scrub Typhus Detect™ IgM ELISA test, among which 502 (35.90%) patients tested positive and were included in the study. Acute kidney injury was defined according to KDIGO guideline. Statistical analysis was done with SAS University Studio package using t-test for continuous variables and chi-square test for categorical variables. Results: Mean age of the patients was 30.37±18.81 years with 26.29% in the pediatric age group (<14 years). Females comprised of 55.98% of the patients. Majority (97.98%) of the patients were seen between July to November.
    [Show full text]
  • Orientia Tsutsugamushi in Conventional Hemocultures
    DISPATCHES Survival and Growth of Orientia tsutsugamushi in Conventional Hemocultures Sabine Dittrich, Elizabeth Card, culture at Biosafety Level 3, which is only available at a Weerawat Phuklia, Williams E. Rudgard, limited number of specialized centers. Therefore, molecu- Joy Silousok, Phonelavanh Phoumin, lar detection of O. tsutsugamushi in patients’ EDTA-blood Latsaniphone Bouthasavong, Sarah Azarian, buffy coat has become the tool of choice for routine diag- Viengmon Davong, David A.B. Dance, nosis and epidemiologic studies (11,12). In other pathogens Manivanh Vongsouvath, with low bacterial loads, propagation of the organism be- Rattanaphone Phetsouvanh, Paul N. Newton fore molecular amplification has increased target density and improved sensitivity of diagnostic tools such as quanti- Orientia tsutsugamushi, which requires specialized facilities tative PCR (qPCR) or isolation in cell cultures (13). In line for culture, is a substantial cause of disease in Asia. We with these findings, we hypothesized thatO. tsutsugamushi demonstrate that O. tsutsugamushi numbers increased for can survive and potentially grow in conventional hemocul- up to 5 days in conventional hemocultures. Performing such a culture step before molecular testing could increase the ture media within the co-inoculated human host cells and sensitivity of O. tsutsugamushi molecular diagnosis. that this capacity for growth could be used to improve di- agnostic and analytical sensitivities. rientia tsutsugamushi, the causative agent of scrub ty- The Study Ophus, has long been a pathogen of major public health We conducted this study at the Microbiology Laboratory, concern in the Asia-Pacific region (1,2). Reports from In- Mahosot Hospital, Vientiane, Laos, the only microbiology dia, China, and Southeast Asia suggest that a substantial laboratory in Vientiane with a routine, accessible hemo- proportion of fevers and central nervous system infections culture service for sepsis diagnosis (4,14).
    [Show full text]
  • Orientia Tsutsugamushi Ankyrin Repeat-Containing Protein Family
    Virginia Commonwealth University VCU Scholars Compass Microbiology and Immunology Publications Dept. of Microbiology and Immunology 2015 Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffico t the host cell endoplasmic reticulum Lauren VieBrock Virginia Commonwealth University, [email protected] Sean M. Evans Virginia Commonwealth University, [email protected] Andrea R. Beyer Virginia Commonwealth University, [email protected] See next page for additional authors Follow this and additional works at: http://scholarscompass.vcu.edu/micr_pubs Part of the Medicine and Health Sciences Commons This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Downloaded from http://scholarscompass.vcu.edu/micr_pubs/51 This Article is brought to you for free and open access by the Dept. of Microbiology and Immunology at VCU Scholars Compass. It has been accepted for inclusion in Microbiology and Immunology Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Authors Lauren VieBrock, Sean M. Evans, Andrea R. Beyer, Charles L. Larson, Paul A. Beare, Hong Ge, Smita Singh, Kyle G. Rodino, Robert A. Heinzen, Allen L. Richards, and Jason A. Carlyon This article is available at VCU Scholars Compass: http://scholarscompass.vcu.edu/micr_pubs/51 ORIGINAL RESEARCH ARTICLE published: 03 February 2015 CELLULAR AND INFECTION MICROBIOLOGY doi: 10.3389/fcimb.2014.00186 Orientia tsutsugamushi ankyrin repeat-containing protein family members are Type 1 secretion system substrates that traffic to the host cell endoplasmic reticulum Lauren VieBrock 1†, Sean M.
    [Show full text]
  • MEDICAL GRAND ROUNDS Parkland Memorial Hospital February 23
    MEDICAL GRAND ROUNDS Parkland Memorial Hospital February 23, 1967 HAS YOUR PATIENT BEEN TO VIETNAM? DISEASES TO BE CONSIDERED 11 Progress, far from consisting in change, depends upon retentiveness •.. when experience is not retained, infancy is perpetual. Those who cannot remember the past are condemned to repeat it. 11 Non-Surgical Medical Problems I. Prevalent Disease Problems in US Troops A. Malaria B. Diarrheal Disease 1. Non-specific gastroenteritis 2. Bacillary dysentery- Shigellosis more prevalent in northern half of country 3. Amebiasis - At least 5 cases of hepatic amebic abscesses have been seen C. Venereal Disease: Gonorrhea 7~/o, lymphogranuloma venereum not uncommon. Syphilis relatively uncommon. Chancroid 10-2~/o. D. Respiratory Disease: Mostly URI and bronchitis. E. Skin Disease: Tinea cruris common. Severe mycotic external otitis common. Immersion foot. II. Uncommon But Potentially Epidemic or Serious Disease Problems in US Troops A. Plague B. Cholera C. Dengue D. Leptospirosis E. Scrub typhus F. Rabies G. Infectious hepatitis H. Me 1 i o i dos i s I . F i 1 i arias is J, (?) Schistosomiasis K. (?) Tropical Sprue I I I. Prevalent Disease Problems Among Civilians With Lesser Importance for US Troops A. Tuberculosis: 10 to 20% of the population have open cavitary pulmonary tuberculosis B. Leprosy: There are 100,000 registered patients c. Intestinal Parasites: Hookworm 'is very prevalent D. Trachoma: Estimated 80% of the population is infected at some time 2 TABLE I MORBIDITY REPORTS (Incidence rates i n number/1000/annum) (Jan. 1965- May 1966) Malaria 27.7 Amebiasis 3.4 Bacillary dysentery 5.0 Gastroenteritis - non-specific 68.6 Fever of unknown origin 32.9 Dengue 4.8 Respiratory disease 70.9 Infectious hepatitis 4.9 Scrub typhus 2.
    [Show full text]