Quick viewing(Text Mode)

1 RC-6 Internal Dosimetry the Science and Art of Internal Dose

1 RC-6 Internal Dosimetry the Science and Art of Internal Dose

RC-6

Internal The science and art of internal dose assessment

H. Doerfel a, A. Andrasi b, M. Bailey c, V. Berkovski d, E. Blanchardon e, C.-M. Castellani f, R. Cruz-Suarez g, G. Etherington c, C. Hurtgen h, B. LeGuen i, I. Malatova j, J. Marsh c, J. Stather c

aIDEASystemGmbH,AmBurgweg4,76227Karlsruhe,Germany, info@ideasystem.com bKFKIAtomicEnergyResearchInstitute,Budapest,Hungary cRadiationProtectionDivision,HealthProtectionAgency,Chilton,Didcot,UK dRadiationProtectionInstitute,Kiev,Ukraine eInstitutdeRadioprotectionetdeSûretéNucleaire,FontenayauxRoses,France fENEARadiationProtectionInstitute,Bologna,Italia gInternationalAtomicEnergyAgency,Vienna,Austria hSCK•CENBelgianNuclearResearchCentre,Mol,Belgium iElectricitedeFrance,SaintDenis,France jNRPI,Prague,CzechRepublic

1

Abstract

Dosesfromintakesofcannotbemeasuredbutmustbeassessedfrommonitoring,such aswholebodycountingorurinaryexcretionmeasurements.Suchassessmentsrequireapplicationofa biokineticmodelandestimationoftheexposuretime,materialproperties,etc.Becauseofthevariety ofparametersinvolved,theresultsofsuchassessmentsmayvaryoverawiderange,accordingtothe skillandtheexperienceoftheassessor. Therefreshercoursegivesanoverviewoverthestateoftheartofthedeterminationofinternaldose. The first part of the course deals with the measuring techniques for individual incorporation monitoring i.e (i) direct measurement of activity in the whole body or organs, (ii) measurement of activityexcretedwithurineandfaeces,and(iii)measurementofactivityinthebreathingzoneoratthe workplace,respectively.Inthefollowingpartthebiokineticmodelsusedfortheinterpretationofthe monitoringdataareshortlydescribedwithspecialregardtothenewmodelsi.e.(i)theICRPmodelfor the human alimentary tract and (ii)theNCRP model for the biokinetics of radioactivematerials in wounds.Thethirdpartofthecoursedealswiththeapplicationofthemodelsfortheassessmentof committeddosefromincorporationmonitoringdata.ThispartisbasedmainlyontheIDEASGeneral Guidelines,takingintoaccountalsotheimprovementsoftheguidelinesprovidedbysomefollowup projects.

2

Contents 1 Introduction...... 4 2 Measuringtechniques ...... 4 2.1 Invivo measurements ...... 5 2.2 Invitro measurements...... 10 2.3 Personalairsamplingandworkplacemonitoring...... 12 3 Biokineticmodels ...... 13 3.1 Overview...... 13 3.2 Humanrespiratorytractmodel ...... 14 3.3 Humanalimentarytractmodel ...... 21 3.4 Absorptionthroughintactskin ...... 23 3.5 Wounds...... 24 3.6 BiokineticModelsforSystemicActivity ...... 25 3.7 Excretionpathways...... 26 3.8 Biokineticfunctions...... 27 4 Doseassessment ...... 27 4.1 Stateoftheart...... 27 4.2 Generalrequirements...... 29 4.2.1 Harmonisation...... 30 4.2.2 Accuracy ...... 30 4.2.3 Proportionality ...... 30 4.3 Levelsoftask...... 30 4.4 Understandingexposuresituations ...... 31 4.4.1 Knowledgeofradionuclideshandled...... 32 4.4.2 Time(s)andpatternofintake ...... 35 4.4.3 Intakepathways...... 35 4.4.4 Particlesize/chemicalcomposition...... 36 4.5 Handlingofmonitoringdata...... 36 4.5.1 Singledatapoint...... 36 4.5.2 Multipledatasets ...... 37 4.5.3 Numberandtypeofdatarequiredforassessmentofdose...... 38 4.5.4 Dataprocessingbeforeuse...... 39 4.5.5 Assessmentofuncertaintyondata...... 39 4.5.6 Criteriaforrejectingfit ...... 43 4.6 Specialaspects ...... 45 4.6.1 Handlingofdatabelowlimitsofdetection...... 45 4.6.2 Handlingofdatainfluencedbychelationtherapy ...... 45 4.6.3 Identificationofroguedata ...... 45 4.7 Structuredapproachtodoseassessment...... 46 5 DisseminationoftheIDEASGuidelines...... 49 5.1 ICRP… ...... 49 5.2 EURADOS/IAEA...... 49 5.3 ISO…...... 49 6 Supportingsoftware...... 50 7 References...... 53 8 Glossary...... 56

3

1 Introduction Thedeterminationofinternaldosesisanessentialcomponentofindividualmonitoringprogrammes forworkers.Itmayalsobeneededformembersofthepublic,whomayhaveintakesofradionuclides in nuclear medicine and also in normal life following accidental releases of radionuclides into the environment.Assessmentofinternaldosescanbedividedintotwophases,namely • determination of the amount of radioactive material in the human body, in body organs or in wounds by direct measurements and/or by indirect methods such as excretion analysis or air monitoring,

• interpretationofthemonitoringdataintermsofintakeand/orinternaldosetakingintoaccount manyinfluencingfactorsandassumptions,suchasthephysicalandchemicalcharacteristicsofthe radioactive substances, the mode of intake, the biokinetic and energy absorption processes, the individualparameters,etc.

The second phase is particularly important because of the number of variables and uncertainties involved.AlthoughtheInternationalCommissiononRadiologicalProtection(ICRP)andInternational Atomic Energy Agency (IAEA) have published extensive tables of dose per unit intake (dose coefficients),thesearedefaultvaluesbasedonassumptionsabouttheintakeparametersthatmaynot be valid in specific situations. Determination of the intake and the resulting internal dose can, therefore,beapproachedinmanydifferentways,dependingontheamountandqualityofthedata,the skill of the dosimetrist, computational tools available, and the assumptions made. When a set of bioassay data is given to two different dosimetrists, it is likely that these data will be interpreted differently, that different methods and dosimetric models will be applied, and therefore different numerical solutions will be obtained. Thus, it is important for laboratories dealing with internal dosimetry to undergo performance testing procedures in both phases of internal dosimetry to demonstrate the correctness of methods applied and also the consistency of the results with those obtainedbyotherlaboratories. Therefreshercoursegivesanoverviewoverthestateoftheartofthedeterminationofinternaldose with the main focus being put on the second phase. The first part of the course deals with the measuringtechniquesforindividualincorporationmonitoringi.e(i)directmeasurementofactivityin the whole body or organs, (ii) measurement of activity excreted with urine and faeces, and (iii) measurementofactivityinthebreathingzoneorattheworkplace,respectively.Inthefollowingpart the biokinetic models used for the interpretation of the monitoring data are shortly described with specialregardtothenewmodelsi.e.(i)theICRPmodelforthehumanalimentarytractand(ii)the NCRPmodelforthebiokineticsofradioactivematerialsinwounds.Thethirdpartofthecoursedeals with the application of the models for the assessment of committed dose from incorporation monitoringdata.ThispartisbasedmainlyontheIDEASGeneralGuidelines,takingintoaccountalso the improvements of the guidelines provided by some followup projects, such as the CONRAD project.

2 Measuring techniques This Chapter briefly describes the main measurement techniques, their advantages and their limitations forindividualmonitoring. Inmost cases, assessment ofintakes of radionuclidesmay be achievedbybodyactivitymeasurements,excretamonitoring,airsamplingwithpersonalairsamplers, oracombinationofthesetechniques.Thechoiceofmeasurementtechniquewillbedeterminedbya numberoffactorsincludingtheradiationemittedbythe;thelikelyradiationdose;the biokineticbehaviourofthecontaminantandtheavailabilityofequipment.

4 Routinemonitoringprogrammesusuallyinvolveonlyonetypeofmeasurementifadequatesensitivity can be achieved. For some radionuclides, only one measurement technique is feasible, e.g. urine monitoring for intakes of tritium. For radionuclides, such as plutonium isotopes, that present difficulties for both measurement and interpretation, a combination of techniques may have to be employed.Ifdifferentmethodsofadequatesensitivityareavailable,thegeneralorderofpreferencein termsofaccuracyofinterpretationis: • bodyactivitymeasurements; • excretaanalysis; • personalairsamplingandenvironmentalmeasurements(workplacemonitoring) Thesetechniquesare,however,complementaryandnotmutuallyexclusive.Monitoringinrelationtoa particulartaskoreventmayofteninvolveacombinationoftechniquessoastomakethebestpossible evaluation of a novel or unusual situation. For example, a programme of both body activity and excretameasurementsand,insomecircumstances,personalairsamplingmaybeusedincombination with solubility studies on samples of airborne activity or source material from the workplace. Solubility studies will not necessarily give a good indication of the solubility characteristics of materialinthelungbutcanprovide valuableguidanceforuseindeterminingthemostappropriate monitoringprocedure[1]. In the workplace individuals may be exposed to a variety of radionuclides, as could occur in fuel reprocessingormanufacturingplants.Insuchcircumstancesitmaybefeasibletousearadionuclide thatisreadilydetectabletoassessthepotentialforexposuretootherradionuclidesintheplant.Thus screeningfor 144 Cecouldbeusedtoassessthepotentialforexposuretoactinides.Similarlyintakesof particulatesmaybecomplexmixturesandindicatorradionuclidescouldbeusedinanyassessment. Thus 241 Am may be present in inhaled fuel particles together with plutonium isotopes and external monitoringcanbeusedtoassesstheirintake.

2.1 In vivo measurements TheIAEAhasgivenguidanceonthedirectmeasurementofbodycontentofradionuclides[2].Advice hasalsobeenissuedbyICRU[3]andbyLandoltBörnstein[4].Directmeasurementofbodyororgan contentprovidesaquickandconvenientestimateofactivityinthebody.Itisfeasibleonlyforthose radionuclidesemittingradiationthatcanbedetectedoutsidethebody. Many facilities for the measurement of radionuclides in the whole body or in regions of the body consist of one or a number of high efficiency detectors housed in wellshielded, lowbackground environments. The geometricalconfiguration ofthedetectors is arranged to suit the purpose of the measurement,e.g.thedeterminationofwholebodyactivity(Fig.1)orofactivityinaregionofthe bodysuchasthethorax(Fig.2)orthethyroid.Theskullorkneesmaybeusedasasuitablesitefor measurementofradionuclidesdepositedintheskeletonandsomeradionuclidesdepositpreferentially in the liver where they can be detected. In special investigations, or in interpretation of unusual measurements,itmaybeadvantageoustodeterminethedistributionwithinthebodyeitherbyprofile scanning or by analysis of the relative response of detectors placed at different positions along the body. Commonlyencounteredfissionandactivationproducts,suchas 131 I, 137 Csand 60 Co,canbedetected withcomparativelysimpleequipmentatlevelsthatareadequateforradiologicalprotectionpurposes. Suchsimpleequipmentmayconsistofasingledetector,viewingthewholebodyoraportionofthe body,or,foriodineisotopes,a smalldetectorplacedclosetothethyroid.Theadvantageofsimple equipmentisthatitmaybeoperatedattheplaceofwork,therebyavoidingthetimerequiredtovisita remotewholebodymonitoringfacility.

5 Figure 1 : Stretchertypewholebodycounterwith4NaI(Tl)scintillationdetectors(Bicron20cm diam.×10mmcrystals)forinvivomeasurementofmediumenergyphotonemitters (1003000keV)[4]

Inprinciple,thetechniquecanbeusedforradionuclidesthatemit:xor γradiation;positrons,since they can be detected by measurement of annihilation radiation; energetic βparticles that can be detectedbymeasurementofbremsstrahlung(e.g. 90 Yfor 90 Sr);andthe αemitterssuchas 235 Uand 241 Am that can be detected by measurement of their characteristic 186 keV and 60 keV γ rays respectively,or αemitterssuchas 238Puthatcanbedetectedbymeasurementofitscharacteristic13, 17and20keVxrays. Incontrast,highsensitivitytechniquesareneededformonitoringafewradionuclidesatthelevelsthat are required for protection purposes. Examples are the low energy photon emitters such as 210 Pb, 241 AmandisotopesofPuinthelungs(Fig.2)orintheskull(Fig.3).InallsituationswhenPuisotopes are unaccompanied by 241 Am they are not detectable at the levels required for radiation protection purposes.If 241 AmispresentthenthiscanprovideavaluabletracerforplutoniumifthePu: 241 Am ratioisknown. Up to the mid1990s most body activity measurement facilities, whether highsensitivity or simple systems,usedthalliumactivatedsodiumiodidedetectors.Thesehavethe advantagethat crystalsof large volume can be manufactured and so provide high efficiency for detection of γrays. Interpretation of a γray energy spectrum obtained from a mixture of radionuclides may, however, raise some difficulties. The components of the spectrum can be resolved by a multiple linear regressionanalysistechnique,butthisrequirespreviouscalibrationofthedetectionequipmentwith standardsourcesoftherequiredradionuclidesdispersedinamatrixinsuchawayastosimulatethe distributionandattenuationwithinthebody.Theincreasedavailabilityofhighefficiencygermanium detectorshasleadtotheirincreasinguse,particularlyinsituationswhereworkersmaybeexposedto

6 mixtures of unknown γray emitting radionuclides. The superior energy resolving power of these detectors simplifies the interpretation of spectra obtained from complex mixtures of radionuclides althoughcalibrationisstillneeded.

Figure 2 : Typicalarrangementof2phoswichdetectors(20cmdiam.1mmNaI(Tl)/50mm CsI(Tl)crystals)forinvivomeasurementoflowenergyphotonemitterssuchas 210 Pb, 241 AmandisotopesofPuinthelungs[4]

Theactivitypresentinawoundcanbedetectedwithconventional γdetectorsifthecontaminantemits energetic γrays.Inthecaseofcontaminationwith αemittingradionuclides,detectionismuchmore difficultsincethelowenergyxraysthatfollowtheαdecaywillbeseverelyattenuatedintissue;this effectismoreimportantthedeeperthewound.Itisoftennecessarytolocalisetheactivematerialand this requires a wellcollimated detector. Wound monitors must have an energy discrimination capabilityifagoodestimateistobemadeofcontaminationwithmixturesofradionuclides. Thetechnologyonwhichinvivomeasurementsystemsarebasediswellestablished.Nevertheless, there have been a number of recent developments that offer the promise of improved capabilities. Developmentworkisbeingcarriedoutontheoptimisationoftheareaandthicknessofdetectors,with particular emphasis on the use of large detector arrays. Room temperature semiconductor arrays utilisingeithersiliconorthecompoundsemiconductorCdZnTeofferthepossibilitythatbulkyliquid nitrogenorelectricalcoolingsystemsmaynolongerbenecessary[59].

7 Figure 3: Typicalarrangementof4HPGeforinvivomeasurementoflowenergyphoton emitterssuchas 210 Pb, 241 AmandisotopesofPuintheskull[74]

Figure 4: TheBOMABphantomforsimulationofhomogeneousactivitydepositionsinthe wholebody[4]

8 Figure 5: TheLLNLchestphantomforsimulationofhomogeneousactivitydepositionsinthe lungs,tracheobronchiallymphnodesandintheliver[4]

Almost all laboratories continue to use physical phantoms such as the BottleMannikinABsorption (BOMAB,Fig.4)orLawrenceLivermorethoraxphantoms(Fig.5)foractivitycalibrations,butthis approach has significant limitations with respect to the body size, body shape, and radionuclide distribution that can be modelled. These limitations could in principle be overcome using the numericalcalibrationtechniqueswhichhavebeendevelopedoverrecentyears.Mathematicalvoxel phantomsareconstructedusingdatafromcomputedtomography(CT)ormagneticresonanceimaging (MRIscansonrealsubjects).MonteCarlosimulationsarethenusedtomodelphotontransportfrom thephantomandthedetectionofphotonsbyasimulateddetector[1113]. Figure 6: Voxelphantomforcalibrationofphoswichdetectorsinlungcountinggeometry(left) andinkneecountinggeometry(right)[13]

Table1listssometypical detectioncharacteristicsofa standardwholebody counter(stretchertype with4NaI(Tl)scintillationdetectorsasshowninFig.1)forhomogeneousdepositionsofsomeselected fissionandactivationproductsinthewholebody.Thelowerlimitofdetectionachievedbythewhole bodycounteriscomparedtothevaluerequiredforthedetectionofannualintakescorrespondingtoa

9 totalcommittedeffectivedoseof1mSvbymeansofroutineincorporationmonitoring.Table2shows the respective detection characteristics of a lung counter (4 HPGe detectors) for homogeneous depositionsofsomeselectedactinidesinthelungs. Table 1 : Typicaldetectioncharacteristicsofastandardwholebodycounter(stretchertypewith 4NaI(Tl)scintillationdetectorsasshowninFig.1)forhomogeneousdepositionsof someselectedfissionandactivationproductsinthewholebody(subjectcountingtime tS=300s;backgroundcountingtime tB=1800s)[4] Nuclide DetectedphotonradiationCounting Background Lowerlimitofdetection efficiency countrate [Bq]

1) Energy Yield η[%] NB/tB[cps] Required Achieved [keV] y[%]

57 Co 123 86 1.5 14.0 20000 60

137 Cs 662 85 0.9 7.4 10000 73

134 Cs 796 85 0.81 4.9 6000 66

60 Co 1173 100 0.66 3.9 1000 62

22 Na 1275 100 0.61 4.0 200 67 1) forthedetectionofannualintakescorrespondingtoatotalcommittedeffectivedoseof1mSvbymeansofroutineincorporationmonitoring Table 2 : Typicaldetectioncharacteristicsofalungcounter(4HPGedetectors)for homogeneousdepositionsofsomeselectedactinidesinthelungs;subjectcounting time tS=3000s;backgroundcountingtime tB=30000s)[4] Nuclide DetectedphotonradiationCounting Background Lowerlimitofdetection efficiency 2) countrate [Bq]

1) Energy Yield η[%] NB/tB[cps] Required Achieved [keV] y[%]

239 Pu 17.1(L β) 2.3 0.017 0.0088 2 1500

241 Am 59.6 35.9 0.47 0.0090 0.2 3.6

235 U 186 57 0.24 0.0041 3 3.0 1) forthedetectionofannualintakescorrespondingtoatotalcommittedeffectivedoseof1mSvbymeansofroutineincorporationmonitoring 2) CalibrationwithLLNLchestphantomfor25mmchestwallthicknessand50/50muscle/adiposetissuecomposition

2.2 In vitro measurements In some cases, excreta monitoring may be the only measurement technique for those radionuclides whichhaveno γrayemissionsorwhichhaveonlylowenergyphotonemissions.Excretamonitoring programmes usually involve analysis of urine, although faecal analysis may also be required if the materialisrelativelyinsoluble.Othersamplesmaybeanalysedforspecificinvestigations.Examples

10 aretheuseofnoseblowornasalsmearsasroutinescreeningtechniques.Bloodcanbesampledinthe caseofsuspectedhighlevelcontamination,althoughactivityconcentrationsaregenerallydifficultto relatetobodycontentorintakes(seealsopublicationsofIAEA[1416]). The collection of urine samples involves three considerations. Firstly, care must be taken to avoid adventitiouscontaminationofthesample.Secondly,itisusuallynecessarytoassessorestimatethe total activity excretedin urine perunittime from measurements on the sample provided. For most routineanalyses,a24hcollectionispreferredbut,ifthisisnotfeasible,itmustberecognisedthat smallersamplesmaynotberepresentative.Wherea24hsampleisnoteasilycollectedthenthefirst morningvoidingispreferableforanalysis[15].Thetotaldailyexcretionofcreatinine,producedasa metabolicproductinmusclemetabolism,maybelessvariablethanthevolumeoffluidlostinurine, althoughsomeindividualsmaystillexhibitwidedailyvariations.Forsomeradionuclides,adequate sensitivity can be achieved only by analysis of several days’ excreta (e.g see Duke, [17]). Measurementofcreatinineconcentrationinurinehasfrequentlybeenusedtoestimate24hexcretion ofradionuclidesfromurinesamplescollectedoverpartofaday.Tritiumisanexceptionalcasefor whichitisusualtotakeonlyasmallsampleandtorelatethemeasuredactivityconcentrationtothe concentrationinbodywater.Thirdly,thevolumerequiredforanalysisdependsuponthesensitivityof theanalyticaltechnique. Theanalysisoffaecalsamplesforroutinemonitoringinvolvesuncertaintyininterpretationowingto dailyfluctuationsinfaecalexcretion.Ideally,therefore,collectionshouldbeoveraperiodofseveral days.However,thismaybedifficulttoachieveinpracticeandinterpretationmayneedtobebasedon asinglesample.Faecalmonitoringismoreoftenusedinspecialinvestigations,particularlyfollowing a known or suspected intake by inhalation of moderately soluble, TypeM or insoluble, Type S compounds.Inthesecircumstancesmeasurementofthequantityexcreteddailymaybeusefulinthe evaluationofclearancefromthelungsandintheestimationofintake.Earlyresultsmaybeusefulin identifyingexposedindividuals. Table 3 : Typicallowerlimitsofdetectionforinvitromeasuringtechniques

Radionuclide Measuringtechnique Lowerlimitofdetection

3H Liquidscintillationcounter 100Bq/l

14 C Acceleratormassspectrometry(AMS) 0.1mBq/ml(mgsamples)

131 I, 137 Cs γspectrometry 1Bq/l

210 Po Radiochemicalseparationandαspectrometry 30mBq/l

Unat Radiochemicalseparationandαspectrometry 10mBq/l

238 U, 232 Th InductivelyCoupledPlasmaMassSpectr.(ICPMS) 510 µBqpersample

239 Pu Radiochemicalseparationandαspectrometry 1mBqpersample

239 Pu ThermalIonizationMassSpectrometry(TIMS) 4Bqpersample Radionuclidesthatemit γraysmaybedeterminedinbiologicalsamplesbydirectmeasurementwith scintillationorsemiconductordetectors.Analysisof αand βemittingradionuclidesrequireschemical separationfollowedby appropriatemeasurementtechniques.Measurementofsocalledtotal αor β activitymayoccasionallybeusefulasasimplescreeningtechnique,butthereisnosinglemethodthat will determine accurately all the α and βactivity in the sample. The results cannot always be interpreted quantitatively, but can be useful for providing confirmation of satisfactory working

11 conditions, an unusual result indicating the need for further investigation which would include radiochemicalanalysis. Measurement of activity in exhaled breath is a useful monitoring technique for someradionuclides suchas 226 Raand 228 Thsincethedecaychainsofboththeseradionuclidesincludegaseswhichmaybe 14 exhaled [18,19]. It can also be used to monitor CO 2 formed in vivo from the metabolism of 14 Clabelledcompounds[20,21]. Increasing use isbeing made ofmass spectrometric techniques for the analysis of excreta samples. InductivelyCoupledPlasmaMassSpectrometry(ICPMS,Fig.7)canachievemuchlowerdetection limitsforlonglivedradionuclidesthanispossiblewithalphaspectrometry.Forexample,for 238 Uand 232 Th,detectionlimitsareintheregionof510 µBqpersample[22].Measurementtimesareinthe regionofafewminutes,whereasanalphaspectrometrymeasurementtypicallytakesseveraldays.The moreadvancedmassspectrometrictechniquessuchasmultiplecollectorICPMSorsectorfieldICP MShavethecapabilitytodetectverysmallchangesinisotopicratiosandsocandetectsmallamounts of depleted or enriched uranium in urine samples [23]. In the case of 239 Pu the use of Thermal Ionization Mass Spectrometry (TIMS), which has a minimum detection limit of about 4 Bq per sample,allowsdetectionofanintakeofTypeSthatwouldgiverisetoacommittedeffectivedoseof about0.2mSv.Themorecomplicatedtechniqueofacceleratormassspectrometry(AMS)canbeused tomeasure 14 Cinsmallsamples,mgsize,withlowactivitiesdownto~0.1mBq/mlwithhighaccuracy (<2%). The AMS technique may need to be considered for routine monitoring in situations where exposureto[ 14 C]compoundsthatdepositextensivelyinadiposetissue,orothertissueswithveryslow metabolic turnover, biological halftimes of 60>150 d,is likely, since itmustbeexpected that the 14 14 elimination of C from such tissues will occur by metabolism to [ C]CO 2 and exhalation in the breath. Figure 7: InductivelyCoupledPlasmaMassSpectrometry(ICPMS)deviceasusedatIRSN, FontenayauxRoses,France[24]

2.3 Personal air sampling and workplace monitoring APersonalAirSampler(PAS)isaportabledevicespecificallydesignedfortheestimationofintake byanindividualworkerfromameasurementofconcentrationofactivityinairinthebreathingzone oftheworker.Asamplingheadcontainingafilteriswornontheuppertorsoclosetothebreathing zone.Airisdrawnthroughthefilterbyacalibratedairpumpcarriedbytheworker.Ideally,sampling

12 rateswouldbesimilartotypicalbreathingratesforaworker(~1.2m 3h 1).However,samplingratesof currentdevicesareonlyabout1/10ofthisvalue.Theactivityonthefiltermaybemeasuredattheend ofthesamplingperiodtogiveanindicationofanyabnormallyhighexposures.Thefilterscanthenbe retained, bulked over a longer period, and the activity determined by radiochemical separation and high sensitivity measurement techniques. An estimate of intake during the sampling period can be madebymultiplyingthemeasuredaverageairconcentrationbytheairvolumeestimatedtobeinhaled by the worker during the period of intake. The difficulties in assessing intakes from PAS measurementswereconsideredbyWhicker[25].Breathingzonemeasurementscanvarysignificantly asaffectedbymeasurementconditionssuchasorientationofthesamplerwithrespecttosource,on whichlapel(rightorleft)thesamplerisworn,designoftheairsamplinghead,particlesize,localair velocitiesanddirections,andsharpgradientsinandaroundthebreathingzoneofworkers. Staticairsamplers(SAS)arecommonlyusedtomonitorworkplaceconditions,butcanunderestimate concentrations in air in the breathing zone of a worker. Marshall and Stevens [26] reported that PAS:SASairconcentrationratioscanvaryfromlessthan1upto50,dependingonthenatureofthe work. Britcher and Strong [27] concluded from their review of monitoring data for Magnox plant workers that intakes assessed from PAS data were about an order of magnitude greater than those impliedbySASdata.Nevertheless,ifSASdevicesaresitedappropriately,acomparisonofPASand SASmeasurementscanbeusedtodefineafixedPAS:SASairconcentrationratiowhichcanbeused in the interpretation of SAS measurements for dose assessment purposes. It should, however, be recognised that the use of SAS is a relatively indirect method for assessing doses, and use of the resultstoestimateindividualdoserequiresacarefulassessmentofexposureconditionsandworking practices. Apart from their potential use for dose estimation, SAS devices can also provide useful informationonradionuclidecomposition,andonparticlesizeifusedwithasizeanalysersuchasa cascadeimpactor. OveralltheuseofPASsandSASscanbeanimportantpartofacomprehensiveworkplacemonitoring programmeandisabletoprovideanearlyindicationofriskofexposure.,However,experienceofthe use ofPASs and SASs indicates that bodyactivity measurements and/or excreta analysis areto be preferredfortheassessmentofindividualintakesofairborneradionuclidesanddoses.

3 Biokinetic models

3.1 Overview

Knowledge of the behaviour of radioactive materials within the human body is essential for the assessment of intake or committed effective dose from measurements of activity in the body or in excreta.ThisChaptergivesageneraldescriptionoftheroutesofintakeofradionuclidesintothebody, andsubsequenttransferswithinandoutofthebody.ItalsogivesanoverviewofthecurrentICRP biokinetic models used to calculate body or organ content and daily urinary or faecal excretion at specifiedtimesafterintake.SeetheoriginalreportsofICRP[2833]fordetails. Figure8summarisestheroutesofintake,internaltransfers,andexcretion.Therespiratorytract,the gastrointestinal(GI)tract,theintactskin,andwoundsaretheprincipalroutesofentrytothebody.A proportionoftheactivityisabsorbedintobloodandhencebodyfluids.Activityreachingbodyfluids (transfercompartment)inthiswayisknownassystemicmaterial.Theactivitythenundergoesvarious transferswhichdetermineitsdistributionwithinthebodyanditsrouteandrateofelimination.The distribution of systemic activity in the body can be diffuse and relatively homogeneous, e.g. with tritiatedwater,orlocalisedincertainorgansortissues,e.g.withiodine(thyroid),alkalineearthmetals (bone),plutonium(boneandliver). Removal of deposited material from the body occurs principally by urinary and faecal excretion. Urinaryexcretionistheremovalinurineofmaterialfromtheplasmaandextracellularfluid.Faecal excretion has two components: systemic faecal excretion which represents removal of systemic

13 materialviatheGItract;anddirectfaecalexcretionofthematerialpassingunabsorbedthroughtheGI tract.

Themodelsforthemajorroutesofintake(inhalationandingestion)aredescribedinthefollowing Sections.Forsomeradionuclides,itisalsonecessarytoconsiderdirectuptakefromcontaminationon theskin.Thereisno generalmodelofentryofradionuclidesthroughtheskinbecauseofthelarge variabilityofsituationswhichmayoccur.Manyfactorsmustbetakenintoaccount:thechemicalform ofthecompound,thelocationandthesurfaceofthecontaminatedareaaswellasthephysiological stateoftheskin.Intactskinisagoodbarrieragainstentryofasubstanceintothebody.Generally, radionuclidesdonotcrosstheintactskintoanysignificantextent.However,afewelementsmaybe transferred rapidly. The most important is tritiated water and this is the only case considered specificallybyICRP[28,33].However,absorptionthroughskinisnotincludedinthederivationof thedosecoefficientfortritiatedwater(ICRP,[33]).Iodinemayalsobetakenupthroughskin,buttoa lesserextent.

Figure 8: Summaryofthemainroutesinintake,transfersandexcretionofradionuclidesinthe body Extrinsic removal Inhalation Exhalation Ingestion

Skin Respiratory Lymph nodes tract Gastro- intestinal Direct absorption Liver tract Sweat Transfer compartment Subcutaneous Wound tissue

Other organs Kidney

Urinary bladder Skin Urine Faeces

3.2 Human respiratory tract model

The Guide for the Practical Application of the ICRP Human Respiratory Tract Model (ICRP, [1]); Bailey et al , [34,35]) provides extensive guidance on the application of the HRTM to specific situations,suchasthoseinwhichindividualmonitoringiscarriedoutforintakesofradionuclidesby inhalation. InthemodeldescribedinPublication66[31],therespiratorytractisrepresentedbyfiveregions(Fig. 9).Theextrathoracic(ET)airwaysaredividedintoET 1,theanteriornasalpassage,andET 2,which consists of the posterior nasal and oral passages, the pharynx and larynx. The thoracic regions are bronchial(BB:tracheaandbronchi),bronchiolar(bb),andalveolarinterstitial(Al:thegasexchange region).Lymphatictissueisassociatedwiththeextrathoracicandthoracicairways(LN ET andLN TH respectively).

14 Deposition Thedepositionmodelevaluatesfractionaldepositionofanaerosolineachregion,forallaerosolsizes of practical interest (0.6nm – 100m). For theETregions, measured deposition efficiencieswere related to characteristic parameters of particle size and airflow, and were scaled by anatomical dimensionstopredictdepositionunderotherconditions(e.g.gender,ethnicgroup).Forthethoracic airways a theoretical model of gas transport and particle deposition was used to calculate particle depositionineachoftheBB,bb,andAIregions,andtoquantifytheeffectsofthesubject’slungsize andbreathingrate.Tomodelparticledeposition,theregionsaretreatedasaseriesoffilters,during both inhalation and exhalation. The efficiency of each is evaluated by considering aerodynamic (gravitational settling, inertial impaction) and thermodynamic (diffusion) processes acting competitively.Regionaldepositionfractionswerecalculatedforaerosolshavinglognormalparticle sizedistributions,withgeometricstandarddeviations(σ g)takentobeafunctionofthemedianparticle diameter,increasingfromavalueof1.0at0.6nmtoavalueof2.5aboveabout1m(Publication66, §170[31]).Depositionparametersaregivenforthreereferencelevelsofexertionforworkers(sitting, lightexercise,heavyexercise). Figure 9: RespiratorytractregionsdefinedintheHumanRespiratoryTractModel[31]

For inhalation of radionuclides by workers, the reference subject is taken to be a normal nose breathingadultmaleatlightwork.Foroccupationalexposurethedefaultvaluenowrecommendedfor the Activity Median Aerodynamic Diameter (AMAD) is 5 m (Publication 68, [36]), which is consideredtobe morerepresentativeofworkplaceaerosolsthanthe1mdefaultvalue adoptedin Publication30.Fractionaldepositionineachregionoftherespiratorytractofthereferenceworkeris giveninTable4foraerosolsof5mAMAD.

15

Table 4: Regionaldepositionofinhaled5mAMADaerosolinReferenceWorker(%)(values arerounded)[31] Region Deposition(%ofinhaledactivity)

ET 1 34.0 ET 2 40.0 BB 1.8 bb 1.1 Al 5.3 Total 82.0 Clearance The HRTM describes several routes of clearance from the respiratory tract (Fig. 10). Material depositedinET 1 isremovedbyextrinsicmeanssuchasnoseblowing.Inotherregionsclearanceis competitive between the movement of particles towards the GI tract and lymph nodes (particle transport), and the absorption into blood of material from the particles in the respiratory tract. Removalratesduetoparticletransportandabsorptiontobloodaretakentobeindependent. Figure 10 : Routesofclearancefromtherespiratorytract[31]

ET 1 Environment

Respiratory GI tract Lymph tract nodes excluding

ET 1

Body fluids Itisassumedthatparticletransportratesarethesameforallmaterials.Asinglecompartmentmodelis therefore provided to describe particle transport of all materials (Fig. 11). Reference values of rate constantswerederived,sofaraspossible,fromhumanstudies,sinceparticletransportratesareknown to vary greatly among mammalian species. Figure 11as itstands would describe theretention and clearance of a completely insoluble material. However, as noted above, there is in general simultaneousabsorptionintoblood. Absorption depends on the physical and chemical form of the deposited material. It is assumed to occuratthesamerateinallregions(includingthelymphnodes)exceptET 1,whereitisassumedthat noneoccurs.Absorptionisatwostageprocess:dissociationoftheparticlesintomaterialthatcanbe absorbed into body fluids (dissolution); and absorption into body fluids of soluble material and of materialdissociated fromparticles(uptake). The clearance rates associated with both stages can be timedependent.

16 Figure 11: Compartment model representing timedependent particle transport from each respiratorytractregion.Ratesshownalongsidearrowsarereferencevaluesinunitsof –1 d .Itisassumedthat(i)theAIdepositisdividedbetweenAI 1,AI 2andAI 3inthe ratio0.3:0.6:0.1;(ii)thefractionofthedepositinBBandbbthatisclearedslowly (BB 2 and bb 2) is 50% for particles of physical size <2.5m and decreases with diameter >2.5m, and the fraction retained in the airway wall (BB seq and bb seq ) is 0.7%atallsizes;(iii)0.05%ofmaterialdepositedinregionET 2isretainedinitswall ′ (ET seq ) and the rest in compartment ET2 which clears rapidly to the GI tract. The model as shown above would describe the retention and clearance of a completely insoluble material. However, there is in general simultaneous absorption to body fluidsofmaterialfromallthecompartmentsexceptET 1 Anterior nasal Extrathoracic 1 ET 1 Environment 0.001 Naso ′ 100 oropharynx/ LN ET ET seq ET 2 GI tract larynx

0.03 10 0.01 Bronchi BB seq BB 2 BB 1

2 0.03 0.01 Bronchioles LN TH bb seq bb 2 bb 1

0.0001 0.001 0.02 Alveolar 0.00002 interstitial AI 3 AI 2 AI 1 Thoracic Dissolution

The simplest compartment model representation of timedependent dissolution is to assume that a fraction( fr)dissolvesrelativelyrapidly,atarate sr,andtheremainingfraction(1–fr)dissolvesmore slowly,atarate ss(Fig.12(a)).IntheHRTMprovisionismadeforonlytwosuchstates,toavoid undue complexity, as it is considered that there would rarely in practice be sufficient information availabletojustifymore.

A limitation of the system in Fig. 12 (a), however, is that it can only readily represent an overall fractionaldissolutionratethatdecreaseswithtime.Toovercomethis,theHRTMusesanequivalent systemwiththesamenumberofvariables,butwhichgivesgreaterflexibility,showninFig.12(b).In this,thematerialdepositedintherespiratorytractisassignedtocompartmentslabelled“Particlesin initialstate”inwhichitdissolvesata constantrate sp.Materialissimultaneouslytransferred(ata constantrate spt )toacorrespondingcompartmentlabelled“Particlesintransformedstate”inwhichit hasadifferentdissolutionrate, st.Withthissystem,theinitialdissolutionrateisapproximately spand thefinaldissolutionrateisapproximately st.Thuswithsuitablechoiceofparameters,including st> sp,anincreasingdissolutionratecanberepresented.Theratioof spto spt approximatestothefraction thatdissolvesrapidly.

17 Figure 12: Alternativecompartmentmodelsrepresentingtimedependentdissolution,followedby instantaneousuptaketobodyfluids.InthemodelshowninFig.12(a),afraction frof thedepositisinitiallyassignedtothecompartmentlabelled“Rapiddissolution”,and therest(1– fr)ofthedepositisinitiallyassignedtothecompartmentlabelled“Slow dissolution”.InthemodelshowninFig.12(b),allthedepositisinitiallyassignedto the compartment labelled “Particles in initial state”. For definition of symbols, see text. (a) Deposition Deposition

fr 1 – fr Rapid Slow dissolution dissolution

sr ss

Body fluids

(b) Deposition

spt Particles in Particles in initial state transformed state

sp st

Body fluids

If the dissolution ratedecreases with time, asis usually the case, either system could be used, and wouldgivethesameresults,withthefollowingvalues:

sp= ss+ fr( sr–ss)

spt =(1–fr)( sr–ss)

st= ss In most circumstances the system in Fig. 12 (a) has advantages. In particular, it is simpler to understand,anditisgenerallymorestraightforwardtoestimatethevaluesoftheparametersinFig.12 (a) than those of Fig. 12 (b) from experimental data. The system shown in Fig. 12 (b) is that “formally” used in the HRTM, rather than that of Fig. 12(a), only in that the default absorption parametervalues(Table2)arespecifiedintermsof sp, spt and st,ratherthan fr, srand ss.

18 Uptake

Uptaketobodyfluidsofdissolvedmaterialcanusuallybetreatedasinstantaneous.Insomesituations, however,asignificantfractionofthedissolvedmaterialisabsorbedslowlyintobodyfluidsbecauseof binding to respiratory tract components. To represent timedependent uptake, it is assumed that a fraction( fb)ofthedissolvedmaterialisretainedina“bound”state,fromwhichitgoesintobodyfluids atarate sb,whiletheremainingfraction(1– fb)goestobodyfluidsinstantaneously.Inthemodel, materialinthe“bound”stateisnot clearedbyparticletransportprocesses,butonlybyuptaketobody fluids.Thus,onlyone“bound”compartmentisrequiredforeachregion.However,itisassumedby defaultthatuptakeisinstantaneous,andthisisreflectedinthereferencevalues.

The system shown in Fig. 11 applies to each of the compartments in the particle transport model showninFig.10exceptET 1wherenoabsorptionoccurs.

Itisrecommendedthatmaterialspecificratesofabsorptionshouldbeusedinthemodelforcompounds for which reliable experimental data exist. For other compounds, default values of parameters are recommended,accordingtowhethertheabsorptionisconsideredtobefast(TypeF),moderate(M)or slow(S)(correspondingbroadlytoinhalationClassesD,WandYinICRPPublication30).Reference values for each are specified in terms of the parameters sp, spt and st, and are given in Table 5. The “bound”stateisnotinvokedforthedefaultvalues,i.e., fb=0forallthreeTypes.

These absorption rates, expressed as approximate halftimes, and the corresponding amounts of materialdepositedineachregion thatreachbodyfluids canbesummarisedasfollows:

TypeV : 100%absorbedinstantaneously.Regionaldepositiondoesnotneedtobeassessedfor such materials, because in dose calculations they can be treated as if they were injecteddirectlyintobodyfluids.

TypeF : 100%absorbedwithahalftimeof10minutes.Thereisrapidabsorptionofalmostall materialdepositedinBB,bb,andAI,and50%ofmaterialdepositedinET 2.Theother 50%ofmaterialdepositedinET 2isclearedtotheGItractbyparticletransport.

TypeM: 10% absorbed with a halftime of 10 minutes and 90% with a halftime of 140 d. There is rapid absorption of about 10% of the deposit in BB and bb; and 5% of materialdepositedinET 2.About70%ofthedepositinAIeventuallyreachesbody fluids.

TypeS: 0.1%absorbedwithahalftimeof10minutesand99.9%withahalftimeof7000d. There is little absorption from ET, BB, or bb, and about 10% of the deposit in AI eventuallyreachesbodyfluids.

ForabsorptionTypesF,M,andS,allthematerialdepositedinET 1isremovedbyextrinsicmeans. MostofthedepositedmaterialthatisnotabsorbedisclearedtotheGItractbyparticletransport.The smallamountstransferredtolymphnodescontinuetobeabsorbedintobodyfluidsatthesamerateas intherespiratorytract.

ThechoicebetweenthedefaultabsorptionTypesF,M,andSisthemostcommononetobemadein applyingtheHRTM.

ICRPPublication66doesnotgivecriteriaforassigningcompoundstoabsorptionTypesonthebasis ofexperimentalresults.GuidanceonthechoiceofdefaultType,andhenceofthereferencevaluesof the absorption parameters, is given in ICRP Publication 68 [36] for occupational exposure and in ICRPPublication71[33]forexposureofthepublic(forthe31elementscovered).

InICRPPublication68,whichgivesinhalationdosecoefficientsforworkers,compoundsforwhich clearance was previously given as “inhalation Class” D, W or Y in ICRP Publication 30, were

19 generally assigned to “absorption Type” F, M or S respectively. A listing of the classifications is giveninICRPPublication68,AnnexeF[36].

Criteria for assigning compounds to absorption Types on the basis of experimental results were developed in ICRP Publication 71. They are described, with examples of their application, in [1] (AnnexeC)whichisbasedonICRPPublication71,AnnexeD.

Table 5: DefaultabsorptionparametervaluesforTypeF,M,andSmaterials(basedonICRP Publication66,Table18) a[31] Absorptiontype

F(fast) M(moderate) S(slow)

1 Initialdissolutionrate(d ) sp 100 10 0.1

1 Transformationrate(d ) spt 0 90 100

1 Finaldissolutionrate(d ) st 0.005 0.0001

Fractiondissolvedrapidly fr 1 0.1 0.001

Approximatedissolutionrate

1 Rapid(d ) sr 100 100 100

1 Slow(d ) ss 0.005 0.0001

Fractiontoboundstate fb 0 0 0

a Themodelvalues sp, spt and stinthistableare referencevaluesi. e.,therecommendeddefaultvaluesforuseinthemodel. No“bound”stateisassumedfordefaultTypes.

GasesandVapours For radionuclides inhaled as particles (solid or liquid) the HRTM assumes that total and regional depositionsintherespiratorytractaredeterminedonlybythesizedistributionoftheaerosolparticles. Thesituationisdifferentforgasesandvapours,forwhichdepositionintherespiratorytractdepends entirelyonthechemicalform.Inthiscontext,depositionreferstohowmuchofthematerialinthe inhaledairremainsbehindafterexhalation.Almostallinhaledgasmoleculescontactairwaysurfaces, butusuallyreturntotheairunlesstheydissolvein,orreactwith,thesurfacelining.Thefractionofan inhaledgasorvapourthatisdepositedineachregionthusdependsonitssolubilityandreactivity.

AsageneraldefaultapproachtheHRTMassignsgasesandvapourstothreeclasses,onthebasisof theinitialpatternofrespiratorytractdeposition(ICRPPublication66,Chapter6):

• ClassSR0insolubleandnonreactive:negligibledepositionintherespiratorytract.

• ClassSR1solubleorreactive:depositionmayoccurthroughouttherespiratorytract.Inthe absence of information 100% total deposition is assumed, with the following distribution: 10%ET 1,20%ET 2,10%BB,20%bband40%AI(ICRPPublication66,Paragraph221).

• ClassSR2highlysolubleorreactive:100%depositionintheextrathoracicairways(ET 2).

20 ForClassesSR1andSR2,subsequentretentionintherespiratorytractandabsorptiontobodyfluids aredeterminedbythechemicalpropertiesofthespecificgasorvapour.Bydefault,referencevalues foranAbsorptionTypeareused,normallyTypeF(absorptionrate100d 1)orTypeV(instantaneous absorption).

Guidance on many of the morecommonly encountered radioactive gases and vapours is given in ICRPPublications68and71forworkersandthepublic,respectively.Forconvenience,mostofitis broughttogetherinICRP[1]inwhichsomeadditionalguidanceisgiven.

3.3 Human alimentary tract model

Material may reach the GI tract directly by ingestion, by transfer from the respiratory tract as described above, or by transfer from other body organs. The GI tract model defined in ICRP Publication30Part1(ICRP,[28])wasusedinICRPPublications67,68,69,71,72and78[30,32, 33, 3638] to describe the behaviour of radionuclides in the GI tract, and to calculate doses from radionuclidesinthecontentsoftheGItract. Recently the Publication 30 model of the gastrointestinal tract has been replaced by the Human Alimentary Tract Model (HATM) described in ICRP Publication 100 ([39]). The structure of the HATMisshowninFig13.Itsmainfeaturescanbesummarisedasfollows: • Inclusion of all alimentary tract regions. Doses are calculated for the oral cavity, oesophagus, stomach, small intestine, right colon, left colon and rectosigmoid (the sigmoid colon and rectum). Colon doses are combined as a massweighted mean to includetherightcolon,leftcolonandrectosigmoid. • Genderdependentparametervaluesforadultsfordimensionsandtransittimesofcontents throughtheregions(agedependentparametervaluesarealsospecifiedforuseinfuture calculationsofdosestomembersofthepublic). • Transittimesforfoodandliquids,aswellasfortotaldiet,forthemouth,oesophagusand stomach. • Adefaultassumptionthatabsorptionofanelementanditsradioisotopestobloodoccurs exclusivelyinthesmallintestine,ie.Thetotalfractionalabsorption, fAcoincideswiththe fractionalabsorptionfromthesmallintestine, f SI. Itisassumedthereisnorecyclingfrom thewalltoblood. • Modelstructuretoallowforabsorptioninotherregions,whereinformationisavailable. • Modelstructuretoallowforretentioninthemucosaltissuesofthewallsofalimentary tractregions,andonteeth,whereinformationisavailable. • Explicitcalculationsofdosetotargetregionsforcancerinductionwithineachalimentary tract region, considering doses from radionuclides in the contents of the regions, and consideringmucosalretentionofradionuclideswhenthisistakenintoaccount. TheorgansandfluidsrepresentedinFig13bydashedboxesshowconnectionsbetweentheHATM andtheHRTMandsystemicbiokineticmodels.Firstorderkineticsisassumedforalltransfersinthe HATM.Thisisaconsiderablesimplificationofthecomplexprocessesinvolvedintransferofmaterial through the lumen of the alimentary tract but is expected to provide a reasonably accurate representationofthemeanresidencetimeofaradionuclideineachsegmentofthetract.

21 Figure 13 : Structure of the HAT model. The dashed boxes are included to show connections between the HATM and the HRTM and systemic biokinetic models. fA gives net transfer to blood and replaces the f1 value of the gastrointestinal tract model. In general,uptakeofradionuclidesisassumedtooccurfromthesmallintestine.

Mucus and associated materials cleared from the respiratory tract enter the oesophagus via the oropharynx. For ingested food and liquids, the HATM specifies two components of oesophageal transitrepresentingrelativelyfasttransferof90%(meantransittimeof7secondsfortotaldiet)ofthe swallowed material and relatively slow transit of the residual 10% (40 seconds for totaldiet). Itis assumedthatthesloweroesophagealtransittimesapplytoallmaterialclearedfromtherespiratory tract. Theoralcavityandoesophaguswillreceiveverylowdosesfromradionuclidesintransitbecauseof their short transit times (ICRP, ([39]). However, these regions were included for completeness, becauseaspecific wTisassignedtotheoesophagus(ICRP,[40]),andbecauseretentioninthemouth, onteethforexample,canresultinasubstantialincreaseindosetotheoralmucosa.Ingeneral,the alimentarytractregionsofgreatestimportanceintermsofdosesandcancerriskarethestomachand particularlythecolon.Whilethesmallintestinemayreceivegreaterdosesthanthestomach,itisnot sensitive to radiationinduced cancer and is not assigned a specific wT value. Doses are calculated separately for the right colon, left colon and rectosigmoid. This partitioning of the colon for the purposesofdosecalculationsispredicatedontheavailabilityoftransittimedata.Therectumistaken tobepartoftherectosigmoid,primarilybecauseofdifficultiesindeterminingtransittimesseparately. Meantransittimesforthestomachandcolonareaboutonethirdgreaterinadultfemalesthanmales. Slightlysmallermassesinfemales(eg.10%lowermassofcolontissue)willcompoundthisgender difference.

22

Inmostcases,thevaluesof fAforingestionwillbethesameasthef 1valuesgivenpreviouslyforuse withthePublication30model,sinceinmostcasesthereisunlikelytobesufficientnewinformationto warrantarevisioninvalues.Inaddition,thegeneraldefaultassumptionwillbethatabsorptionoccurs solelyfromthesmallintestine,asinthePublication30model;thatis, fSI = fA.However,theHATM allows absorption to be specified for other regions as well as the small intestine. As discussed in Publication100(ICRP([39])fortheexampleofisotopesofiodinedosestoalimentarytractregions andothertissueswillinmanycasesbeinsensitivetoassumptionsregardingthesiteofabsorption. For inhaled particles reaching the alimentary tract after escalation from the respiratory tract, it is appropriatetotakeaccountofsolubilityinthelungsinspecifyingf Avalues.Forelementsexhibitinga range in solubility according to their physicochemical form, there is evidence that the reduced solubilityofTypeMorSmaterialsisalsoassociatedwithreducedintestinalabsorption.Asdiscussed inPublication71(ICRP,([33]),inmanycasesforwhichasingle fAvalueisspecifiedforingestionof anelement,thisistakentoapplytoinhaledTypeFmaterialsandlowerdefaultvaluesof0.1and0.01 areappliedtoTypesMandS.However,becauseoftheneedforrealisminestimatesofabsorptionfor application to bioassay interpretation, attempts have been made wherever possible to use available datatospecify f Avaluesfordifferentformsratherthanrelyondefaults. AnimportantdevelopmentintheHATMisthemethodologyusedtocalculatedosesinthevarious regionsfromnonpenetratingalphaandelectronradiations.Thus,whilethePublication30approach was to assume that the dose to the wall was one half of that to contents of the region, with an additionalfactorof0.01includedforalphaparticlestoallowfortheirshortrange,theHATMtakes explicitaccountofthelocationofthetargettissueinthemucosallayerofthewallofeachregion.The targetsrelatingtocancerinductionaretakenineachcasetobetheepithelialstemcells,locatedinthe basal layers of the stratified epithelia of the oral cavity and oesophagus and within the crypts that replenishthesinglecelllayerepitheliumofthestomachandsmallandlargeintestines. As discussed in Publication 100 (ICRP ([39]), the HATM generally results in substantially lower estimatesofdosestothecolonfrombetaemittingradionuclidesthanobtainedusingthePublication 30model.ThisisbecausetheHATMtakesexplicitaccountofdosetothetargetregionthroughoutthe lengthofthecolon,andoflossofenergyinthecoloncontentsandthemucosaltissueoverlyingthe targetstemcells(atadepthof280300 µm).Thisreducesenergydepositioninthetargettissuefor electronsandresultsinzerodoseinthetargettissuefromalphaparticles.Intheabsenceofretention ofradionuclidesinthealimentarytractwall,dosesfromingestedalphaemitterstoallregionsofthe alimentary tract will be solely due to their absorption to blood and subsequent irradiation from systemicactivityinsofttissues.Forthestomach,theHATMandPublication30approachesgivemore similarestimatesofdosesfromelectronemittingnuclides.

3.4 Absorption through intact skin Generally,radionuclidesdonotcrosstheintactskintoanysignificantextent.Exceptionsofpractical importancearetritiumoxideasliquidorvapour,organiccarboncompoundsandiodineasvapourorin solution. Thereisnogeneralmodelofentryofradionuclidesthroughtheskinbecauseofthelargevariabilityof situations which may occur. Skin can become contaminated by contact with aerosols, liquids or surfacescontaminatedwithradionuclides.Clothingmaybeanimportantsourceofskincontamination andwet clothingmaybringthe contaminantintoclosecontactwiththeskintherebyincreasingthe possibilityofpenetrationthroughit.Manyfactorsmustbetakenintoaccountindoseassessment:the chemicalformofthecompound,thelocationandthesurfaceofthecontaminatedareaaswellasthe physiologicalstateoftheskin.Intactskinisagoodbarrieragainstentryofasubstanceintothebody. Forskincontamination,boththeradiationdosetotheareaofskincontaminatedandthedosetothe whole body as a result of absorption need to be considered. ICRP in Publication 60 [40] has

23 recommendedthatforskincontaminationdosesshouldbecalculatedtosensitivecells,assumedtobe atadepthof70m(asareasonableaveragevalue).Fordepositedactivitydosesaretobecalculated asanaveragetoeachcm 2ofskintissue.Thisappliestoactivitydistributedovertheskinsurfaceor aggregatedinparticles.NospecificmodelsarerecommendedbyICRPforcalculatingdosesfromβ particlesdepositedontheskinandabsorbedthroughit.

3.5 Wounds To provide a means for calculating doses resulting from radionuclidecontaminated wounds, the National Council on Radiation Protection and Measurements, in collaboration with the ICRP, has developedabiokineticanddosimetricmodelforexposuretoradionuclidesfromcontaminatedwounds (NCRP, [41]), The model (Fig. 14) was formulated and parameterized largely using experimental animal data due to the lack of adequate human information. The model can be used to calculate radiationdosestothewoundsitefromdepositedradionuclides,and,whencoupledwithanelement specific systemic biokinetic model, can also be used to calculate committed doses to organs and tissues and committed effective doses as well as to predict urinary and fecal excretion patterns for bioassayinterpretation. TheNCRPWoundModel(Fig.14)wasdesignedtopredictthebiokineticbehaviourofbothsoluble andinsolubleradioactive materials,regardlessofinitialphysicaland chemicalstate.Todo so,five compartments were designated to describe certain physical or chemical states of the radionuclide withinthewoundsite.ThesecompriseSoluble(S);ColloidalandIntermediateState(CIS),Particles; Aggregates and Bound State (PABS); Trapped Particles and Aggregates (TPA); and Fragments. In some cases, the compartments contain the radionuclide in its original physicochemical form. In others,theoriginallydepositedmaterialchangesstateandmovesfromonecompartmenttoanother withtime.Althoughusingfivecompartmentstorepresentthewoundsiteappearscomplex,inmost casesthemodelsimplifiestotwoorthreecompartmentsdependingonthephysicalandchemicalform oftheradionuclidespecified.Thistwoorthreecompartmentrepresentationwasshowntobewidely consistentwiththeexperimentaldatadescribingwoundsiteretention(NCRP,[41]). Figure 14: NCRPwoundmodel[41]

24 Four categories of retention were defined for radionuclides present in a wound initially in soluble form: Weak, Moderate, Strong and Avid, which refer generally to the magnitude of persistent retention in the wound. The criteria for categorization were: 1) the amount retained 1 d after depositionand2)therateofclearanceoftheremainder.Inadditionthreeothercategoriesofdeposit coverparticles,colloidsandfragments. Release of radionuclide from the wound site occurs via the blood for soluble materials and lymph nodes(LN)forparticulates.FurthersolubilisationofparticlesinLNalsoprovidesforradionuclideto the blood. The blood comprises the central compartment that links the wound model with the respectiveradioelementspecificsystemicbiokineticmodel.Oncetheradionuclidereachestheblood, itbehavesbiokineticallyasifithadbeeninjecteddirectlyintoblood,andinasolubleform.Thisisthe sameapproachasistakenfortheHRTMandHATM. The presence of wounds, abrasions, burns or other pathological damage to the skin may greatly increase the ability of radioactive materials to reach subcutaneous tissues and then the blood and systemiccirculation.Althoughmuchofthematerialdepositedatawoundsitemayberetainedatthe site,andcanbesurgicallyexcised,soluble(transportable)materialcanbetransferredtothebloodand hencetootherpartsofthebody.Theseeventsoccuronly asaresultofaccidents,eacheventwill, therefore,beuniqueandneedtobeassessedbyoccupationalhealthphysicistsandmedicalstaff. To date, ICRP has not given advice on the interpretation of wound monitoring data following accidentsinvolvingradionuclidesaseachincidentwillbeuniqueandgeneraladvicecannotbegiven. Thebiokineticmodelsthathavebeendevelopedforvariousradionuclidesare,however,applicableto thesolublecomponentofanydepositincutsorwoundsthatentersthebloodcirculation.Thedose coefficients recommended by ICRP can be used in conjunction with the NCRP wound model parameter values to obtain organ and tissue doses and effective dose for radionuclides that have enteredthebloodfromthewoundsite. The application of the ICRP wound model for some real wound contamination cases has been discussed in the framework of the CONRAD project [42]. Good fits to the urine data have been obtainedforfouroutofsixcases.However,itwasnotpossibletoobtainagoodfitwithdefaultwound retentioncategoriesforthetwoothercases.Sofurtherinvestigationsarerequired.Onesuggestionto solve the problem was to assume a mixture of two default retention categories, either inside the ‘soluble category’ (weak, moderate, strong and avid) or inside the ‘insoluble category’ (colloid, particles or fragment). Another option would be to vary model parameter values. However, which parametersshouldbevariedandtowhatextentarequestionsthatstillneedtobeanswered.

3.6 Biokinetic Models for Systemic Activity The fraction of an intake of a radionuclide entering the systemic circulation is referred to as the uptake. In Publication 30 ICRP reviewed information on the behaviour of radionuclides that had enteredinthebody.Itrecommendedbiokineticmodelsforradionuclidesthathadenteredthebloodfor intakesbyinhalationandingestion.TheICRP30modelsappliedspecificallytoworkersandnotto membersofthepublic.Morerecently,Publications56,67,69and71revisedthebiokineticmodelsfor selected radionuclides of 31elements and these have been applied in the calculation of dose coefficientsforbothworkersandforinfants,childrenandadultmembersofthegeneralpopulation (ICRP[29,30,32,33].ThemodelsgiveninthesePublicationswereprimarilydevelopedtoprovide agedependent dose coefficients but the models foradults were also used in Publication 68 (ICRP, [36]) which gave updated dose coefficients for workers and in Publication 78 (ICRP, [38]) on the interpretationofbioassaydata. The biokinetic models recommended for adults are presently being reviewed by ICRP and will be publishedprobablyin2009.Akeyfeatureoftheupdatedmodelsisthattheywillbeapplicablefor boththecalculationofdosesandtheinterpretationofbioassaydata.

25 Figure 15: Systemicmodelforplutoniumandamericium

Radionuclidesenteringthebloodmaydistributethroughoutthebody(e.g. 3H, 24 Na, 42 K, 137 Cs);they mayselectivelydepositinaparticulartissue(e.g. 131 Iinthethyroid; 90 Srinbone)ortheymaydeposit insignificantquantitiesinanumberoftissues(e.g. 239 Pu, 241 Am, 144 Ce).Ifaradionuclidethatenters the blood is an isotope of an element that is required by the body then it will follow the normal metabolic pathways for that element (eg. 24 Na, 32 P, 42 K, 45 Ca, 59 Fe). If it has similar chemical propertiestoanelementthatisnormallypresentthenitwilltendtofollowthebiokineticpathwaysof that element, although its rate of transfer between the various compartments in the body may be different (e.g. 90 Sr and 226 Ra behave similarly to Ca, 137 Cs and 86 Rb similarly to K). For other radionuclides their behaviourinthebody will depend upon theiraffinity for biological ligands and other transport systems in the body and, as a result, the extent of uptake and retention is largely unpredictableandmustbeassessedfromtheavailablehumanoranimaldata(eg. 95 Nb, 106 Ru, 239 Pu, 241 Am).Figure15illustratesthestructureofthesystemicmodelforplutoniumandamericium.

3.7 Excretion pathways

ThebiokineticmodeladoptedfortheurinarybladderisdescribedinPublication67(ICRP,[30])and Publication68(ICRP,[36]).Althoughthemodelwasdevelopedfordosimetry,itisalsoappliedin Publication78[38]topredictexcretion.Thenumberofvoidsperdayistakentobesix.Torepresent thekineticsofthebladderintermsoffirstorderprocesses,therateofeliminationfromthebladderis taken to be 12 d 1. There is some degree of approximation in representing discrete events by a continuousprocessinthisway.However,anyinaccuraciesintroducedarelikelytobesmallandwill tendtocanceloutwhenaveragedoveradailymeasurement.

TheactivitypresentintheupperandlowerlargeintestineincludesmaterialwhichenteredtheGItract fromthesystemiccirculationintotheupperlargeintestine.

26 ForbioassayinterpretationitshouldberememberedthatthetransittimethroughtheGItractissubject to particularly large inter (and intra) subject variations. Moreover, while for ease of computation transit through the GI tract is represented by a series of compartments that clear exponentially, in practice,themovementismorelike“slug”flow.Itisthereforeunlikelythatindividualdailyfaecal clearancemeasurementsinthefirstfewdaysafterintakewillfollowthepredictedpattern,andsoitis besttoconsidercumulativeexcretionoverthefirstfewdays.

3.8 Biokinetic functions

TheICRPbiokineticmodelsoutlinedaboveallowforthecalculationofbiokineticfunctionsforthe interpretationofincorporationmonitoringdata,i.e.thetimedependenceoftheactivitycontentofthe wholebodyoranorganunderinvestigation(retentionfunction)orthetimedependenceoftheactivity excretedviaurineorfaeces(excretionfunction).Typicallythebiokineticfunctionsarecalculatedfora single intake by inhalation, ingestion and injection. For protracted intakes the biokinetic functions shouldbeintegrated(ifgivenasacontinuousfunction)orobtainedbysuperposition(iftabulatedat discretetimes).

Thereareanumberofpublicationswhichgivebiokineticfunctionsforradionuclidesusingthecurrent ICRPModels,including:IAEA[15];ICRP[43];Phipps etal [44];Potter[45];Ishigure etal [46].

4 Dose assessment

4.1 State of the art

Thebiokineticmodelsoutlinedaboveareusedfortheassessmentofinternaldosefromthemonitoring data. There are some broad guidelines for routine, special and taskrelated individual monitoring recommendedbyICRPinPublication54 [47]andPublication78 [38].Theseguidelinesleavemostof theassumptionsopen,thisresultinginmanydifferentapproachesfortheinterpretationofmonitoring dataasdemonstratedbythe3 rd EuropeanIntercomparisonExerciseonInternalDoseAssessment [48].

The 3 rd European Intercomparison Exercise gave special consideration to the effects of the new modelsandthechoiceofinputparametersontheassessmentofinternaldosesfrommonitoringresults. Italsotookintoaccountsomeaspectswhichhadnotbeenconsideredinpreviousexercises,suchasair monitoring, natural radionuclides, exposure of the public, artificially created cases and artificially reducedinformation.Sevencasescenariosweredistributed,dealing with 3H, 90 Sr, 125 I, 137 Cs, 210 Po, 238 U and 239 Pu, and covering different intake scenarios and allmonitoring techniques. Resultswere receivedfrom50participants,43representing18Europeancountriesand7fromfivecountriesoutside Europe. Most participants attempted more than half of the cases. Thus on average there were 35 responsespercasewithatotalofabout240answers,givingagoodoverviewofthestateoftheartof internaldosimetry.Theresultsintermsofintakeandcommittedeffectivedose appearedtobelog normally distributed with the geometric standard deviation ranging from 1.15 for the cases dealing with 3Hand 137 Cs,upto2.8forthecasesdealingwithαemitters(Table6).Thesefiguresreflectto largedifferencesintheindividualresultswhichvariedintheworstcaseoverarangeoffiveordersof magnitude.AkeyfeatureoftheexercisewasaWorkshop,involvingmostoftheparticipants,atwhich eachcaseandthe variousapproachestakentoassessingitwerediscussed.Severalreasonsforthe differencesintheresultswereidentified,includingdifferentassumptionsaboutthepatternofintake, andthechoiceofmodel.

27 Table 6:StatisticalevaluationsoftheE(50)resultsofthe3rd EuropeanIntercomparisonExerciseon InternalDoseAssessment(excludingoutliers ) [48] Geometricmean Geometric Casenumber Radionuclide Numberofresults (a) (mSv) standarddev. 1 3H 0.00529 1.16 41(7) 2 90 Sr/ 90 Y 0.093 1.78 38(4) 3 125 I 0.441 1.53 38(2) 4 137 Cs 0.198 1.15 43(6) 5 210 Po 3.18 1.25 20(1) 238 U(+daughters) 0.355 2.31 20(0) 232 Th(+daughters) 0.157 2.8 20(0) 6(A) 239 Pu 240 2.4 32(3) 7 239 Pu 347 2.16 30(2) (a )numberofoutliersinbrackets Themostimportantconclusionofthe3 rd EuropeanIntercomparisonExercisewastheneedtodevelop agreed guidelines for internal dose evaluation procedures in order to promote harmonisation of assessments between organisations and countries, which has special importance in the European Union,becauseofthemobilityofworkersbetweenmemberstates.Thiswasthereasontolaunchthe IDEASprojectinthe5 th EUFrameworkProgramme(EUContractNo.FIKRCT200100160). TheIDEASprojectreviewedthe“Scienceandartofinternaldoseassessment”.Basedonthisreview “General guidelines for the estimation of committed effective dose from incorporation monitoring data”weredevelopedwhichcoverallaspectsofinternaldosimetry [49]. For testing of the IDEAS Guidelines a new intercomparison exercise was organised jointly by the International Atomic Energy Agency (IAEA) and the IDEAS project [50]. Full details of the intercomparisonexerciseareprovidedbyHurtgen[51]andbytheIAEA[52].Sixcaseswereselected to cover a wide range of practices in the nuclear fuel cycle and medical applications. These cases were:(1)acuteintakeofHTO,(2)acuteinhalationofthefissionproducts 137 Csand 90 Sr,(3)acute inhalationof 60 Co,(4)repeatedintakesof 131 I,(5)intakeofenricheduraniumand(6)singleintakeof Pu isotopes and 241 Am.Four of thecases (1, 2,5 and6) are real, and all except case 5 have been published.Cases3and4wereartificiallyconstructed. Table 7:StatisticalevaluationsoftheE(50)resultsoftheIDEAS/IAEAintercomparisonexercise [5052](excludingoutliers ) Geometricmean Geometric Casenumber Radionuclide Numberofresults (a) (mSv) standarddev. 1 3H 25.8 1.06 46(12) 2 137 Cs 0.66 1.16 52(6) 90 Sr 7.22 1.94 48(10) 3 60 Co 5.0 1.4 56(6) 4 131 I 2.57 1.07 50(13) 5 EnrichedUranium 36.8 2.4 38(3) 6 241 Am 52 2.1 32(3) 239 Pu 140 1.58 31(5) (a) numberofoutliersinbrackets Because of the easy access to the cases via the Internet, and the worldwide promotion of the intercomparison exercise by the IDEAS group and the IAEA, there were a large number of

28 participantsfromallovertheworld.Participantswerefreetoundertakeonlythosecasesrelevantto theirwork.Ofthe74participantswhoassessedatleastonecase,36%providedananswertoallsix cases.Thehighestparticipation(84%)wasforthecobaltandiodinecasesandthelowest(57%)was for the americium part of case 6. The statistical procedure used in the previous exercise [46] was applied to identify outliers in each set of results. Table 7 summarises results (committed effective doses,E(50))excludingoutliers.Theresultswerediscussedwiththeparticipantsduringaworkshop heldbytheAgencyinApril2005. AscanbeseenfromTables6and7,thegeometricstandarddeviationoftheresultstendstobesmaller for the IDEAS/IAEA intercomparison exercise than for the 3 rd European Intercomparison Exercise. Thecasesofthetwointercomparisonscannotbecomparedwitheachother,butthereseemstobean improvement. Actually, the IDEAS/IAEA intercomparison exercise showed that the IDEAS Guidelineshaveapositiveinfluenceontheharmonisationofreportedintakesanddoses.Animportant finding was the loweroccurrence ofoutlying values among those who applied the Guidelines than among those who did not. However, even very detailed guidelines cannot help if unrealistic assumptionsorsimplemistakesaremade.Thereisstillaneedforadequatetraining,experienceand qualitycontrol. Some 20% of participants used the IDEAS Guidelines correctly and reached results that can be considered accurate. In view of this, more effort should be put into the promotion and correct application of such guidelines in the international internal dosimetry community, together with dedicatedtraining.SotheIDEASguidelinesshouldbedescribedinmoredetailalsointhisrefresher course. The disillusioning experience with the past intercomparison exercises was also recognised by the International Standardization Organization (ISO). Because of the substantial differences between nationalregulations,concepts,anddoseassessmentprocedurestheISOrecentlyinitiatedprojectsto standardizethemonitoringofworkers,therequirementsformeasuringlaboratoriesandtheprocesses forthequantitativeevaluationofmonitoringdata[53].Theanticipatedapproachescorrespondwidely totheIDEASGuidelines.

4.2 General requirements

Aspointedoutintheprevioussection,theintercomparisonexerciseshaveshownthatthereisawide varietyofevaluationprocedures,dependingontheexperienceandtheskilloftheassessoraswellas onthehardwareandsoftwaretoolsavailable.However,foragivensetofinternalmonitoringdatain termsofbody/organactivityand/orurine/faecalactivitythereshouldbeonestandardestimateforthe intakeandthecommittedequivalentdose.Thisstandardestimateisdefinedbythemonitoringdata, thebiokineticmodelsforthedescriptionofthemetabolism,dosimetricmodels,and–ifavailable– some additional information, such as time of intake, route of intake, aerosol size, respiratory tract absorption Type, gastrointestinal (GI) tract absorption factor ( f1 value) and previous internal exposures.

SotheaimoftheIDEASguidelines[49]istoenableallassessorstoderivethebestestimateforany givensetofincorporationmonitoringdatatakingintoaccountthefollowingprinciples:

• Harmonisation:byfollowingtheproceduresanytwoassessorsshouldobtainthesame estimateofdosefromagivendataset

• Accuracy:the“best”estimateofdoseshouldbeobtainedfromtheavailabledata

• Proportionality:theeffortappliedtotheevaluationshouldbeproportionatetothedose– thelowerthedose,thesimplertheprocessshouldbe.

29 4.2.1 Harmonisation

Awelldefinedprocedureisneededandforthisreasontheprocessisdefinedhereprimarilybymeans ofaseriesofflowcharts.Sofaraspossible,theprocesshasbeenmadewidelyapplicable,i.e.,itdoes notassumethattheassessorhastheuseofsophisticatedbioassayinterpretationsoftware.Forroutine monitoring situations, where typically there is only one measurement relating to each intake, it is reasonably straightforward to define a procedure. However, in special monitoring situations, where typicallythereismorethanonemeasurementandquitepossiblymorethanonetypeofmeasurement (urine,faeces…)differentoptionsfordatahandlingcaneasilyleadtodifferentevaluateddoses,even when the same model, parameter values and software are used. Another range of options, and opportunities for different evaluated doses, arises in situations where it is appropriate to consider changingparametervaluesfromtheICRPdefaults.Proposalsaremadehereforasystematicapproach todoseassessmentinallthesesituations.

4.2.2 Accuracy

It is recognised that the uncertainties associated with assessed internal dose can be considerable, especially for actinides which are difficult to detect in the body and have relatively high dose coefficients(SvBq 1).Iftheinitialestimateofdoseexceeds1mSv,itcouldwellbethatthepossibility ofasubstantiallyhigherdose(e.g.6mSv)cannoteasilybeexcluded.Itisthenimportanttomakebest use of the available information. To do so may well involve changing parameter values from their ICRPdefaultvaluesandguidanceisthereforeneededonwhichparametervaluesmightreasonablybe variedaccordingtothecircumstances.

4.2.3 Proportionality

Theeffortappliedtotheevaluationofincorporationmonitoringdatashouldbroadlycorrespondtothe expectedlevelofexposure,andthecomplexityofthecase.Ontheonehand,iftheexposureislikely to be very low with respect to the dose limits, simple evaluation procedures with a relatively high uncertaintymaybeapplied.Ontheotherhand,ifthemonitoringvaluesindicatetheexposuretobe close to or even above the dose limits, more sophisticated evaluation procedures will need to be applied.Thesetakeaccountofanycasespecificinformationavailable,sothattheuncertaintyandbias onthebestestimateareaslowasreasonablyachievable.

4.3 Levels of task

Withrespecttooperationalradiationprotectionthefollowingstructureof“Levelsoftask”hasbeen proposedbytheIDEASGuidelines[49]:

• Level0:Annualdose(committedeffectivedosefromintakesofradionuclidesthatoccur intheaccountingyear)<0.1mSv.Noevaluationofdoseneeded.

• Level1:Simple,“reference”evaluation,withICRPdefaultsusedforallparametervalues, except where there is better a priori information available, e.g. for inhalation intakes informationontheparticlesizedistribution(dosefromtheintaketypically0.1–1mSv).

• Level 2: Sophisticated evaluation using additional information to give more realistic assessmentofdose:typicallyaspecialassessmentofanaccidentalintake.Comparisons aremadeofthemodelpredictions(“thefit”)withthedata,tochoosebetweenalternative parametervalues,ortofindoptimumparametervalues( aposteriori ).AtthisLevel,the parametersadjustedtypicallyrelatetothematerial(forinhalationintakestheAMADand absorptionType),andthetimeofintakeifunknown(dosefromtheintaketypically1–6 mSv).

30 • Level 3: More sophisticated evaluation, which applies to cases where there are comprehensivedataavailable,aswouldbethesituationafteranaccident.Theevaluation is an extension of Level 2, typically to parameters relating to the subject (e.g. for inhalationintakestheHRTMparticletransportrates).Thefundamentalapproachatthis Levelistoadjustthemodelparametervaluessystematically,inaspecificorder(“stepby step”approach),untilthegoodnessoffitisacceptable(i.e.thefitsobtainedtoallthedata arenotrejectedbythespecifiedcriteria)(dosetypically>6mSv).

Level0isthelowestlevelanditreferstocaseswheretheeffectiveannualdosewouldbemostlikely below0.1mSv,evenifthereshouldbesimilarintakesineachmonitoringintervaloftheyear.Atthis levelthereisnoneedtoevaluatethemeasuredvaluesexplicitly,andtheeffectivedosecanbesetto zeroinanalogytotheroundingofdosesinexternaldosimetry.However,themeasuredvalueshould berecordedwithrespecttofurtherassessmentsinthefuture.

According to the above definition a measured quantity Mcan be allocatedto Level 0, if M <M C, where

10−4 ⋅ m(T )2/ T M = ⋅ (1) C e(50) 365 where, Mc is the “critical” monitoring quantity, T is the monitoring interval (in days) for the monitoringquantityconsidered, m(T/2) isthecorrespondingretentionorexcretionfunction(perunit intake) for the monitoring quantity at time t = T/2, and e(50) is the effective dose coefficient (in Sv/Bq).

The critical monitoring quantity MC defined by the equation (1) is typically above,or close to, the lowerlimitofdetection(LLD)forthefissionandactivationproductswhereasitisbelowtheLLDfor theactinidesconsidered.Sointhecaseoftheactinides,anysignificantmonitoringvalueislikelyto result in a dose of more than0.1mSv and thus hasto be evaluated. In the case of the fission and activationproducts,however,theremightbesignificantmonitoringvalueswhichresultinadoseof lessthan0.1mSv.Thus,Level1appliestypicallytothoseradionuclides,whichareeasytomeasure andwhichhaveloweffectivedosecoefficients(i.e. 3H, 137 Csetc).

4.4 Understanding exposure situations Workplace information should be gathered in order to understand the exposure situations, e.g., radionuclides that may have been incorporated (including equilibrium assumptions for the natural series),chemicalform,presumedparticlesize(typically1or5µm),likelytime,patternandpathway ofanyintake. Ifnospecialinformationisavailable,thefollowingdefaultparametervaluescouldbeused(reference procedure): • Modeofintake:Singleintake • Timeofintake:Midpointofthemonitoringinterval,i.e.themidpointofthetimerange betweenthedateofthemeasurementbeingconsideredandthedateofeithertheprevious measurementorthebeginningofmonitoring

31 Inhalation:

• AbsorptionTypeand f1value:defaultsaccordingtoICRPpublications. • Particlesize:5 µmAMAD Ingestion:

• f1value:defaultsaccordingtoICRP. Inthecaseofexposuresthatleadtoeffectivedoseestimateshigherthanabout0.1mSv(i.e.above Level0oftheIDEASguidelines),itisdesirabletouseparametervaluesinthecalculationoftissue andorganequivalentdosethataremorespecifictotheconditionsofexposureandtotheindividual. Byusingsuchworkplacespecificparametersamorerealisticdoseassessmentcanbeobtained. Fortheinterpretationofdirectandindirectmeasurementsintermsoftheintakeandresultingeffective dose, data on the time pattern and pathway of intake, the chemical and physical form of the radionuclidesandonpreviousintakesareneeded.Inmanycaseshowevertheinformationmaynotbe available. The time pattern of intake is a main source of uncertainty in the interpretation of bioassay data. Assumptionsaboutthetimeofintakeandofwhethertheintakewasacute,lastedforashortperiodof timeorextendedforalongtimeisamajorpointinthereliabilityoftheinterpretationofthebioassay data. For example, in some cases the retention and excretion functions diminish by orders of magnitude within a few days, therefore the choice of the time pattern of intake can influence the assesseddosewithinthesamerange. Inhalationisthemainpathwayofintakeintheworkplace.Thecharacterisationoftheintakeinterms ofaerosolsizeandabsorptiontypeareneededfortheapplicationofthe m(t) valuestoestimatethe intake.The m(t) valuesarethecalculatedvaluesofthemeasuredquantitiesforunitintakeattimet afterthe intake. The aerosol sizewill influence depositioninthe HRTM and as a consequencethe transferofunabsorbedparticlestotheGItract.Insomeworkingenvironmentsmorethanoneparticle sizeisdetected.Therateofabsorptionofaradionuclidetobloodisveryimportantforinterpreting bioassaydata.Itisacriticalparameterininterpretingurineexcretiondata.Thedifferencesbetween thetrueabsorptionratesandthedefaultparameterswhichhavebeenassignedtothecompoundbeing inhaled are sources of errors that can be very large, especially when deriving intakes from urinary excretionbioassaydata. Furtheruncertaintyisaddedwhentheactivityofaradionuclideinthebodycouldnotbemeasured directlybutisderivedfromprogenyradionuclides.Contributionsfromintakesfromnaturalsources, especiallyinthediet,mayalsocontributetotheuncertaintyofabioassayresult. 4.4.1 Knowledge of radionuclides handled Formanyelementsthereareanumberofradionuclidesthatcouldbepresentintheworkplacewith quitedifferentphysicalcharacteristics.Atthesametimetheirbehaviourafterentryintothebodycan also be very variable depending upon the physical and chemical form present. Some examples are givenbelowforuraniumandplutoniumtoillustratethepotentialforexposuretocomplexmixtures. Tables 810 show the composition of natural and enriched (3.5% and 92.8%) uraniumin terms of activity.Notethatthecompositionintermsofmassiscompletelydifferent.TheTablesillustratethe diversityandcomplexityofuraniumcompoundsfoundintheworkplace.

32 Table 8: Isotopiccompositionofnaturaluranium

%Isotopic Isotope composition a %Alphaactivity Alphaactivity bBq/g U238 99.2745 48.16 1.23E+04 U236 0.0000 0.00 0.00E+00 U235 0.7200 2.25 5.76E+02 U234 0.0055 49.59 1.27E+04 Totalalphaactivity,Bq/g 2.564E+04 AlphaactivityratioU234/U238 1.030 AlphaactivityratioU235/U238 0.047

aCompositionisgivenasweight%oftotalUisotopes bAlphaactivitypergramuranium Table 9: Isotopiccompositionofenriched(3.5%)uranium

%Isotopic Isotope composition a %Alphaactivity Alphaactivity bBq/g U238 96.471 14.73 1.20E+04 U236 0.0000 0.00 0.00E+00 U235 3.5000 3.44 2.7992E+03 U234 0.02884 81.84 6.6679E+04 Totalalphaactivity,Bq/g 8.1478E+04 AlphaactivityratioU234/U238 5.556 AlphaactivityratioU235/U238 0.233

aCompositionisgivenasweight%oftotalUisotopes bAlphaactivitypergramuranium Table 10 : Isotopiccompositionofenriched(92.8%)uranium

%Isotopic Isotope composition a %Alphaactivity Alphaactivity bBq/g U238 6.06 0.039 7.51E+02 U236 0.34 0.428 8.16E+03 U235 92.8 3.89 7.42E+04 U234 0.79 95.64 1.82E+06 Totalalphaactivity,Bq/g 1.91E+06 AlphaactivityratioU234/U238 2452 AlphaactivityratioU235/U238 99.8

aCompositionisgivenasweight%oftotalUisotopes bAlphaactivitypergramuranium

33 Table 11 : IsotopiccompositionofPuandAminspentnuclearfuelfromreprocessingplant

Isotope %Isotopic %PuAlphaactivity %TotalAlpha composition,Pu+Ama activity Pu238 0.30 38.47 38.47 Pu239 78.65 36.56 36.56 Pu240 14.64 24.95 24.95 Pu241 5.55 Pu242 0.860 0.02 0.02 Pu244 0 0 0 Am241 0 0

(a) Compositionisgivenasweight%oftotalPuisotopes+Am241 Table 12 : IsotopiccompositionofPuandAminspentLightWaterReactorfuel

%Isotopic %Total composition, %PuAlpha Alpha %Total b Isotope Pu+Am activity activity activity Pu238 2.23(0.69) 81.53 72.86 2.75 Pu239 54.05(3.08) 7.17 6.41 0.24 Pu240 23.18(0.67) 11.25 10.05 0.38 Pu241 12.98(1.42) 96.23 Pu242 5.94(1.32) 0.05 0.04 0.0 Am241 1.62(1.22) 10.64 0.40 Pu241activity/TotalPuaactivity 29 Pu241/(Pu239+Pu240) a 155 activity Am241activity/Pu241activity 0.004

(a) LightWaterReactorsconsitute>80%ofallcommercialreactors,theremaining20%beingevenly dividedbetweenPressurisedHeavyWaterReactors(PHWR)oftheCANDUtypeandGasCooled (Magnox)Reactors.ThisdataiscompiledfromsixsetsofdatacoveringvariousLWRsubtypesand reactorpoweroutputs.ThecompositionisforspentLowEnrichedUraniumfuel(LEU). (b) Compositionisgivenasmeanatom%oftotalPuisotopes+Am241.SampleStandardDeviationsin parentheses. TheplutoniumcompositionofsomematerialsencounteredinthenuclearindustryaregiveninTables 11and12whichshowthecompositionofPuandAmradionuclidesinthereprocessingofspentfuel (Punitrate,Puoxides)andfuelfromalightwaterreactor(LWR).Againtherearewidelydifferent chemicalcharacteristicsandcomposition[55].

34 4.4.2 Time(s)and pattern of intake Aprincipalsourceofuncertaintyintheinterpretationofbioassaydataisthedeterminationofthetime of intake. In general, the time will not be known beforehand, especially in the case of routine monitoring when it is required to estimate an intake from a measurement made at the end of a monitoringinterval.Ifanunusualoccurrencetriggeredspecialbioassaymonitoring,thenthetimeof thatoccurrenceisusuallytakenasthetimeofintake. Sincethebioassayfunctionthatgivesthepredictedmeasurementdependsonthetimesincetheintake itfollowsthattheestimateofintakewillvary,dependingonwhenitisassumedtheintaketookplace. If the time of the intake is known then the assessment is straightforward. However, if the time of intakeisunknownthenajudgementhastobemadewhenitoccurred.InICRPPublication54[47]and ICRP Publication 78 [38] it is argued that in the absence of any information, the time of intake is equallylikelytohaveoccurredbeforetheendofthemonitoringinterval,andthereforesuggeststhatin thesesituations,avalueof t=T /2 shouldbeused,i.e.theintakeisassumedtohaveoccurredatthemid pintofthemonitoringinterval. If a significant intake and effective dose is calculated, using this assumption, then a more realistic determinationmayberequired.Sometimesareviewofworkplacemonitoringdata,suchasairborneor surfacecontaminationlevelscanindicatealikelytimefortheintaketohaveoccurred.Similarly,if otherworkersinthesameworkplacehaveexhibitedpositiveroutinebioassaysamples,areviewofthe dataandmonitoringschedulesfortheindividualworkersmayhelpdeterminethetimeofintakefor all. Of course, an individual worker may be able to recall the incident that led to the intake. In addition,ifseveralbioassayresultsareavailable,perhapsincludingdifferenttypesofmeasurement,a comparison of these results with the m(t) tables may help in narrowing the choice of the time the intakeoccurred. Whilethemidpointassumptionisapragmaticandsimpleapproach,itdoesnotresultinanunbiased estimateoftheintake.Ifthisassumptionisappliedregularly,toanindividualworker,itissubjectto biasandwilltendtooverestimatetheworker’srealintake.Itisalwayspreferabletoavoidbias,andit can be demonstrated that this can be avoided by assuming a constant chronic intake. If a software programisbeingusedtoestimatetheintake,thenthismethodcanbesimplyappliedbyselectingthe intake regime to be constant and chronic throughout the monitoring interval. Theoretical considerations aside, however, the choice of an appropriate method of estimating intakes is also dependentonbroaderconsiderationssuchaseaseofimplementation,andinmanysituations,themid pointmethodisadequate,consideringtheotheruncertaintiesinvolvedindoseassessment. 4.4.3 Intake pathways Althoughintakesbyinhalationalonearethemostfrequentintheworkplace,intakesbyingestionand uptakethroughwoundsandintactskincannotbeexcluded.Sometimestheworkertouchesthemouth with contaminated hands and ingestion occurs. If the pathway of intake is not known and several bioassay results are available, including different types of bioassay measurements, a comparison of theseresultswiththe m(t) tables mayhelpindeterminingthepathwayofintake. In somefacilities simultaneousintakesbyinhalationandingestioncanoccur.Inprinciple,resultsfromtheingestionand inhalationtablescanbecombinedtogivepredictedvaluesof m(t) .Alternatively,itcanbemodelled byassuminginhalationwithalargeAMAD(>5 µm). If the radionuclide activity can be assessed by direct measurements, lung counting can be used to differentiate between inhaled and ingested material. However, if this is not possible and the radionuclideisinaninsolubleform,interpretationofactivitiesexcretedinfaecalandurinesamplesin termsofintakeisquiteproblematic.Boththeingestedmaterialandtheinhaledmaterialdepositedin theupperrespiratorytractwillclearthroughthefaecesinthefirstfewdaysafterintake.Consequently, it is important to initiate excreta sampling as soon as possible after the intake, continuing for an

35 extendedperiod.Materialinthefaecesafterthesecondweekwillbeexclusivelyfromtherespiratory tract,andcanbeused,togetherwiththeappropriatevaluesof m(t) ,tocorrecttheearlierfaecalsamples for this component. In the monitoring of workers chronically exposed to long–lived, insoluble radionuclides, activities in the faeces after a 15 days’ absence from work will mostly reflect the delayedclearancefrominhaledmaterial(IAEA,[14,16]). 4.4.4 Particle size/chemical composition AlthoughrecentreviewsofreportedmeasurementsofAMADinworkplaces(eg.DorrianandBailey [56])supporttheICRPpublication66/68defaultvalueof5mforoccupationalexposure,theyalso show that a wide range (about 1–20 m) has been observed. If the airborne contamination in the workplace has been well characterised, it may be possible to use a more realistic value based on measurementsoftheactivitysizedistribution.Alternatively,iftherearesuitableearlymeasurement dataavailable,an“effective”AMADcanbeinferredaposteriorifromthemeasurements.Themain effectoftheaerosolAMADistodeterminetherelativeamountsdeposited(i)intheupperrespiratory tract (extrathoracic airways, ET, bronchi, BB, and bronchioles, bb, in the HRTM), which (if not absorbedintoblood)ismainlyclearedrapidlytothealimentarytractandhencetofaeceswithinafew days,and(ii)inthelowerrespiratorytract(alveolarinterstitial,AI,regionintheHRTM),whichis mainlyclearedslowlyfromthelungs.Forarelativelyinsoluble(TypeMorS)materialinhaledbya ReferenceWorker,theratioofcumulativefaecalexcretionoverthefirst3daystolungactivityonday 3increasedalmostlinearlyfromabouttwoat1mAMADtotwelveat10mAMAD.Hencethe observedratiocouldbeusedtoinferthe“effective”AMAD.Itisreferredtoas“effective”,because theratiowillbedeterminednotonlybytheaerosolsize,butalsobythesubject’sbreathingpattern (especiallyifitinvolvesmouthbreathing)andintersubjectvariationindepositionunderanygivenset of conditions. Because it takes account of these, it is preferable for dose assessment than a priori measurementsoftheAMAD.

4.5 Handling of monitoring data

Caremustbetakentoensurethatameasurementresult, M(t) ,andtherespectivebiokineticfunction m(t) arecomparable.Thus, M(t) mustnotbeinfluencedsignificantlybypreviousintakeswhicharenot coveredby m(t). Thus,allevaluationsshouldbecarriedoutusingnetmeasuredvalues, N(t), N(t) = M (t) − P(t) (2) where P(t) is the contribution from previous intakes to the actual measured value M(t) under investigation.

Notethatinthefollowingthemeasuredvalues M(t)arealwaysconsideredtobenetmeasuredvalues withoutcontributionsfrompreviousintakes. When only a single bioassay measurement is available, a point estimate of the intake is made. If multiple measurements are available, a best estimate of intake may be obtained by applying a statisticalfittingmethod. 4.5.1 Single data point Specialmonitoring Forspecialortaskrelatedmonitoringwhenthetimeofintakeisknown,theintakecanbeestimated from the measured results using the predicted values of measured quantities. If only a single measurementismade,theintake, I,canbedeterminedfromthemeasuredquantity, M,by:

M I = (3) m()t

36

where m(t) is the predicted value of the measured quantity for unit intake and t is the time of the measurementaftertheintake.

Theintakecanbemultipliedbythedosecoefficienttogivethecommittedeffectivedose;thiscanthen be compared with the dose limit or any predetermined investigation level based on dose. If the measurement indicates that an investigation level (or a dose level) has been exceeded, further investigationisrequired.

Routinemonitoring Forroutinemonitoring,itisnormallyassumedthatintaketookplaceassingleinhalationinthemiddle ofthemonitoringintervalofTdays. Fora givenmeasuredquantity,M,obtainedatthe endofthe monitoringinterval,theintakeis:

M Intake = (4) m()T 2 where m(T/2) isthepredictedvalueofthemeasuredquantityforunitintakebyinhalationoccurringat themidpointofthemonitoringinterval.Thedosefromintakeinthemonitoringintervalisobtained bymultiplyingtheintakebythedosecoefficient.Thedoseorintakecanbecomparedwiththepro ratafractionofthedoselimitoroftheactivitycorrespondingtothatlimit.Alternatively,thedoseor intakecanbecomparedwithpredeterminedinvestigationlevels.

4.5.2 Multiple data sets

Usually,thebioassaydataforanintakeestimatewillconsistofresultsfordifferentsamplescollected atdifferenttimes,andevenfromdifferentmonitoringtechniques,e.g.,urinedataandfaecaldata,and perhapsalsodirectmeasurements.

Todeterminethebestestimateofasingleintake,whenthetimeofintakeisknown,itisfirstnecessary tocalculatethepredictedvalues, m(t i),forunitintakeofthemeasuredquantities,where tiisthetime th ofthe i measurement Mi.Itisthenrequiredtodeterminethebestestimateoftheintake, I,suchthat theproduct Im(t i)“bestfits”themeasurementdata (M i,t i).Incaseswheremultipletypesofbioassay datasetsareavailable,itisrecommendedtoassesstheintakeanddosebyfittingpredictedvaluesto thedifferenttypesofmeasurementdatasimultaneously.Forexample,ifurineandfaecaldatasetsare availablethen,theintakeisassessedbyfittingpredictedvaluestobothdatasetssimultaneously.

Numerousstatisticalmethodsfordatafittingareavailable[IAEA,16].Thetwoacceptedscientific approachesarethemaximumlikelihoodmethodandtheBayesianapproach.Thesetwomethodsare mostwidelyapplicableandcanbeappliedtothecaseswhereitisassumedthatthemeasurementsare lognormallydistributedasrecommendedinIDEASGeneralGuidelines[49].Othermethods,suchas the least squares method are special cases of the maximum likelihood method under certain assumptions. The standard equations given for the least squares method apply to cases where the measurements are normally distributed and therefore do not strictly apply to the IDEAS General Guidelines.

The maximum likelihood method is discussed in detail in the IDEAS General Guidelines. Simple equationsaregiventherefortheintakethatcanbeappliedwithouttheuseofsophisticatedsoftware.

37 4.5.3 Number and type of data required for assessment of dose

Thereliabilityofthedoseassessmentdependsonthenumberandtypeofthemonitoringdata.Thus, there are minimum requirements for the type and number of monitoring data, depending on the involved radionuclide and the dose range. Such requirements have been suggested by the IDEAS guidelines[49].RecentlytherequirementshavebeenupdatedwithintheframeworkoftheCONRAD project[42].

Table 13: Suggestedminimumnumberandtypeofdatarequiredfortheassessmentofdosefor somecategoriesofradionuclides[42]

Numberofrequiredmonitoringdata

Categoryofradionuclide Typeofmonitoring D<1mSv 1mSv<D<6 D>6mSv b (minimum mSv a requirement)

Alltypeofαemitters Urine 2 3 withsignificantγ component Faeces 1 2 3

(235 U, 241 Am,etc.) Wholebody,critical 2 4 organorwoundsite

Alltypeofαemitters Urine 3 5 withoutsignificantγ component Faeces 1 3 5

(210 Po, 239 Pu,etc.)

Alltypeofβemitters Wholebody,critical 1 2 4 withsignificantγ organorwoundsite component Urine 2 4 (60 Co, 131 I, 137 Cs,etc.)

Ftypeβemitterswithout Urine 1 4 8 significantγcomponent

(3H, 14 C,etc.)

M/Stypeβemitters Urine 1 2 4 withoutsignificantγ component Faeces 2 4

(90 Sr,etc.)

Pureγemitters Wholebodyor 1 2 4 criticalorgan (123 I,etc.) Urine 2 4 a Themonitoringdatashouldcoveratimerangeof30d;iftheeffectivehalflifeis,30d,themonitoringdatashould coveratimerangecorrespondingtotheeffectivehalflife. b Themonitoringdatashouldcoveratimerangeof60d;iftheeffectivehalflifeis,30d,themonitoringdatashould coveratimerangecorrespondingtotwicetheeffectivehalflife.

38 Table13showstheupdatedrequirementsforsomeselectedradionuclides.Ideallythemeasurements shouldbedistributedappropriatelyovertherelevanttimerangegiveninTable13.Notethatthetable isonlyaprovisionalfirstattemptwhichisnotprescriptiveatall.Moreworkandinputfromthose withpracticalexperiencearerequiredtogivecomprehensiveguidanceonthisissue. 4.5.4 Data processing before use

Sometypesofmeasurementdatamayneedprocessingbeforeuse.Examplesinclude:

• “Lung”.Generally,thecombinedactivityinlungsandthoraciclymphnodesisreferredtoas ‘lung’activity,anditisthisquantitythatiscalculatedbyinternaldosimetrysoftware.Where estimates of lung and lymph node activity are given separately, they should be summed. “Chest” measurements may also include counts from activity in liver and skeleton for radionuclides that concentrate in these tissues, and their contributions will have to be subtracted.

• Faeces. The transit time through the GI tract is subject to large inter (and intra) subject variations.Moreover,whileforeaseofcomputationtransitthroughtheGItractisrepresented byaseriesofcompartmentsthatclearexponentially,inpractice,themovementismorelike “slug”flow.Itisthereforeunlikelythatindividualdailyfaecalclearancemeasurementsinthe first few days after intake will follow the predicted pattern, and so it is best to consider cumulativeexcretionoverthefirstfewdays.

• Urine.IfthedataaregivenintermsofBq/litrethenthiscanbenormalisedtodailyexcretion rates by assuming 1.6 litres of urine are excreted per day (reference value for man, ICRP Publication89[46].

• Plutonium.Assumethat“Pu”(ifnotqualified)referstototalPualphaactivity( 238 Pu, 239 Pu, and 240 Pu). Assume that “ 239 Pu” (if not qualified) actually represents 239 Pu+ 240 Pu, because these cannot be separated by alpha spectrometry. If 241 Pu is not measured then assume a typicalratiotototalplutoniumalphaactivity,foruseasdefault.Seetableoftypicalplutonium isotopicratios,whichshouldbeusedwithcautionasdefaultinthosecaseswherenospecific informationisavailable.

• Uranium. Excretion data (especially faecal) may need correction for dietary intakes of uranium.Dosesneedtobeincludedforisotopesinadditiontothosemeasured.Inparticular, for enriched uranium 235 U may be measured, while the highest dose comes from 234 U. See tableoftypicaluraniumisotopicratiosfordepleted,natural,highandlowenricheduranium. 4.5.5 Assessment of uncertainty on data

Theuncertaintiesonthedataareofgreatimportancefortheevaluationforseveralreasons:

• Theyenableanobjectivedecisiontobemadeonwhetherameasuredvalueisduetoanew intake,orduetopreviousintakesthatalreadyhavebeenevaluated.

• Theyenableanobjectivedecisiontobemadeonwhetherameasuredvalueisconsistentwith previousevaluations,orifitindicatesthepreviousevaluationstobewrong.

• They can have a strong influence on all evaluations using weighted fitting procedures (i.e. wherethereismorethanonedatapoint).

39 • Theyenableroguedatatobeidentifiedobjectively.

• Theyenableobjective(statistical)criteria(goodnessoffit)tobecalculated,whichareusedto determine whether the predictions of the biokinetic model (with a given set of parameter values)usedtoassesstheintakeanddoseareinconsistentwiththedata.

• Theyenablestatistics,suchasthe χ2,tobecalculated,whichareusedtocomparethefitsto thedataofdifferentmodels/parametervalues.

Generally,theuncertaintiesinthemeasurementaredifficulttoestimate.Whenactivitylevelsarelow andclosetothelimitofdetection,uncertaintiesduetocountingstatisticsmaydominatetheoverall uncertainty.Forradionuclidesthatareeasilydetectedandpresentinsufficientquantity,uncertainties duetocountingstatisticswillbesmallcomparedtoothersourcesofuncertainty.Considerationmust alsobegiventosystematicuncertaintiesinotherpartsofthemeasurementprocedure,e.g.calibration, orcorrectionforbodysizeof invivo measurements.Theseuncertaintiesapplytothemeasurementof activityinthesampleorperson.Withexcretionmeasurements,theactivityinthesampleisusedto provide an estimate of the subject’s average excretion rate over 24 hours for comparison with the modelpredictions.Ifthesamplesare collectedoverperiodslessthan24hoursthentheyshouldbe normalisedtoanequivalent24hourvalue.Thisintroducesadditionalsourcesofuncertaintyrelating tobiological(interandintrasubject)variabilityandsamplingprocedures,whichmaywellbegreater thantheuncertaintyinthemeasuredsampleactivity.

Table 14: Defaultvaluesforthecomponentsoflognormaluncertaintyforinvivomeasurements ofradionuclidesemittinglow,intermediateandhighphotonenergyradiation[49] LognormalscatteringfactorSF

Intermediatephoton energyHighphoton Lowphotonenergy 20keV<E<100 energy Sourceofuncertainty(Type) E<20keV keV E>100keV

Countingstatistics(A) 1.5 1.3 1.07

Variationofdetectorpositioning 1.2 1.05 <1.05 (B)

Variationofbackgroundsignal(B) 1.5 1.1 <1.05

Variationinbodydimensions(B) 1.5 1.12 1.07

Variationofoverlayingstructures 1.3 1.15 1.12 (B)

Variationofactivitydistribution 1.3 1.05 <1.05 (B)

Calibration(B) 1.05 1.05 1.05

Spectrumevaluation 1) (B) 1.15 1.05 1.03

1) HPGedetectorspectra

40 Typically, the components of uncertainty are grouped intotwo categories: Type A comprisesthose components which can be described by the Poisson distribution (i.e. counting errors). Type B comprises all other components (i.e. variation of background signal, variation of the subject positioning during in vivo measurement, variation of body dimensions, overlaying structures, distribution of activity within the body during in vivo measurement, variation of the biokinetic behaviour, uncertainty of the calibration standard and the variation of the recovery for an in vitro measurement).TheTypeBcomponentscannotbeexpressedintermsofPoissonstatistics,andthus thereisaproblemincombiningtheTypeBandtheTypeAcomponentsinordertoderivethetotal uncertaintyofthedatapoint.

Table 14 lists preliminary values for the various components of uncertainty of in vivo counting as suggestedbytheIDEASguidelines[49].Theuncertaintyisgivenintermsofthescatteringfactor(SF) assuming that the distributions of the counting results can be approximated by lognormal distributions.TheSFisthegeometricstandarddeviationofthedistribution.Forexample,theSFdue to counting statistics is given as SF = 1.5 for low photon energy counting. This means that the scatteringofthemeasuredvaluesduetocountingstatisticswouldresultin67%ofthevaluestobein betweenx 50 /1.5andx 50 *1.5,wherex 50 isthemedianofallthemeasuredvalues.

Table 15: DefaultvaluesforthetotaltypeAandtypeBlognormaluncertaintyforinvivo measurementsofradionuclidesemittinglow,intermediateandhighphotonenergy radiation LognormalscatteringfactorSF

Intermediatephoton Highphoton Lowphotonenergy energy energy Uncertaintytype E<20keV 20keV<E<100keV E>100keV

TotaltypeA 1.5 1.3 1.07

TotaltypeB 2.06 1.25 1.15

Total 2.3 1.4 1.2

Based on the experience gained in the IDEAS project as well as on general considerations, the followinggeneralapproachforthecalculationofthetotaluncertaintymaybeapplied.

  = 2 () SF exp ∑ln SFi  (5)  i  where, SF is the total scattering factor, and SF i is the scattering factor due to component i. When applyingthisapproachontheSFvaluesgiveninTable14,thevaluesinTable15arederivedforthe totalscatteringfactors.

Themeasuredactivity, AanditsTypeAuncertainty, σAaregivenintermsofmeasuredquantitiesby:

41

 N  =  − B  A Cn  N G   RB  (6) N σ = + B A Cn N G 2 RB where, NGisthenumberofmeasuredcounts, NBisthenumberofmeasuredbackgroundcounts, RBis theratioofbackgroundcounttimetosamplecounttime,and Cnisthenormalisationfactorconverting countstoactivity.

TheSFforTypeAuncertaintiesisgivenby:

σ  SF =exp A (7) A  A 

TheSFforTypeBuncertaintiesisgivenby:

σ  = Cn SFB exp  (8)  Cn  where σ istheuncertaintyonthenormalisationfactor. Cn

Basically,theTypeAcomponentdecreaseswithincreasingactivityand/orincreasingcountingtime, whereas the Type B components can be considered to be independent of the activity involved or countingtime.Thus,atlowactivityvaluesorlowcountingtimes,respectively,thetotaluncertaintyis governed by the Type A component, whereas at high counting times the Type B components are predominant.

TypicalvaluesforTypeBscatteringfactorsforvarioustypesofinvitromeasurementfromdifferent studiesaregiveninTable16.Inpracticeroutineurinaryexcretiondatafromplutoniumworkersis often found to have a lognormal distribution with a SF of about 1.3 to 2.0 (Moss et al , [57] and Riddell etal ,[58]).However,Moss etal.[57]showedthatwhenthesamplingmethodandanalytical procedures are carefully controlled for true 24 h urine samples, over 5 days, then the SF is significantlyless(1.1).

The SF values listed in the Tables 14 – 16 represent some preliminary figures derived from some selectedsourcesandjudgements.Thesubjecthasbeeninvestigatedinmoredetailintheframeworkof the CONRAD project using more information from practical experience [42]. These investigations revealedtheSF valuesforinvivomeasurementstobewidely consistentwith practical experience. TheSFfactorsforfaecalmeasurementsinTable16wereslightlyadjusted.

42 Table 16: DefaultvaluesforthelognormalscatteringfactorSFforvarioustypesofinvitro measurementfromdifferentstudies(TypeBerrors).Rangesaregiveninparentheses [42,49] Quantity LognormalscatteringfactorSF

True24hrurine 1.1 (a)

Activityconcentrationof 3Hinurine 1.1 (b)

Simulated24hrurine,creatinineor 1.6(b) (1.3 (c) 1.8 (d) ) specificgravitynormalized.

Spoturinesample 2.0 (a)

Faecal24hrsample 3(24) (b)

Faecal72hrsample 1.9(1.5–2.2) (e) (a) ValuegivenbyMoss etal ,[49]basedonplutoniuminurinemeasurementsofworkersatLos Alamos. (b) Valuebasedonjudgementandexperience. (c) AtLosAlamos,TypeBuncertainties,intermsofthecoefficientofvariation,forurinesamples normalisedusingvolumeandspecificgravityhasbeenfoundtobe30%(i.e.aSFof1.3). (d) ValuegivenbyRiddell etal ,[50]basedonplutoniuminurinemeasurementsofSellafieldworkers. Becausesamplingproceduresandmeasurementstechniqueshaveimprovedovertheyearsrecent measurementsarelikelytohaveaSFlessthan1.8. (e) SFvaluesfor72hrfaecalsamplesareconsistentwith24hrfaecalsamples.

4.5.6 Criteria for rejecting fit

Inassessingintakesanddoses,theunderlyingstartingassumptionisthat:

• the structure of the biokinetic model is a realistic representation of the physical and biological processes,and

• themodelparametervaluesarecorrect.

Estimatesofbioassayquantitieswillbeunbiasedonlyiftheseconditionsaremet.Theseassumptions areanalogoustothenullhypothesisinclassicalstatistics.Incaseswherethemodelpredictionsare inconsistentwiththedata(i.e.fitsareinadequate)thisindicatesthateitherthemodelparametervalues orthestructureofthemodelisincorrect.Theclassicalstatisticalapproachistorejectthemodeland torepeattheassessmentwithdifferentmodelparametervaluesorwithanewmodelstructuresothat thepredictionsarenotinconsistentwiththedata.Beforethemodelstructureitselfcanberejected,it isnecessarytofirstconsiderchangestothemodelparametervalues.IntheIDEASguidelinesonly changestotheparametervaluesareconsidered,nottothemodelstructure.

It is important to remember that it is not possible to prove that the null hypothesis is true. Test statistics are used to indicate that the null hypothesis is false. The criteria for rejecting the null hypothesis,(i.e.statingthefitisinadequate),needstobedefinedbeforetheassessmentiscarriedout.

Acomprehensivediscussionofallthepossiblestatisticsthatcanbeusedtoquantifywhetherafitis 2 inadequate is beyond the scope of this refresher course. Only the chisquared test statistic, χ0 is consideredhere.

43

Ifitisassumedthateachmeasurement, Mi,istakenfromalognormaldistributionwithascattering 2 factorof SF ithenfor nmeasurements, χ0 isdefinedas:

2 n  ln(M ) −ln[I m(t )] χ 2 =  i i  o ∑  (9) i=1  ln(SFi ) 

Theproduct Im(t i)isthepredictedvalue.

The above formulae do not apply to data that are reported as below the lower limit of detection (

2 Whenfittingpredictedvaluestodifferenttypesofdatasimultaneously,theoverall χ0 isequaltothe 2 sumofthecalculated χ0 valuesforeachdataset.

2 Ifthepredictionsareinconsistentwiththedata,thenthecalculatedvalueof χ0 isinconsistentwith thetheoretical chisquared ( χ2)distributionwith(n1)degreesoffreedom.Theexpectedvalueof χ2 isequaltothenumberofdegreesoffreedom(i.e.n1).

Theactualnumberofdegreesoffreedomwhenvarying l parametersforalinearmodel(withrespect to its parameters) is nl. In thiscase the biokinetic model is not linearwith respect to most of its parameters,otherthantheintake.Ifthefitisrejectedassuming n1degreesoffreedomthenthefit wouldalsoberejectediftheactualnumberofdegreesoffreedomisless.Forcaseswherethereare comprehensivedatasothat n>>l,itisproposedtoassume n1degreesoffreedomforeachstepofthe proceduregivenintheflowcharts.

2 2 Theprobabilityofobservingalarger χ valuethan χ0 for( n1)degreesoffreedomisgivenbythep value,whichcanbeobtainedfromStatisticalTables.Thepvalueisthefractionofthetheoretical χ2 2 2 distributionthatliesabovethecalculated χ0 value.Soifthepvalueisverysmall,thecalculated χ0 value is very much larger than expected and therefore it can be concluded that the predictions are likelytobeinconsistentwiththedataandtheassumeduncertainties.

2 2 The χ testusestheassumeduncertainties.Iftheassumeduncertaintiesareoverestimatedthen χ0 is 2 toosmall.Theconverseisalsotrue;iftheassumeduncertaintiesareunderestimatedthen χ0 istoo large.Thisisoneofthereasonswhyitisimportanttoassessrealisticscatteringfactors.

TheIDEASguidelinesproposethatthefitstothedataarejudgedtobeinadequateif:

2 2 • theprobabilitythat χ isgreaterthan χ0 is5%orless(i.e.ifpvalue<0.05).Inotherwordsthe fitisinadequateatthe5%levelofsignificance,orif

• thefitdisplayedgraphicallylooksunreasonablebyeye.

Itisalsoacknowledgedthatwhetherornotthefitdisplayedgraphicallylooksunreasonablebyeyeisa subjective judgement. Generally, however, a fit would be considered unreasonable if all, or a long series,ofdataweresystematicallyunderestimatedoroverestimated.

44 4.6 Special aspects

4.6.1 Handling of data below limits of detection

It is recommended to keep records on the original counting statistic and associated information (duration of the measurement, background effect count rate, duration of the background effect measurement,assesseduncertaintyofestimatedactivity,etc)foralldata,includingresults,assessedas less than a decision threshold (ISO [5961]). The substitution ofthe originaldata by an expression “lessthanthedecisionthreshold”or“lessthanthedetectionlimit”isnotrecommended.Alloriginal datamaybeinvolvedintothedoseassessmentwithtakingintoaccounttheuncertaintyassociatedwith eachresult.DetailsofprocessingofsuchdataaregiveninISOstandards(ISO[62,63]).

If data are reported as being below the lower limit of detection (LLD) and only the LLD value is recordedthenitisrecommendedtousethemaximumlikelihoodmethodtoobtainthebestestimateof intake.Itcanbeshownthatthismethodleadstoanunbiasedestimateoftheintake(Marsh[64]).

Iftheapplicationofthismethodisnotpossiblebecauseofthelackofavailablesoftware,thenseveral other simplifying assumptions are possible. One such assumption is to treat each LLD value as a positivevalueatthatmeasurement.Thiswillclearlyleadtoanoverestimateoftheintake,butthereis no simple method to quantify the degree of overestimation. In the example cases studied in the IDEASproject,itwasfoundthatthatsettingtheLLDvaluestopositivevaluesatLLD/2gavesimilar resultsastheapplicationoftheMaximumLikelihoodMethod.Itisacknowledgedthatthismethod hasnostrongfoundationinmathematics,andmaynotbeuniversallyapplicable,but,intheinterestof harmonisationandproportionality,itisrecommendedbytheIDEASguidelines,thatifthemaximum likelihoodcannotbeapplied,thenLLDdatashouldbetreatedinthisway.

4.6.2 Handling of data influenced by chelation therapy

Generally,itcanbeassumedthatdataofPuandAmcontentinurineareaffectedbyDTPAtherapy. IfDTPAhasbeeneffectiveinreducingsystemicuptakethensystemicorganretentionandsystemic faecalexcretionwillalsobeaffected.LungdataarenotaffectedbyDTPAtherapy. ThemethodofJech etal [65]isproposedhere:excludeurinaryexcretiondatathathavebeenaffected byDTPA.FollowingLaBone[66,67]itisproposedthatdataupto100daysfollowingchelation should be excluded. The alternative approach is to use a model for the urinary excretion of the chelated actinide,to compensate for the enhanced excretion (Hall method, La Bone, [67]). Thisis preferable, when an early assessment is required, because it makes more use of the available information,buttheIDEASpartnerswereunabletoproposeasuitableformulaatthattime.Thus,in theframeworkoftheCONRADprojectagenericmodelconsideringtheeffectsofDTPAtreatment wasdeveloped[66,68,69].Atpresenttheproposedmodelistestedwithrealdataanditisexpectedto comeupwithapracticalprocedureforhandlingofdatainfluencedbyDTPAinthenearfuture.

4.6.3 Identification of rogue data

A systematic basis to identify outliers and criteria to exclude them are needed. Outliers above and belowthetrendoftheotherdatahavedifferentsignificance.Apointabovethetrendmightindicate anotherintake.Apointbelowismorelikelytoresultfromatranscriptionormeasurementerror.

The problem of deciding how to identify outliers is not straightforward. Ideally, outliers should be identifiedbeforefittingmodelpredictionstothedata.Ifnot,thentheassessorfacesadilemmawhen themodeldoesnotfitthedata:shouldthemodelparametersbevariedtoobtainafit,orshouldthe data that does not fit be rejected. So ideally, the trend of the data should be obtained first by, for example,fittingasumofexponentialstothedataandthenusingastatisticaltesttorejectthedata.In

45 practice,itisrealisedthatthisprocedurecouldbetimeconsuming,andmanyassessorswillrelyon judgement when deciding to rejectcertain data. Specifically, care must be taken in excluding data, particularlyifagroupofdataatearlyorlatetimesdoesnotappeartobepredictedbythemodel,then modelparametersshouldbevariedinpreferencetoexcludingdata.

Formeasurementdatasuspectedofbeing“rogue”acheckshouldbemadeonwhetherinclusionor exclusionsignificantlyaffectstheintakeanddose.Ifitdoesnot,thereisnopointinexpendingeffort onjustifyingexcludingit:itshouldbeincluded.Ifitdoeshaveaneffect,thenastatisticaltestshould becarriedouttodetermineifitisanoutlier.Ifitisanoutlierthenitshouldbeexcluded.

ToidentifyoutliersthefollowingstatisticaltestisproposedbytheIDEASguidelines.Ameasurement valueisanoutlierifitismorethanafactorofSF 3 awayfromthetrendoftheotherdata,whereSFis thescatteringfactor.Ifthedatasetislimitedafterexcludingoutliers,thenfurthermeasurementsmay berequiredforassessmentofdose.

4.7 Structured approach to dose assessment

TheIDEASGeneralGuidelinesprovideastructuredapproachtotheassessmentofinternaldosesfrom monitoringdata.Itconsistsofaseriesof“Stages”,broadlycorrespondingtotheLevelsoftaskgiven inSection4.3.EachStageconsistsofaseriesof“Steps”,andispresenteddiagrammaticallyinaflow chart, with a brief explanation of each Step in the text. Detailed descriptions of all aspects of the evaluationprocessaregiveninthefinalreportontheIDEASGeneralGuidelines[49]. Stage1:Level0andforhigherexposures Level 0 refers to cases where it is expected that the annual dose (committed effective dose from intakesofradionuclidesthatoccurintheaccountingyear)islikelytobebelow0.1mSv,evenifthere weresimilarintakesineachandeverymonitoringintervalduringtheyear.Atthislevelthereisno need to evaluate the intake or dose from themeasured values explicitly. The effective dose can be reportedaszero,byanalogywiththeroundingofdosesinexternaldosimetry.However,themeasured value should be recorded, because it may provide information usefulfor further assessments inthe future. Stage2.Level1,andforhigherexposures:Checkonsignificanceofnewmeasurementand consistencywithpreviousevaluations Thisstagewillbepresentedhereindetailinordertoillustratethestructureoftheapproach(seeFig. 17).Level1referstocaseswhereitisexpectedthatthedosefromtheintakeislikelytobeabove0.1 mSv.Atthisleveltheintakeordosefromthemeasuredvaluesshouldbecalculatedexplicitly.Before startingtheassessmentofintakeanddose,however,itisrecommendedtoplotthedataandtodosome simplehandcalculationsinordertounderstandthecase.Inaddition,thestatisticalsignificanceofthe measuredvalueMshouldbeestimated.ThisincludestheassessmentofuncertaintyonMaswellas thecalculationofthecontributionsfrompreviousintakestoMinordertodecidewhetherMis: • duetoanewintake, • duetoapreviousintake,or • ifitisinconsistentwithpreviousassessments. Step 2.0: Understanding the case. Plot the data (including those from previous measurements if available)anddosomesimplehandcalculations.

Step2.1:AssessmentoftheuncertaintyonM.Realisticestimatesoftheoveralluncertaintyoneach datapointarerequired.Heretheyareexpressedasatotal“scatteringfactor”(SF).

46 Figure 17: Stage 2. Check on significance of new measurement and consistency with previous evaluations

Stage 2

2.0 Understandingthecase

2.1 Assessmentofuncertaintyon measuredvalueM(orapplicationof defaultuncertainty)

2.2 Calculationofcontributionsfrom previousintakes(P)

2.3.1 2.3 Yes Thereisanewsignificantintake; Stage M>SF*SF*P calculationofnetmeasuredvalue 3 N=MP

No

Yes 2.4.1 2.4 Thereisnonewsignificantintake End P/SF/SF<M<P*SF*SF (confirmationofprevious assessments)

No

2.5 Thereisadiscrepancywithprevious evaluations

Yes 2.6.1 2.6 Stage Specialevaluationof Valueisreliable 4 previousintakesneeded

No

2.7 Correctmeasuredvalueorrepeat measurement

47 Step 2.2: Calculation of the contributions P from previous intakes. The contributions (P) from all previous intakes of the radionuclide considered are calculated, taking into account all pathways of intake,andallintakesofmixtureswheretheradionuclidewasinvolved.

Step2.3:NewintakeconfirmedifM>SF 2*P,thenassumeanewintakehasoccurred.Ifanintake hasnotoccurredthenthereisonlya2.5%probabilityofafalsepositive(i.e.assuminganewintake when an intake has not occurred). Calculate the net value (N = M – P) of the radionuclide by subtractingPfromthemeasuredvalueMandgotoStage3,inordertocheckwhetherthenextstage ofthetaskisLevel2orLevel3

Step2.4:Newintakenotconfirmed.IfP/SF 2<M<P*SF 2,thenthemeasuredvalueMisconsistent withtheintakesassessedpreviously,andthereisprobablynonewintake(i.e.,thereisnoevidencefor anewintake).TheevaluationstopsandthemeasuredvalueMisrecordedtogetherwithallrelevant information(radionuclide,activity,typeofmeasurement,typeofmonitoringetc).

Step2.5:Discrepancywiththepreviousevaluations.IfM<P/SF 2,thenthereisadiscrepancywiththe previousassessments.Thereasonforthediscrepancycouldbe(i)themeasuredvalueMisnotreliable and/or(ii)thepreviousassessmentsarewrong.Forexample,anintakeoccurringneartheendofthe previousmonitoringintervalislikelytohavebeenoverestimatedbasedonanassumedintakeatthe midpoint.

Step 2.6: Check on the reliability of M. For whole body counting possibilities for errors include: externalcontamination,mismatchingofcalibrationandactualactivitydistribution(i.e.lungactivity calculatedwithwholebodyefficiency,orlungactivitycalculatedinthepresenceofresidualGItract activity etc.). For excretion measurements possibilities include contamination of the sample, incompletecollectionofthesample,errorsinsampleprocessing,etc..

Step2.6.1:Reassesspreviousintakes.IfitcannotbedemonstratedthatMisunreliable,thenreassess thepreviousintake(s),i.e.gototheappropriate“Specialprocedure”atStage4.

Step2.7:CheckthemeasurementM.IfitcanbedemonstratedthatMiswrong,makecorrectionsor repeatthemeasurementifpossibleandreturntoStep2.0. Stage3.Standardevaluationprocedure atLevel1 Having determined the measured value (M) to be due to a new intake, the intake and dose are evaluatedfromthenetvalueN=M–Pusing apriori parametervalues.Ifthedoseisassessedtobe above1mSv,theevaluationshouldberepeatedaccordingtoStage4,inwhichtheparametervalues chosen a priori may be adjusted, if necessary to obtain an acceptable fit to the data. The standard evaluationprocedureshouldbeappliedonlyforroutinemonitoring.Caseorsitespecificparameter valuesshouldbeassignedasfarastheyareavailable.

Stage4.IdentificationofpathwayofintakeforspecialevaluationaboveLevel1 Special procedures are needed for the evaluation when there is evidence for a committed effective dose of more than 1 mSv or in all cases of special monitoring. In all these cases the evaluation proceduresdependtosomeextentonthepathwayofintake.Thus,inStage4thepathwayofintakehas tobeidentified.

48 Stage5.SpecialprocedureforinhalationcasesaboveLevel1 The special procedure is grouped in three subsequent stages. In the first stage (5A), a simple evaluationiscarriedoutusingparametervalueschosen apriori :beforetheevaluationiscarriedout. Theprocedureisverysimilartothe“Standardprocedure”(Stage3).Themaindifferenceisthatina specialprocedurethereshouldbemorethanonemeasurement.Inthesecondstage(5B),procedures areappliedforvaryingthetwomainfactorsrelatedtotheinhaledmaterial:theAMADandabsorption Type,andalsothetimeofintake,ifnotknown,usingthemeasurementdata( aposteriori ).Inthethird stage(5C),anadvancedevaluationiscarriedout.Itappliestocaseswheretherearecomprehensive dataavailable.Thefundamentalapproachofthisstageisthatthemodelparametervaluesareadjusted systematically,inaspecificorder,untilthegoodnessoffitisacceptable(i.e.thefitsobtainedtoallthe dataarenotrejectedbythespecifiedcriteria). Similarprocedureshavebeendefinedforingestioncases(Stage6)andformixedinhalationand ingestioncases(Stage7).Formoreinformationseethefinalreportontheguidelines[49].

5 Dissemination of the IDEAS Guidelines

5.1 ICRP The guidelines were developed in close collaboration with the ICRP Committee 2 Task Group on Internal Dosimetry (INDOS) [70], which is developing a Guidance Document on internal dose assessment.ThedraftICRPGuidanceDocument(GD)isfollowingsimilarprinciples,andasimilar structuredapproachtoassessmentsbasedontheIDEASGuidelines,butwillrelatetorevisedICRP biokineticmodelscurrentlyunderdevelopmentbyINDOS.TheinformationprovidedintheGDwill be a significant development from that given in publications 54 and 78 on the interpretation of bioassaymeasurementdata.ThedraftGDhasbeenpublishedontheICRPwebsitein2006andmany commentswerereceivedfollowingthepublication.ThecommentswereusedtorefinethedraftGD andtheIDEASGuidelinesaswell.In2007,however,itwasdecidedtocancelthedevelopmentofthe GDandtoincludeonlysomeessentialsoftheGDintotheOIRseries.

5.2 EURADOS/IAEA TheEURADOSWorkingGroup7 InternalDosimetry organizesincooperationwiththeInternational AtomicEnergyAgency(IAEA)andtheCzechTechnicalUniversityinPragueaRegionalTraining CourseonAdvancedMethodsforInternalDoseAssessmententitledApplicationofIDEASGuidelines anddisseminationofCONRADinternaldosimetryresults.Thecoursewillbeheldon26February 2009 in Prague, Czech Republic. The purpose of the course is to provide the participants with advanced methodologies for internal dose assessment and practical skills to implement the IDEAS Guidelinesinthefieldofmonitoringofintakeofradionuclidesandtoprovidetraininginprincipal conceptsandmethodsusedforinternaldoseassessmentofexposureduetointakesofradionuclides, withinformationonCONRADInternaldosimetryresults.Itisanticipatedtoholdmoresuchcourses infutureforfurtherdisseminationoftheIDEASGuidelines.

5.3 ISO The disillusioning experience with the past intercomparison exercises was also recognised by the International Standardization Organization (ISO). Because of the substantial differences between nationalregulations,concepts,anddoseassessmentprocedurestheISOrecentlyinitiatedprojectsto standardizethemonitoringofworkers,therequirementsformeasuringlaboratoriesandtheprocesses forthequantitativeevaluationofmonitoringdata[53].Theanticipatedstandardsincludetheneedfor amonitoringprogrammeandthedesignofamonitoringprogramme,i.e.themethodsandintervals, decision levels and approaches for dose assessments. These approaches correspond widely to the

49 IDEAS Guidelines. There is a similar level of task structure with the same decision levels and evaluation procedures, this being of great importance for the harmonisation of internal dosimetry worldwide.

6 Supporting software There are several commercial computer codes for the evaluation of incorporation monitoring data, such as IMBA Expert TM [71, 72], IMIE [73, 74] or IDEA System [75]. IDEA System has been developed in the Karlsruhe Research Centre especially for assisting dosimetrists in applying the IDEAS Guidelines and other relevant recommendations for incorporation monitoring and internal dosimetry.IDEASystem(InternalDoseEquivalentAssessmentSystem)givesguidancetotheuser with respect to (i) planning of monitoring (estimation of potential exposures, decision on the requirements of monitoring, definition of optimum measuring techniques and monitoring intervals), (ii) performing routine and special monitoring, and (iii) evaluation of primary monitoring results. According to the IDEAS Guidelines the overall aims of the software can be summarized as: harmonization, accuracy and proportionality. The harmonization covers (i) the decision on the requirement of incorporation monitoring, (ii) the methods applied for incorporation monitoring and (iii)themethodsappliedfortheevaluationofincorporationmonitoringresults.IDEASystemprovides welldefinedproceduresforallthesethreetopics,whichareconsistentwiththeIDEASGuidelines. Thesoftwareisintendedtobeadynamictoolforincorporationmonitoringandforinterpretationof monitoring data according to the overall aims mentioned above. So the software is continuously extendedandadjustedtakingintoaccounttheprogressofmonitoringtechniques,thedevelopmentof biokinetic models and the special needs and requirements of the users. The software provides the followingfeaturesforevaluationofmonitoringdata: • Standardevaluation(Level1ofIDEASGuidelines)withdefaultparameters(singleinhalationin themiddleofmonitoringinterval;defaultabsorptiontypeandAMAD);automaticcorrectionfor contributionsfrompreviousintakes;automaticcheckofconsistencywithpreviousevaluations • Standardevaluation(Level2ofIDEASGuidelines)withcaseorsitespecificparametersforsingle orchronicintakesbyinhalation,ingestionorinjection;automaticcorrectionforcontributionsfrom previousintakes;automaticcheckofconsistencywithpreviousevaluations • Special evaluation (Level 2 or 3 of IDEAS Guidelines) with individual adjustment of model parametervalues(fittingoftimeofintake,absorptiontype,particlesize,orf 1value) • Specialevaluationusingdirectinternaldosimetry(integrationprocedure;calculationofcumulated activityfor 3Hinurine,IodineisotopesinthethyroidorCaesiumisotopesinthewholebody) The software has been tested in the frame of several national and international intercomparison exercises, where real and artificial incorporation cases were analysed by a large number of participants.Inallartificialcases,wheretheanswerintermsofintakeordoseisknown,theIDEA Systemsoftwareprovidedcorrectresults. Table17compares, asan example,theresultsofIDEASystemintermsofeffectivedosewiththe meanresultsofallparticipantsoftheIDEAS/IAEAIntercomparisonExercise[5052].Thecasesno.3 andno4were artificialcaseswiththerealvalueoftheeffectivedosebeingknown.Incaseno.3, wholebodycountingdataandurineexcretiondataweregivenforanincorporationof 60 Co.Thedata wereanalysedbyIDEASystematLevel2byfittingtheabsorptiontypeforasingleintakeof 60 Co aerosolswith5mAMAD(Fig.18).Thisevaluationresultedinaninhaledactivityof414kBq 60Co (50%typeWand50%typeS;particlesize5mAMAD)correspondingtoaneffectivedoseof4.98 mSv(Fig.19).Theabsorptiontypefractionscorrespondexactlytotherealvalues.Alsothepotential error(empiricalscatteringfactor)reflectsproperlythescatteringfactorusedforrandomisingthedata when creating this artificial case. Figure 20 compares the whole body counting data with thefitted retention function. As can be seen from this and all other artificial cases, there is a very good agreementoftherealvaluesandtheresultsprovidedbytheIDEASystemsoftware.

50 Table 17 : TestoftheIDEASystemsoftwareintheframeoftheIDEAS/IAEAIntercomparison Exercise[5052](bold:artificialcaseswiththerealvaluebeingknown) EffectiveDose

CaseNo Involved Realvalue GMoftheresults Resultof Radionuclide (mSv) ofallparticipants IDEASystem (mSv) (mSv)

1 3H notknown 25.8 25.1

2 90 Sr notknown 7.22 8.6

2 137 Cs notknown 0.66 0.62

3 60 Co 5.0 5.0 4.98

4 131 I 2.54 2.57 2.54

5 EnrichedUranium notknown 36.8 9.7

6 239 Pu notknown 140 118 Figure 18: EvaluationofCaseNo.3oftheIAEA/IDEASIntercomparisonExercise(wholebody countingdataandurineexcretiondata;evaluationatLevel2byfittingtheabsorption typeassumingasingleintakeof 60 Coaerosolswith5mAMAD)

51 Figure 19: ResultsoftheevaluationofCaseNo.3oftheIAEA/IDEASIntercomparisonExercise: singleintakebyinhalationof414kBq 60 Co;50%typeWand50%typeS;particlesize 5 m AMAD; effective dose and organ dose values in column D(QD); relative dose values in terms of dose limit fractions in column DR(QD); potential error 1.56 (empiricalscatteringfactor)

Figure 20: ResultsoftheevaluationofCaseNo.3oftheIAEA/IDEASIntercomparison Exercise:wholebodycountingdatawithfittedretentionfunction

The IDEA System software can be applied for all evaluation stages according to the IDEAS Guidelines except the “high end” stages 5C, 6C and 7C, where the biokinetic models have to be modified.ForthesestagesothersoftwaresuchIMBAExpert TM [71,72]orIMIE[73,74]maybeused. However,IDEASystemprovidesalsomanyothertoolsforinternaldosimetry,suchastheassessment of the effective dose to the offspring due to intakes of the mother. For more information see the website www.ideasystem.com .

52 7 References 1 InternationalCommission onRadiologicalProtection, GuideforthePracticalApplicationsof theICRPHumanRespiratoryTractModel.SupportingGuidance3 .Ann.oftheICRP.32(12) PergamonPress,Oxford(2002). 2 International Atomic Energy Agency, Direct Methods for Measuring Radionuclides in Man. SafetySeries114(1996).IAEA,Vienna. 3 International Commission on Radiation Units and Measurements, ICRU Report 69, Direct DeterminationoftheBodyContentofRadionuclides,JournaloftheICRU,Vol.3,No1(2003) 4 LandoltBörnstein/New Series Group VIII: Advanced Materials and Technologies, Vol. 4 Radiological Protection, A. Kaul, D. Becker eds., ISBN 3540202072, Springer Berlin HeidelbergNewYork,2005 5 Franck,D.et.al.(2000).Investigationofsilicondetectorstoimprove invivo monitoringof 239 Pu afteraccidentalintakes. RadiatProtDosim 89 ,321324. 6 Webb,J.L.,Gadd,M.,Bronsen,F.andTench,O.(2000)Anevaluationofrecentlungcounting technology. RadiatProtDosim 89 ,325332. 7 Genicot,J.L.(2000).The invivo detectionoflowenergyphotonemittersinradiationprotection and in nuclear medicine. A new philosophy for new needs in in vivo counting. Radiat Prot Dosim 89 ,339342. 8 Genicot,J.L.et.al.(2003)Thereductionoflimitsofdetectionin invivo countingoflowenergy photonemittersbyoptimisingtheshapeandsizeofdetectors. RadiatProtDosim 105 ,457462. 9 Wahl,W.,Franck,D.,Fischer,H.andRoth,P.(2006)Enhancementsinapplicationfor invivo monitoring: source, detector and geometry relations. Proceedings of the IM 2005 European workshoponindividualmonitoringofionisingradiation.Tobepublishedin RadiatProtDosim . 10 Malatova,I., Personalcommunication (2008) 11 Franck, D. et.al. (2003) Application of Monte Carlo calculations to calibration of anthropomorphic phantoms used for activity assessment of actinides in lungs. Radiat Prot Dosim 105 ,403408. 12 Hunt, J.G., Dantas, B.M., Lourenco, M.C. and Azeredo, A.M.G. (2003) Voxel phantoms and MonteCarlomethodsappliedto invivo measurementsforsimultaneous 241 Amcontaminationin fourbodyregions. RadiatProtDosim 105 ,549552. 13 Doerfel, H., Heide, B., Calibration of a phoswich type partial body counter by MonteCarlo simulationoflowenergyphotontransport, RadiatProtDosim . 14 International Atomic Energy Agency. (1999) Assessment of Occupational Exposure Due to IntakesofRadionuclides,SafetyGuideNo.RSG1.2.IAEA,Vienna. 15 International Atomic Energy Agency. (2000) Indirect Methods for Assessing Intakes of RadionuclidesCausingOccupationalExposure,SafetySeriesNo.18 .IAEA,Vienna. 16 International Atomic Energy Agency. (2004) Methods for Assessing Occupational Radiation DosesDuetoIntakesofRadionuclides,SafetySeriesNo.37 .IAEA,Vienna. 17 DukeK(1998). Useoftheurinaryexcretionofcreatinineinplutoniuminurinebioassay .Radiat ProtDosim 79 125128. 18 Youngman, M.J., Smith, J.R.H. and Kovari, M. (1994) The determination of thorium lung burdenbymeasurementsofthoroninexhaledair. RadiatProtDosim 53, 99102. 19 Sathyabama,N.,Eappen,K.P.andMayya,Y.S.(2005) Calibrationofanelectrostaticchamber forthoronmeasurementsinexhaledbreath .RadiatProtDosim 118, 6169. 20 LeideSvegborn, S. et.al. (1999) Biokinetics and radiation doses for 14Curea in adults and childrenundergoingtheHelicobacterpyloribreathtest .Eur.J.Nucl.Med.26,573580. 21 Gunnarsson, M. et.al. (2003) Biokinetics and radiation dosimetry for patients undergoing a glyceroltri[14C]oleatefatmalabsorptiontest .Appl.Radiat.Isot. 58 ,517526. 22 Hurtgen, C. and Cossonnet, C. (2003) OMINEX Work Package 3, Uncertainty on bioassay measurement. ScientificReportSCKCEN–BLG935.SCKCEN,Mol,Belgium,April2003. 23 Parrish, R.R., Thirlwall, M.F., Pickford, C., Horstwood, M., Gerdes, A., Anderson, J. and Coggon, D. (2006) Determination of 238 U/ 235 U, 236 U/ 238 U and uranium concentration in urine usingSFICPMSandMCICPMS :aninterlaboratorycomparison. HealthPhys 90 127138. 24 Blanchardon,E., Personalcommunication (2008)

53 25 Whicker, J.L. (2004). Relationship of air sampling measurements to internal dose: a review. MidyearHealthPhysicsSocietyMeeting.pp7377. 26 Marshall, M., Stevens, D.C. (1980) The purposes, methods and accuracy of sampling for airborneparticulateradioactivematerials.HealthPhys.39,409–423. 27 Britcher,A.R.,Strong,R.,“Personalairsampling–atechniquefortheassessmentofchronic lowleveexposure?”,Radiat.Protect.Dosim.,53,5962,1994. 28 International Commission on Radiological Protection. Limits for Intakes of Radionuclides by Workers . ICRP Publication 30, Part 1. Ann. of the ICRP. 2 (3/4), Pergamon Press, Oxford (1979). 29 InternationalCommissiononRadiologicalProtection. AgedependentDosestoMembersofthe Public from Intake of Radionuclides . ICRP Publication56, Part 1. Ann. of the ICRP. 20 (2). PergamonPress,Oxford(1989). 30 InternationalCommissiononRadiologicalProtection, AgedependentDosestoMembersofthe PublicfromIntakesofRadionuclides:Part2.IngestionDoseCoefficients .ICRPPublication 67,AnnalsoftheICRP, 23 ,No.3/4(1993) 31 International Commission on Radiological Protection, Human Respiratory Tract Model for RadiologicalProtection. ICRPPublication66,AnnalsoftheICRP, 24 ,No.13(1994) 32 InternationalCommissiononRadiologicalProtection, AgedependentDosestoMembersofthe PublicfromIntakesofRadionuclides:Part3.IngestionDoseCoefficients. ICRPPublication 69,AnnalsoftheICRP, 25 ,No.1(1995) 33 InternationalCommissiononRadiologicalProtection. AgedependentDosestoMembersofthe PublicfromIntakeofRadionuclides:Part4,InhalationDoseCoefficients .ICRPPublication71. Ann.oftheICRP.25(34).PergamonPress,Oxford(1995). 34 BaileyM.R.,GuilmetteR.A.,JarvisN.S.andRoyM. PracticalapplicationofthenewICRP HumanRespiratoryTractModel .Radiat.Prot.Dosim.79:17–22(1998). 35 BaileyM.R.,GuilmetteR.A.,AnsoborloE.andPaquetF. PracticalapplicationoftheICRP HumanRespiratoryTractModel .Radiat.Prot.Dosim.105:71–76(2003). 36 International Commission on Radiological Protection. Dose Coefficients for Intakes of RadionuclidesbyworkersReplacementofICRPPublication61, ICRPPublication68,Annalsof theICRP.24(4).PergamonPress,Oxford(1995). 37 InternationalCommissiononRadiologicalProtection. AgedependentDosestoMembersofthe Public from Intake of Radionuclides: Part5 Compilation of Ingestion and Inhalation Dose Coefficients. ICRPPublication72.Ann.oftheICRP.26(1).PergamonPress,Oxford(1996). 38 InternationalCommissiononRadiologicalProtection. IndividualMonitoringforInternal ExposureofWorkers. ICRPPublication78,AnnalsoftheICRP.27(3/4).PergamonPress, Oxford(1998). 39 InternationalCommissiononRadiologicalProtection,Humanalimentarytractmodelfor radiologicalprotection .ICRPPublication100,Ann.ICRP36(12). 40 International Commission on Radiological Protection. 1990 Recommendations of the ICRP . ICRPPublication60.Ann.oftheICRP.21(13).PergamonPress,Oxford(1991). 41 NationalCouncilofRadiationProtectionandMeasurements,Developmentofabiokineticmodel forradionuclidecontaminatedwoundsandproceduresfortheirassessment,dosimetryand treatment. NCRPReportNo.156.(2007). 42 Marsh, J.W. et.al. Internal dose assessments: uncertainty studies and update of IDEAS Guidelines and databases within CONRAD project , Radiat. Prot. Dosim., to be published in 2008 43 InternationalCommissiononRadiologicalProtection. GeneralPrinciplesfortheRadiation ProtectionofWorkers .ICRPPublication75.Ann.oftheICRP.27(1).PergamonPress,Oxford (1997). 44 Phipps,A.W.,Jarvis,N.S.,Silk,T.J.andBirchall,A. Timedependentfunctionstorepresent thebioassayquantitiesgiveninICRPPublication78 .NRPBM824,Chilton,National RadiologicalProtectionBoard(1998). 45 Potter,C.A. Intakeretentionfractionsdevelopedfrommodelsusedinthedeterminationofdose coefficientsdevelopedforICRPPublication68particulateinhalation .HealthPhysics.83(5): 594789(2002).

54 46 Ishigure,N.Nakano,T.MatsumotoM.andEnomoto.H. Databaseofcalculatedvaluesof retentionandexcretionformembersofthepublicfollowingacuteintakeofradionuclides . Radiat.Prot.Dosim.105:311316(2003). 47 InternationalCommissiononRadiologicalProtection. IndividualMonitoringforIntakesof RadionuclidesbyWorkers:DesignandInterpretation. ICRPPublication54,Annalsofthe ICRP.19(13).PergamonPress,Oxford(1988). 48 Doerfel, H. et.al., Third European Intercomparison Exercise on Internal Dose Assessment, ResearchCenterKarlsruhe,ResearchReportFZKA6457,Karlsruhe,(2000),ISSN09478620. 49 Doerfel, H. et.al. General Guidelines for the Estimation of Committed Effective Dose from Incorporation Monitoring Data , Research Centre Karlsruhe, Research Report FZKA 7243, Karlsruhe,(2006),ISSN09478620. 50 Hurtgen,C.et.al. ApplicationofIDEASGuidelines:theIDEAS/IAEAintercomparisonexercise oninternaldoseassessment ,RadiatProtDosimVol.127,Nos.14,317320(2007). 51 Hurtgen,C.etal. IDEAS/ IAEAintercomparisonexerciseoninternaldoseassessment. Scientific Report SCK.CEN–BLG1018, SCK.CEN, Mol, Belgium (October 2005). Available on http://publications.sckcen.be/dspace/handle/10038/257 52 InternationalAtomicEnergyAgency, IntercomparisonExerciseonInternalDoseAssessment, FinalreportofajointIAEAIDEASproject ,IAEATechnicalDocument,IAEATECDOC1568, IAEA,Vienna(2007)availableat http://www.pub.iaea.org/MTCD/publications/PDF/te_1568_web.pdf 53 Henrichs,K.,Monitoringofworkersforinternalcontaminations:TheconceptofISOandthe approachforthedoseassessment .(theseproceedings) 54 Doerfel,H.etal.,General guidelinesfortheassessmentofinternaldosefrommonitoringdata: progress of the IDEAS project , Radiat Prot Dosim Vol. 127, Nos. 14, 303310 (2007). Availableonhttp://www.ideasworkshop .de/.orhttp://www.bologna.enea.it/attivita/ideas.html . 55 Hurtgen,C.,Bailey,M.R.,Marsh,J.,etal.,Personalcommunication(2004) 56 Dorrian,M.D.andBailey,M.R.Particlesizedistributionsofradioactiveaerosolsmeasuredin workplaces.Radiat.Prot.Dosim.60:119–133(1995). 57 Moss,W.D.,Campbell,E.E.,SchulteH.F.,etal.(1969)Astudyofthevariationsfoundin plutoniumurinarydata.HealthPhys.17,571–578. 58 Riddell,A.E.,Britcher,A.R.(1994)Pluto–Asoftwarepackageusingthemaximumlikelihood methodtofitplutoniuminurinedatatoanexcretionfunction . Radiat.Prot.Dosim.53(14), 199–201. 59 InternationalOrganisationforStandardization. Determinationofthedetectionlimitanddecision thresholdforionizingradiationmeasurements.Part1.Fundamentalsandapplicationto countingmeasurementswithouttheinfluenceofsampletreatment.ISO11291:2000.ISO, Geneva(2000). 60 InternationalOrganisationforStandardization. Determinationofthedetectionlimitanddecision thresholdforionizingradiationmeasurements.Part2.Fundamentalsandapplicationto countingmeasurementswiththeinfluenceofsampletreatment. ISO11292:2000.ISO,Geneva (2000). 61 InternationalOrganisationforStandardization. Determinationofthedetectionlimitanddecision thresholdforionizingradiationmeasurements.Part3.Fundamentalsandapplicationto countingmeasurementsbyhighresolutiongammaspectrometry,withouttheinfluenceofsample treatment. ISO11293:2000.ISO,Geneva(2000). 62 InternationalOrganisationforStandardization. Determinationofthedetectionlimitanddecision thresholdforionizingradiationmeasurements.Part7.Fundamentalsandgeneralapplications. ISO11297:2005.ISO,Geneva(2005). 63 InternationalOrganisationforStandardization. Determinationofthedetectionlimitanddecision thresholdforionizingradiationmeasurements.Part8.Fundamentalsandgeneralapplicationto unfoldingofspectrometricmeasurementswithouttheinfluenceofsampletreatment. ISO1129 8:2005.ISO,Geneva(2005). 64 MarshJ.W etal . ValidationofIMBAandIMBAExpert presentedattheEuropeanIRPA Congress2002“TowardsHarmonizationofRadiationProtectioninEurope”Florence,Italy,8 11October2002

55 65 Jech,J.J.,Andersen,B.V.,Heid,K.R., Interpretationofhumanurinaryexcretionofplutonium forcasestreatedwithDTPA .HealthPhysics,22,787792,(1972). 66 LaBone,T.R. EvaluationofIntakesofTransuranicsInfluencesbyChelationTherapy ,Internal RadiationDosimetry,(1994). 67 LaBone,T.R. Acomparisonofmethodsusedtoevaluateintakesoftransuranicsinfluencedby chelation therapy (U) . Health Physics Summer School on Practical Applications of Internal Dosimetry.UniversityofFlorida,Florida,June1014,2002.WSRCMS200200417(2002). 68 Lopez,M.A.et.al., Internaldosimetry:towardsharmonizationandcoordinationofresearch , tobepublishedinRadiat.Prot.Dosim.(2008). 69 Noßke,D.et.al., Development,ImplementationandQualityAssuranceofBiokineticModels withinCONRAD .Radiat.Prot.Dosim.SpecialissueEURADOSAnnualMeetingAM2008 (2008). 70 Fry,F.A.,Lipsztein,J.L.andBirchallA.,TheICRPWorkingPartyonBioassayInterpretation. PresentedattheWorkshoponInternalDosimetryofRadionuclides:Occupational,Publicand MedicalExposure,Oxford,9–12September2002.RadiatProtDosimVol.105,Nos.14(2003). 71 Birchall,A..,et.al., IMBAExpert TM :InternalDosimetryMadeSimple ,Radiat.Prot.Dosim.105: 421425(2003). 72 Birchall,A.,Puncher,M.,Marsh,J.W.,etal, IMBAProfessionalPlus:Aflexibleapproachto internaldosimetry. ProceedingsoftheIM2005Europeanworkshoponinternalmonitoringof ionisingradiation,Radiat.Prot.Dosim.,Vienna2005SpecialIssue2006 73 Berkovski,V.,etal., InternalDosimetrySupportSystem:MultipurposeResearchComputer Code, Radiat.Prot.Dosim.79:371374(1998). 74 Berkovski,V., Applicationoftheinternaldosimetrysupportsystemforinterpretationofinvivo andbioassaymeasurements .RadiatProtDosimVol89,Nos34,p.271(2000). 75 Doerfel,H.,IDEASystem–anewcomputerbasedexpertsystemforincorporationmonitoring. RadiatProtDosimVol.127,Nos.14,425429(2007). 8 Glossary Absorbeddose Thephysicaldosequantitygivenby ed D = dm wheredeisthemeanenergyimpartedbyionisingradiationtothematterinavolumeelement anddmisthemassofthematterinthevolumeelement.TheSIunitforabsorbeddoseisjoule perkilogram(Jkg 1)anditsnameis(Gy). Absorption Movementofmaterialtobloodregardlessofmechanism.Intherespiratorytract,itgenerally appliestodissociationofparticlesandtheuptakeintobloodofsolublesubstancesandmaterial dissociatedfromparticles Absorptiontype Classificationofinhaledmaterialsaccordingtotheabsorptionrateintothebodyfluids.The absorptiontypesaredefinedinICRP66and71asfollows TypeFmaterials(depositedmaterialsthatarereadilyabsorbedintobodyfluidsfrom therespiratorytract;fastrateofabsorption)

56 TypeMmaterials(depositedmaterialsthathaveintermediateratesofabsorptioninto bodyfluidsfromtherespiratorytract;moderaterateofabsorption) Type S materials (deposited materials that are relative insoluble in the respiratory tract;slowrateofabsorption) TypeVmaterials(depositedmaterialsthatareassumed,fordosimetricpurposes,tobe instantaneouslyabsorbedintobodyfluidsfromtherespiratorytractappliedonlyto certaingasesandvapoursveryrapidabsorption.) Accuracyofmeasurement Thecharacteristicsofananalysisordeterminationthatensurethatboththebiasandprecision oftheresultingquantityremainswithinspecifiedlimits Activity Physicalquantityforthenumberofdisintegrationsperunittime(s)ofaradioactivematerial. TheSIunitoftheactivityis(Bq):1Bq=1s 1 ActivityMedianAerodynamicDiameter(AMAD) Physicalparameterforthedescriptionoftheparticlesizeofradioactiveaerosols.Fiftypercent oftheactivityintheaerosolisassociatedwithparticlesofaerodynamicdiameter(d ae )greater than the AMAD. The AMAD is used for particle sizes for which deposition depends principallyoninertialimpactionandsedimentation:typicallythosegreaterthanabout0.5m. For smaller particles, deposition typically depends primarily on diffusion, and the activity medianthermodynamicdiameter(AMTD)definedinananalogouswaytotheAMAD,but withreferencetothethermodynamicdiameteroftheparticlesisused. Bioassay Anyprocedureusedtodeterminethenature,activity,locationorretentionofradionuclidesin thebodybydirect( invivo )measurementorbyindirect( invitro )analysisofmaterialexcreted orotherwiseremovedfromthebody. Biokineticmodel Amathematicalmodeldescribingtheintake,uptakeandretentionofaradionuclideinvarious organsortissuesofthebodyandthesubsequentexcretionfromthebodybyvariouspathways. Biokineticfunction A mathematical function describing the time course of the activity in the body (retention function)ortheactivityexcretedviaurineorfaeces(excretionfunction)followingasingle intakeattimet=0.Ingeneral,theretentionfunctionsrepresentthebodyororganactivityat the time t after the intake, whereas the excretion functions represent the integral of the excretionratefromt–1duntilt. Biologicalhalflife Thetimetakenforthequantityofamaterialinaspecifiedtissue,organorregionofthebody (oranyotherspecifiedbiota)tohalveasaresultofbiologicalprocesses.

57 Clearance Theneteffectofthebiologicalprocessesbywhichradionuclidesareremovedfromthebody orfromatissue,organorregionofthebody Note:The clearancerate istherateatwhichthisoccurs. CommittedEffectiveDose(E( τ)) The sum of the products of the committed equivalent doses in organs or tissues and the

appropriate organ or tissue weighting factors (w T), where τ is the integration time in years followingtheintake.Theintegrationtimeis50yforworkers.

CommittedEquivalentDose(H T(τ)) The time integral of the equivalent dose rate in a particular tissue or organ that will be receivedbyanindividualfollowingintakeofradioactivematerialintothebody,where τisthe integrationtimeinyearsfollowingtheintake.Theintegrationtimeis50yforworkers. Compartment Poolofradioactivematerialsinthebodywhichcanbecharacterisedbyfirstorderkinetics;a compartmentcanbeanorgan(asforexampletheliver),apartofanorgan(asforexamplethe RESoftheliver),atissue(asforexamplethebone),apartofatissue(asforexamplethebone surface)oranothersubstanceofthebody(asforexamplethebodyfluids) Contamination Theactivityofradionuclidespresentonsurfaces,orwithinsolids,liquidsorgases(including thehumanbody),wherethepresenceofsuchradioactivematerialisunintendedorundesirable Criticalvalue Themaximumvaluefortheresultofasinglemeasurementinamonitoringprogrammewhere itissafetoassumethatthecorrespondingannualcommittedeffectivedosewillnotexceeda predefineddoselevel Decisionthreshold Thevaluethatallowsadecisiononwhetherornotthephysicaleffectquantifiedbythe measurementispresent Deposition The initial processes determining how much of a material in inhaled air remains in the respiratorytractafterexhalation.Depositionofmaterialmayoccurduringbothinhalationand

58 exhalation.Thedistributionofthedepositionofinhaledmaterialsinthedifferentregionsof therespiratorytractdependsonfactorsincludingtheActivityMedianAerodynamicDiameter (AMAD)andthebreathingpatternofthesubject.

DoseCoefficient

CommittedequivalentdoseinorganortissueTperunitintakeh T(τ)orcommittedeffective doseperunitintakee( τ),where τisthetimeperiodinyearsoverwhichthedoseiscalculated. Theintegrationtimeis50yforadults EffectiveDose(E) Thesumoftheweightedequivalentdosesinalltissuesandorgansofthebody,givenbythe expression: = ⋅ E ∑wT HT T

whereH Tistheequivalentdoseintissueororgan,T,andw Tistheweightingfactorfortissue T.

Equivalentdose(H T)

Theequivalentdose,H T,R ,intissueororganTduetoradiationR,isgivenby: = ⋅ H T ,R wR DT ,R

whereD T,R istheaverageabsorbeddosefromradiationRintissueTandw R istheradiation weightingfactorwhichisbasedonthequalityoftheradiationemittedbythesource.Sincew R isdimensionless,theunitisthesameasforabsorbeddose,Jkg 1,anditsnameis(Sv). Thetotalequivalentdose,H T,isthesumofH T,R overallradiationtypes = ⋅ H T ∑ wR DT ,R R Event Anyunintendedoccurrence,includingoperatingerror,equipmentfailureorothermishap,the consequencesorpotentialconsequencesofwhicharenotnegligiblefromthepointofviewof protectionorsafety Excretionanalysis Procedurefortheassessmentoftheactivityintheurineorfaecesorintheexhaledair.The excretion analysis includes radiochemical separation, preparation of measuring samples and

59 the evaluation of the measuring samples by spectrometric or other techniques (i.e. α spectrometryorICPMS) Excretionfunction Thefractionofanintakeexcretedperdayafteragiventimehaselapsedsincetheintake occurred Excretionrate Ingeneral,theexcretionrateistheamountofactivitywhichisexcretedviaurineorfaeces during24hours,withthedecayoftheradionuclidehavingbeencorrectedfortheendofthe24 hoursamplingperiod.AspecialcaseisHTOwheretheexcretionrateingeneralisgivenin termsoftheactivityconcentrationintheexcretedmaterial.

Fractionalabsorptioninthegastrointestinaltract( f1)

The f1valueisthefractionofanelementdirectlyabsorbedfromtheguttobodyfluids. HumanRespiratoryTractModel(HRTM) Biokinetic model for describing the deposition, translocation and absorption of inhaled materialsinthehumanrespiratorytract;publishedinICRPPublication66;theHRTMdefines thefollowingregions: Extrathoracic(ET)airways.

Theanteriornose(ET 1)andtheposteriornasalpassages,mouth,pharynxandlarynx (ET 2). Bronchial(BB)region. Thetracheaandbronchi. Bronchiolar(bb)region. Thebronchiolesandterminalbronchioles. Alveolarinterstitial(AI)region. The respiratory bronchioles, alveolar ducts and sacs with their alveoli, and the interstitialconnectivetissue. Intake Theactivityofradioactivematerialenteringthebody,theprincipalroutesbeinginhalation, ingestion or through intact or wounded skin (note in the case of inhalation of aerosols the intakeisgreaterthantheamountwhichisdepositedinthebody). Acuteintake An intake occurring within a time period short enough that it can be treated as instantaneousforthepurposesofassessingtheresultingcommitteddose. Chronicintake Anintakeoveranextendedperiodoftime,suchthatitcannotbetreatedasasingle instantaneousintakeforthepurposesofassessingtheresultingcommitteddose.

60 Invitro analyses Analysesincludingmeasurementsofradioactivitypresentinbiologicalsamplestakenfroman individual Note1:Theseincludeurine,faecesandnasalsamples.Inspecialmonitoringprogrammes, samplesofothermaterialssuchasbloodandhairmaybetaken. Note2:Theseanalysesaresometimesreferredtoasindirectmeasurements Invivo measurement Measurementofradioactivitypresentinthehumanbodycarriedoutusingdetectorsto measuretheradiationemitted. Note1:Normallythemeasurementdevicesarewholebodycountersorpartialbody(e.g. lung,thyroid)counters. Note2:Sometimesalsoreferredtoasdirectmeasurements Minimumdetectableactivity(MDA) Theminimumdetectableactivity(frequentlyalsoreferredtoasdetectionlimitorlowerlimit ofdetection)isan apriori calculatedvalue,whichspecifiestheminimumbodycontribution that can be detected by a defined measurement procedure. The detection limit is complementarytothedecisionthreshold,i.e.whenconsideringthedetectionlimitthewrong decisionthatthereexistsonlyabackgroundeffectwhenthereisinfactacontributionfromthe body (Type II error), occurs with a welldefined probability β. Thus, the detection limit is closely related to the decision threshold defined by the Type I error probability α. By definition the detection limit is given in terms of body or organ activity and it can be compareddirectlywithguidelinevalues.SeealsoISO2000a,2000b,2000c,2005a,2005b. Minimumsignificantactivity(MSA) Theminimumsignificantactivity(frequentlyalsoreferredtoasdecisionthresholdorcritical level) is an a posteriori calculated value at which the decision can be made, whether the registered pulses include contributions from the measured sample or are solely due to background. If this decision rule is observed, a wrong decision that there is a contribution from the measured sample when actually only a background effect exists (Type I error), occurswithawelldefinedprobability α.Bydefinitionthedecisionthresholdisgiveninterms ofpulsesbutforpracticalapplicationitisfrequentlytransferredtothecorrespondingactivity value.SeealsoISO2000a,2000b,2000c,2005a,2005b. Monitoring Themeasurementofdoseorcontaminationforthepurposeoftheassessmentorcontrolof exposuretoradiationorradioactivematerial,andtheinterpretationoftheresults Categoriesofmonitoringprogramme followingISO/IEC20553fourdifferentcategoriesofmonitoringprogrammeare distinguished,namelyconfirmatorymonitoringprogrammes,routinemonitoring programmes,specialmonitoringprogrammes,andtaskrelatedmonitoring programmes Typesofmonitoring

61 accordingtoISO/IEC20553twodifferenttypesofmonitoring,individualmonitoring andworkplacemonitoring,featureineachcategoryofmonitoring;afurthertypeof monitoring,collectivemonitoring,isregardedasaparticularformofworkplace monitoring Monitoringinterval Thetimeperiodbetweentworoutinemonitoringmeasurements Occupationalexposure Exposure to radiation incurred at work as the result of situations that can reasonably be regardedastheresponsibilityoftheoperatingmanagement. Qualityassurance Plannedandsystematicactionsnecessarytoprovideadequateconfidencethataprocess, measurementorservicewillsatisfygivenrequirementsforquality,forexample,those specifiedinalicence Qualitycontrol Partof qualityassurance intendedtoverifythatsystemsandcomponentscorrespond topredeterminedrequirements Qualitymanagement Allactivitiesoftheoverallmanagementfunctionthatdeterminethequalitypolicy, objectivesandresponsibilities,andimplementthembymeanssuchasquality planning,qualitycontrol,qualityassuranceandqualityimprovementwithinthe qualitysystem Recordinglevel Alevelofdose,exposureorintake(specifiedbytheemployerortheregulatoryauthority)at orabovewhichvaluesofdose,exposureorintakereceivedbyworkersaretobeenteredin theirindividualexposurerecords Retentionfunction Afunctiondescribingthefractionofanintakepresentinthebodyorinatissue,organor regionofthebodyafteragiventimehaselapsedsincetheintakeoccurred Scatteringfactor Geometricstandarddeviationofthedistributionofmeasureddataforagiventypeof measurement Timeofmeasurement inthecaseof invitro analysis,thetimeatwhichthebiologicalsample(e.g.urine,faeces)was takenfromtheindividual inthecaseof invivo measurements,thetimeatwhichthe invivo measurementbegins

62 Transfercompartment Thecompartmentintroducedformathematicalconvenienceintomostofthebiokineticmodels used in ICRP and IAEA publications to account for the translocation of the radioactive materialthroughthebodyfluidsfromwheretheyaredepositedintissues. Uptake The processes by which radionuclides enter the body fluids from the respiratory tract, gastrointestinaltractorthroughtheskin,orthefractionofanintakethatentersthebodyfluids bytheseprocesses.

63