Examination of Kinase-Regulated Transcriptional Networks

Total Page:16

File Type:pdf, Size:1020Kb

Examination of Kinase-Regulated Transcriptional Networks Examinationof Kinase-RegulatedTranscriptional Networks Using Pharmacolosicaland ChemicalGenetic Tools by BeatriceT. Wanq DISSERTATION Submittedin partialsatisfaction of the requirementsfor the degreeof DOCTOROF PHILOSOPHY in Biochemistryand Molecular Biology in the GRADUATE DIVISION of the Copyright 2011 by Beatrice T. Wang ii Acknowledgements First and foremost, I thank my academic advisor Dr. Kevan Shokat for his guidance and support throughout my graduate career. Kevan has a gift for understanding complex biological systems and I was so fortunate to have had the opportunity to study under his mentorship. Even during difficult times, Kevan’s insight and perpetual optimism gave me the motivation I needed to succeed, and his admirable ability to achieve a work-life balance makes him an inspiring role model. I was also fortunate to have had the most kind and talented group of colleagues in the Shokat lab. In particular, I am indebted to Jasmina Allen for her dedicated mentorship that was crucial to my graduate learning experience, and to Morri Feldman for always generously offering me his time and ideas. Additionally, I appreciate Sasha Statsuk, Greg Ducker, Adam Garske, Ulf Peters, and Brandon Tavshanjian for not only technical advice but also insightful and entertaining conversations. I also thank Valerie Ohman for providing impeccable administrative assistance that the lab could not function without. I am also grateful to my thesis committee, Keith Yamamoto and Geeta Narlikar, for providing scientific support and career advice. I was supported in 2008-2009 by the University of California Cancer Research Coordinating Committee. Lastly, I would like to acknowledge my family, Ping, Teresa, and Clarice Wang for their love and support. I take comfort in knowing that my family will always be there for me in times of both need and happiness. iii Chapter-Specific Acknowledgements Chapter 2 The majority of Chapter 2 was previously published in PNAS on Sept. 13, 2011, 108(37):15201-15206 as “ATP-competitive mTOR inhibition reveals a role for 4E-BP1 in cholesterol biosynthesis and a rapamycin-resistant transcriptional profile” by Beatrice T. Wang, Gregory S. Ducker, Andrea J. Barczak, Rebecca Barbeau, David J. Erle, Kevan M. Shokat. I thank Bing Su, Robert S. Warren, Andrei Goga, Yi Liu and Pingda Ren, David Pearce, and Davide Ruggero for providing reagents. I also thank Dorothea Fiedler and Daniel C. Gray for synthesizing DG2 and Feroz R. Papa and Keith R. Yamamoto for use of their thermocyclers. I am grateful to Morris E. Feldman for manuscript advice and Alana G. Lerner and Dan Han for experimental guidance. This work was supported by the Samuel Waxman Cancer Research Foundation, Accelerate Brain Cancer, Inc., the Multiple Myeloma Translational Institute, the Sandler Asthma Basic Research (SABRE) Center Functional Genomics Core Facility and NIH/NCRR UCSF-CTSI Grant Number UL1 RR024131. Chapter 3 I would like to thank Jasmina J. Allen for her experimental insight and mentorship. I would also like to thank Guido Sessa for providing advice on cytokinins and plant kinases. iv Chapter 4 Jasmina J. Allen initially conceptualized the ChIP project and I am incredibly grateful for her excellent experimental guidance. I thank Stephen M. Hedrick and Keith R. Yamamoto for providing reagents. Alex Muir performed the in vitro kinase assays. I appreciate Morris E. Feldman for providing immunofluorescence guidance, and Alex Y. So and Karin B. Engel for providing ChIP advice. I am grateful to Feroz R. Papa and Keith R. Yamamoto for use of their thermocyclers and to Hiten D. Madhani and Keith R. Yamamoto for use of their sonicators. v Examination of Kinase-Regulated Transcriptional Networks Using Pharmacological and Chemical Genetic Tools Beatrice T. Wang In response to external cues, kinases function in signaling networks to orchestrate a transcriptional response that results in a precisely altered cellular state. Chapter 1 introduces how kinases regulate histones and histone modifiers, the basal transcriptional machinery, and transcription factors and cofactors to control inducible gene expression. Due to an overwhelming number of cellular phosphorylated substrates and limited methods for studying kinase function, it is oftentimes difficult to link kinases to their transcriptional outputs. Chapter 2 describes how a new generation of ATP-competitive mammalian target of rapamycin (mTOR) inhibitors has revealed a new role for mTOR in regulating cholesterol biosynthetic gene expression and a global gene expression profile that is resistant to inhibition using the natural product rapamycin. Although pharmacological inhibitors have their advantages, they do not allow for discrimination between primary and secondary consequences of kinase inhibition. I have developed a method to identify the primary transcriptional targets of the direct substrates of an individual kinase. Chapter 3 describes a chemical genetic affinity labeling scheme for tracing the direct substrates of an individual kinase and Chapter 4 illustrates how this method may be combined with chromatin immunoprecipitation to elucidate the transcriptional regulatory networks controlled by a single kinase. vi Table of Contents Chapter 1: Mechanisms for Kinase-Mediated Transcriptional Regulation ......................1 Chapter 2: ATP-Competitive mTOR Inhibition Reveals a Role for 4E-BP1 in Cholesterol Biosynthesis and a Rapamycin-Resistant Transcriptional Profile............................................................................................................29 Chapter 3: Synthesis of N6-Substituted Nucleotide Analogs for Kinase Substrate Identification.................................................................................................74 Chapter 4: KS-ChIP: A Chemical Genetic Approach for Linking Kinase Substrates to Their Primary Target Genes .....................................................................85 vii List of Tables Chapter 1: Mechanisms for Kinase-Mediated Transcriptional Regulation Chapter 2: ATP-Competitive mTOR Inhibition Reveals a Role for 4E-BP1 in Cholesterol Biosynthesis and a Rapamycin-Resistant Transcriptional Profile S2.1 Differential gene expression induced by PP242 in NIH3T3 cells ...................63 S2.2 Primers used for qPCR analysis.......................................................................73 Chapter 3: Synthesis of N6-Substituted Nucleotide Analogs for Kinase Substrate Identification 3.1 Structure of cytokinins and cytokinin ribosides...............................................77 3.2 N6-substituted nucleotide analogs....................................................................79 Chapter 4: KS-ChIP: A Chemical Genetic Approach for Linking Kinase Substrates to Their Primary Target Genes S4.1 Primers used for qPCR analysis.....................................................................113 viii List of Figures Chapter 1: Mechanisms for Kinase-Mediated Transcriptional Regulation 1.1 Transcription initiation proteins that are regulated through phosphorylation ...3 1.2 Kinase regulation of c-jun transcriptional activation.........................................8 1.3 Phosphorylation-dependent mechanisms of TF activation................................9 1.4 Conventional MAPK signaling cascades.........................................................10 Chapter 2: ATP-Competitive mTOR Inhibition Reveals a Role for 4E-BP1 in Cholesterol Biosynthesis and a Rapamycin-Resistant Transcriptional Profile 2.1 mTOR signaling pathway ................................................................................31 2.2 SREBP regulates lipid biosynthetic gene expression ......................................33 2.3 Effect of rapamycin, PP242, and DG2 on known mTOR outputs...................34 2.4 ATP-site mTOR inhibition significantly blocks cholesterol biosynthetic gene expression ........................................................................................................36 2.5 mTOR inhibition down-regulates cholesterol biosynthetic gene expression similarly in both an unstimulated and a LPDS stimulated cell system............36 2.6 mTORC1 regulates cholesterol biosynthetic gene expression.........................37 2.7 mTORC1 effector 4E-BP1 regulates the expression of SREBP2 and its target genes ................................................................................................................39 2.8 Expression of FLAG-4E-BP1M inhibits the expression of some cholesterol biosynthesis genes in NIH3T3 cells.................................................................40 2.9 Expression of FLAG-4E-BP1M does not affect cholesterol biosynthetic gene expression in SW620 cells...............................................................................41 ix 2.10 Phospho-4E-BP1 expression is relatively high in NIH3T3 cells.....................41 2.11 mTORC1 effector S6K1 controls cholesterol biosynthetic gene expression in HCC cells.........................................................................................................42 2.12 Expression of FLAG-4E-BP1M does not affect cholesterol biosynthetic gene expression in HCC cells...................................................................................43 2.13 mTORC1 effector S6K1 controls SREBP-2 processing in HCC cells............44 2.14 PP242 causes greater changes in gene expression than rapamycin .................44 2.15 List and functional annotation of rapamycin- and PP242-sensitive genes ......46 2.16 Functional annotation of the
Recommended publications
  • Gene Therapy in Cancer Treatment: Why Go Nano?
    pharmaceutics Review Gene Therapy in Cancer Treatment: Why Go Nano? Catarina Roma-Rodrigues 1 , Lorenzo Rivas-García 1,2 , Pedro V. Baptista 1,* and Alexandra R. Fernandes 1,* 1 UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Campus de Caparica, 2829-516 Caparica, Portugal; [email protected] (C.R.-R.); [email protected] (L.R.-G.) 2 Biomedical Research Centre, Institute of Nutrition and Food Technology, Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. del Conocimiento s/n. 18071 Armilla, Granada, Spain * Correspondence: [email protected] (P.V.B.); [email protected] (A.R.F.); Tel.: +351-212-948-530 (P.V.B. & A.R.F.) Received: 29 January 2020; Accepted: 3 March 2020; Published: 5 March 2020 Abstract: The proposal of gene therapy to tackle cancer development has been instrumental for the development of novel approaches and strategies to fight this disease, but the efficacy of the proposed strategies has still fallen short of delivering the full potential of gene therapy in the clinic. Despite the plethora of gene modulation approaches, e.g., gene silencing, antisense therapy, RNA interference, gene and genome editing, finding a way to efficiently deliver these effectors to the desired cell and tissue has been a challenge. Nanomedicine has put forward several innovative platforms to overcome this obstacle. Most of these platforms rely on the application of nanoscale structures, with particular focus on nanoparticles. Herein, we review the current trends on the use of nanoparticles designed for cancer gene therapy, including inorganic, organic, or biological (e.g., exosomes) variants, in clinical development and their progress towards clinical applications.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0009296A1 Glessner Et Al
    US 20170009296A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0009296A1 Glessner et al. (43) Pub. Date: Jan. 12, 2017 (54) ASSOCIATION OF RARE RECURRENT (60) Provisional application No. 61/376.498, filed on Aug. GENETIC VARATIONS TO 24, 2010, provisional application No. 61/466,657, ATTENTION-DEFICIT, HYPERACTIVITY filed on Mar. 23, 2011. DISORDER (ADHD) AND METHODS OF USE THEREOF FOR THE DAGNOSS AND TREATMENT OF THE SAME Publication Classification (71) Applicant: The Children's Hospital of Philadelphia, Philadelphia, PA (US) (51) Int. Cl. CI2O I/68 (2006.01) (72) Inventors: Joseph Glessner, Mullica Hill, NJ A63L/454 (2006.01) (US); Josephine Elia, Penllyn, PA (52) U.S. Cl. (US); Hakon Hakonarson, Malvern, CPC ........... CI2O I/6883 (2013.01); A61 K3I/454 PA (US) (2013.01); C12O 2600/156 (2013.01); C12O (21) Appl. No.: 15/063,482 2600/16 (2013.01) (22) Filed: Mar. 7, 2016 Related U.S. Application Data (57) ABSTRACT (63) Continuation of application No. 13/776,662, filed on Feb. 25, 2013, now abandoned, which is a continu ation-in-part of application No. PCT/US 11/48993, Compositions and methods for the detection and treatment filed on Aug. 24, 2011. of ADHD are provided. Patent Application Publication Jan. 12, 2017. Sheet 1 of 18 US 2017/000929.6 A1 Figure 1A ADHD Cases and Parentsi Siblings O SO Samples8 O 1. 1. 250C 40 gE 520 - Samples 3. Figure 1B Patent Application Publication Jan. 12, 2017. Sheet 2 of 18 US 2017/000929.6 A1 S&s sess'. ; S&s' ' Ny erre 8 Y-8 W - - 8 - - - - 8 - W - 8-8- W - 8 w w W & .
    [Show full text]
  • NATURAL KILLER CELLS, HYPOXIA, and EPIGENETIC REGULATION of HEMOCHORIAL PLACENTATION by Damayanti Chakraborty Submitted to the G
    NATURAL KILLER CELLS, HYPOXIA, AND EPIGENETIC REGULATION OF HEMOCHORIAL PLACENTATION BY Damayanti Chakraborty Submitted to the graduate degree program in Pathology and Laboratory Medicine and the Graduate Faculty of the University of Kansas in partial fulfillment ofthe requirements for the degree of Doctor of Philosophy. ________________________________ Chair: Michael J. Soares, Ph.D. ________________________________ Jay Vivian, Ph.D. ________________________________ Patrick Fields, Ph.D. ________________________________ Soumen Paul, Ph.D. ________________________________ Michael Wolfe, Ph.D. ________________________________ Adam J. Krieg, Ph.D. Date Defended: 04/01/2013 The Dissertation Committee for Damayanti Chakraborty certifies that this is the approved version of the following dissertation: NATURAL KILLER CELLS, HYPOXIA, AND EPIGENETIC REGULATION OF HEMOCHORIAL PLACENTATION ________________________________ Chair: Michael J. Soares, Ph.D. Date approved: 04/01/2013 ii ABSTRACT During the establishment of pregnancy, uterine stromal cells differentiate into decidual cells and recruit natural killer (NK) cells. These NK cells are characterized by low cytotoxicity and distinct cytokine production. In rodent as well as in human pregnancy, the uterine NK cells peak in number around mid-gestation after which they decline. NK cells associate with uterine spiral arteries and are implicated in pregnancy associated vascular remodeling processes and potentially in modulating trophoblast invasion. Failure of trophoblast invasion and vascular remodeling has been shown to be associated with pathological conditions like preeclampsia syndrome, hypertension in mother and/or fetal growth restriction. We hypothesize that NK cells fundamentally contribute to the organization of the placentation site. In order to study the in vivo role of NK cells during pregnancy, gestation stage- specific NK cell depletion was performed in rats using anti asialo GM1 antibodies.
    [Show full text]
  • Molecular Genetics of Microcephaly Primary Hereditary: an Overview
    brain sciences Review Molecular Genetics of Microcephaly Primary Hereditary: An Overview Nikistratos Siskos † , Electra Stylianopoulou †, Georgios Skavdis and Maria E. Grigoriou * Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; [email protected] (N.S.); [email protected] (E.S.); [email protected] (G.S.) * Correspondence: [email protected] † Equal contribution. Abstract: MicroCephaly Primary Hereditary (MCPH) is a rare congenital neurodevelopmental disorder characterized by a significant reduction of the occipitofrontal head circumference and mild to moderate mental disability. Patients have small brains, though with overall normal architecture; therefore, studying MCPH can reveal not only the pathological mechanisms leading to this condition, but also the mechanisms operating during normal development. MCPH is genetically heterogeneous, with 27 genes listed so far in the Online Mendelian Inheritance in Man (OMIM) database. In this review, we discuss the role of MCPH proteins and delineate the molecular mechanisms and common pathways in which they participate. Keywords: microcephaly; MCPH; MCPH1–MCPH27; molecular genetics; cell cycle 1. Introduction Citation: Siskos, N.; Stylianopoulou, Microcephaly, from the Greek word µικρoκεϕαλi´α (mikrokephalia), meaning small E.; Skavdis, G.; Grigoriou, M.E. head, is a term used to describe a cranium with reduction of the occipitofrontal head circum- Molecular Genetics of Microcephaly ference equal, or more that teo standard deviations
    [Show full text]
  • Antigen-Specific Memory CD4 T Cells Coordinated Changes in DNA
    Downloaded from http://www.jimmunol.org/ by guest on September 24, 2021 is online at: average * The Journal of Immunology The Journal of Immunology published online 18 March 2013 from submission to initial decision 4 weeks from acceptance to publication http://www.jimmunol.org/content/early/2013/03/17/jimmun ol.1202267 Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto, Katsumi Ogoshi, Atsushi Sasaki, Jun Abe, Wei Qu, Yoichiro Nakatani, Budrul Ahsan, Kenshiro Oshima, Francis H. W. Shand, Akio Ametani, Yutaka Suzuki, Shuichi Kaneko, Takashi Wada, Masahira Hattori, Sumio Sugano, Shinichi Morishita and Kouji Matsushima J Immunol Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Author Choice option Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Freely available online through http://www.jimmunol.org/content/suppl/2013/03/18/jimmunol.120226 7.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Permissions Email Alerts Subscription Author Choice Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 24, 2021. Published March 18, 2013, doi:10.4049/jimmunol.1202267 The Journal of Immunology Coordinated Changes in DNA Methylation in Antigen-Specific Memory CD4 T Cells Shin-ichi Hashimoto,*,†,‡ Katsumi Ogoshi,* Atsushi Sasaki,† Jun Abe,* Wei Qu,† Yoichiro Nakatani,† Budrul Ahsan,x Kenshiro Oshima,† Francis H.
    [Show full text]
  • (Arc/Arg3.1) in the Nucleus Accumbens Is Critical for the Acqui
    Behavioural Brain Research 223 (2011) 182–191 Contents lists available at ScienceDirect Behavioural Brain Research j ournal homepage: www.elsevier.com/locate/bbr Research report Expression of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) in the nucleus accumbens is critical for the acquisition, expression and reinstatement of morphine-induced conditioned place preference ∗ Xiu-Fang Lv, Ya Xu, Ji-Sheng Han, Cai-Lian Cui Neuroscience Research Institute and Department of Neurobiology, Peking University Health Science Center, Key Laboratory of Neuroscience, the Ministry of Education and Ministry of Public Health, 38 Xueyuan Road, Beijing 100191, PR China a r t i c l e i n f o a b s t r a c t Article history: Activity-regulated cytoskeleton-associated protein (Arc), also known as activity-regulated gene 3.1 Received 27 January 2011 (Arg3.1), is an immediate early gene whose mRNA is selectively targeted to recently activated synaptic Received in revised form 1 April 2011 sites, where it is translated and enriched. This unique feature suggests a role for Arc/Arg3.1 in coupling Accepted 18 April 2011 synaptic activity to protein synthesis, leading to synaptic plasticity. Although the Arc/Arg3.1 gene has been shown to be induced by a variety of abused drugs and its protein has been implicated in diverse Key words: forms of long-term memory, relatively little is known about its role in drug-induced reward memory. In Activity regulated cytoskeleton-associated this study, we investigated the potential role of Arc/Arg3.1 protein expression in reward-related associa- protein/activity-regulated gene (Arc/Arg3.1) tive learning and memory using morphine-induced conditioned place preference (CPP) in rats.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20120149714A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0149714 A1 Heise et al. (43) Pub. Date: Jun. 14, 2012 (54) EFFECTS OF INHIBITORS OF FGFR3 ON (60) Provisional application No. 60/748,944, ?led on Dec. GENE TRANSCRIPTION 8, 2005. (76) Inventors: Carla Heise, Benicia, CA (US); Publication Classi?cation Esther Masih-Khan, Ontario (CA); 51 I Cl Edward Moler Walnut Creek CA ( ) nt' ' (US); Michael. Rowe,’ Oakland,’ CA A61K 31/497 (2006.01) (US),_ Keith. Stewart, Scottsdale, G01N 33/53 (2006.01) AZ (US) Suzanne Trudel Ontario G01N 33/566 (200601) (CA) ’ ’ C12Q 1/68 (2006.01) (52) US. Cl. ................ .. 514/253.07; 435/611; 435/612; (21) Appl. No.: 13/400,833 435/79; 435/792; 436/501 (22) Filed: Feb. 21, 2012 (57) ABSTRACT Related U‘s‘ Application Data Methods of utilizing blomarkers to 1dent1fy patients for treat ment or to momtor response to treatment are taught herein. (62) Division of application No, 12/096,222, ?led on Jun, Alterations in levels of gene expression of the biomarkers, 19, 2008, now Pat. No. 8,158,360, ?led as application particularly in response to FGFR3 inhibition, are measured No. PCT/US2006/061766 on Dec. 7, 2006. and identi?cations or adjustments may be made accordingly. US 2012/0149714 A1 Jun. 14, 2012 EFFECTS OF INHIBITORS OF FGFR3 ON [0007] An individual’s response to a particular treatment or GENE TRANSCRIPTION predisposition to disease and the correlation to a particular gene of interest has been documented. It is noW believed that BACKGROUND OF THE INVENTION cancer chemotherapy is limited by the predisposition of spe ci?c populations to drug toxicity or poor drug response.
    [Show full text]
  • Supplemental Figures
    Supplemental Figures Development of a new macrophage-specific TRAP mouse (MacTRAP) and definition of the renal macrophage translational signature Andreas Hofmeister, Maximilian C. Thomassen, Sabrina Markert, André Marquardt, Mathieu Preußner, Martin Rußwurm, Ralph Schermuly, Ulrich Steinhoff, Hermann-Josef Gröne, Joachim Hoyer, Benjamin D. Humphreys, Ivica Grgic Correspondence: Ivica Grgic MD, Klinikum der Philips-Universität Marburg, Baldingerstrasse 1, 35043 Marburg. Phone: +4964215861736, email: [email protected] Sup. Fig. S1 Δ6.7fmsGFP-L10a plasmid (pGL2 backbone) Sup. Fig. S1: Plasmid map of the engineered c-fms-eGFP-L10a expression vector. Mlu1/Sal1 digestion was used for linearization and extraction of the transgene. Sup. Fig. S2 A Neutrophils Monocytes Lymphocytes B Monocytes Monocytes Neutrophils Lymphocytes H - TRAP Ly6g Count FSC CD115 Mac GFP GFP GFP GFP H - Ly6g Count FSC CD115 Wild Wild type GFP GFP GFP GFP Sup. Fig. S2: FACS analysis detects eGFP-L10a signals in monocytes but not in neutrophils or lymphocytes isolated from peripheral blood of MacTRAP mice. (A) Gating strategy to define monocyte, neutrophil and lymphocyte populations. Only single cells contributed to the analysis. (B) GFP-fluorescence was specifically detected in CD115+ monocytes, but not in Ly6g+ neutrophils or lymphocytes of MacTRAP mice. Blood samples from wild-type mice served as negative controls. Representative plots are shown, n=6. Sup. Fig. S3 A eGFP-L10a Ly6g merge+DAPI kidney 7d UUO B eGFP-L10a Ly6g merge+DAPI incision skin Tail Sup. Fig. S3: Immunostaining for mature neutrophils in fibrotic kidney tissue and tail skin biopsies from MacTRAP mice. (A) Only a very small fraction of Ly6g+ neutrophils is positive for eGFP-L10a in fibrotic kidneys after 7d UUO (0.42% ± 0.29%; 468 cells counted, n=3).
    [Show full text]