Anatomy, Ultrastructure, and Functional Morphology of the Metathoracic Tracheal Defensive Glands of the Grasshopper Romalea Guttata

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy, Ultrastructure, and Functional Morphology of the Metathoracic Tracheal Defensive Glands of the Grasshopper Romalea Guttata Anatomy, ultrastructure, and functional morphology of the metathoracic tracheal defensive glands of the grasshopper Romalea guttata DOUGLASW. WHITMAN Department of Biological Sciences, Illinois State University, Normal, IL 61 761, U. S.A. JOHANP. J. BILLEN Zoological Institute, University of Leuven, B-3000 Leuven, Belgium DAVIDALSOP Department of Biology, Queens College, Flushing, NY 11367, U.S.A. AND MURRAYS. BLUM Department of Entomology, University of Georgia, Athens, GA 30602, U. S. A. Received January 4, 1991 WHITMAN,D. W., BILLEN,J. P. J., ALSOP,D., and BLUM,M. S. 1991. Anatomy, ultrastructure, and functional morphology of the metathoracic tracheal defensive glands of the grasshopper Romalea guttata. Can. J. Zool. 69: 2100-2108. In the lubber grasshopper Romalea guttata, the respiratory system produces, stores, and delivers a phenolic defensive secretion. The exudate is secreted by a glandular epithelium surrounding the metathoracic spiracular tracheal trunks. Embedded in the glandular tissue are multiple secretory units, each comprised of a basal secretory cell and an apical duct cell. Secretory cells have numerous mitochondria, a tubular, smooth endoplasmic reticulum, well-developed Golgi bodies, and a microvilli- lined vesicle thought to transfer secretion to the intracellular cuticular duct of a duct cell. Ducts empty into the metathoracic tracheal lumina where the exudate is stored behind the closed metathoracic spiracle. Tactile stimulation elicits secretion discharge, which,begins when all spiracles except the metathoracic pair are closed and the abdomen is compressed. Increased hemostatic and pneumatic pressures drive air and secretion out of the spiracle with an audible hiss. Both metathoracic spiracles discharge simultaneously. The secretion erupts first as a dispersant spray, then as an adherent froth, and finally assumes the form of a slowly evaporating repellent droplet. Discharge force and number vary with eliciting stimuli, volume of stored secretion, and age, disturbance state, and temperature of the insect. Molting grasshoppers are unable to discharge because the stored exudate is lost with the shed cuticle. The advantages and limitations of a tracheal defensive system are discussed. WHITMAN,D. W., BILLEN,J. P. J., ALSOP,D., et BLUM,M. S. 1991. Anatomy, ultrastructure, and functional morphology of the metathoracic tracheal defensive glands of the grasshopper Romalea guttata. Can. J. Zool. 69 : 2100-2108. Chez le criquet Romalea guttata, le systkme respiratoire produit, emmagasine et tmet une stcrttion phtnolique de dtfense. Cette exsudation est stcrttte par l'tpithtlium glandulaire qui entoure les trachtes des stigmates mttathoraciques. De nombreuses unitts stcrttrices sont enfouies dans le tissu glandulaire et chacune est constitute d'une cellule basale stcrttrice et d'une cellule apicale canaliculaire. Les cellules stcrttrices comportent de nombreuses mitochondries, un rtticulum endoplasmique agranulaire tubulaire, des appareils de Golgi kndtveloppts et une vtsicule tapisste de microvillositts que l'on croit servir au transfert des stcrttions au canal cuticulaire intracellulaire d'une cellule canaliculaire. Les canaux se vident dans la lumikre de la trachte mttathoracique et la stcrttion s'accumule denikre le stigmate mttathoracique fermt. La stimulation tactile dtclenche le rejet de la stcrttion; au moment du rejet, tous les stigmates sont fermts, l'exception de la paire mttathoracique, et l'abdomen est comprimk. L'augmentation des pressions htmostatique et pneumatique poussent l'air et la stcrttion au-dehors par le stigmate avec un sifflement perceptible. Les deux stigmates mttathoraciques se vident simultantment. La stcrttion sort d'abord cornrne un jet de vapeur, puis sous forme de mousse collante, et finalement sous forme d'une gouttelette rtpulsive qui s'tvapore lentement. La force des Cmissions et leur nombre varient en fonction des stimulus dtclencheurs, du volume de stcrttion emmagasinte, de l'ige, du degrt d'agitation et de la temptrature de l'insecte. Les criquets en ptriode de mue sont incapables d'tmettre des stcrttions parce que les stcrttions accumultes sont rejettes avec la cuticule. Les avantages et les dtsavantages d'un systkme de dtfense trachten font l'objet d'une discussion. [Traduit par la rtdaction] Introduction through the metathoracic spiracles (Fig. 1) with an audible hiss Only two groups of animals possess a respiratory-derived (Morse 1907; Duncan 1924; Roth and Eisner 1962). chemical defensive system. Certain blaberid cockroaches eject The products of these tracheal glands have been studied only a defensive secretion from the second pair of abdominal in R. guttata. In this species, the water-based secretion is spiracles (Roth and Stay 1958), and two closely related spe- exceedingly complex, containing over 50 compounds. Major cies of New World romaleid grasshoppers, Romalea guttata constituents are synthesized de novo and include phenolics, ( = microptera) and Taeniopoda eques (Rhen and Grant 1959, quinones, and an allenic sesquiterpenoid, romallenone (Mein- 1961), possess a thoracic defensive mechanism. In both wald et al. 1968; Eisner et al. 1971; Jones et al. 1986). Other grasshopper species, the tracheal trunks leading to the meta- constituents are obtained from the diet (alkyl sulfides from thoracic spiracles are specialized for the storage and discharge wild onion and nepetalactone metabolites from catnip) (Jones of secretion produced in an overlying glandular epithelium. et al. 1989; Blum et al. 1990). Man-made compounds may be During predator encounters, the secretion is forcibly ejected sequestered as well; the herbicide breakdown product, 2,5 - Printed in Canada 1 ImprimC au Canada WHITMAN ET AL. 2101 postero-directed nerves exiting the metathoracic ganglion were severed. Two days later, six operated and six sham-operated individ- uals were each squeezed at the head and the degree of abdominal contraction and secretory discharge was noted. For anatomical studies grasshoppers were killed or immobilized by refrigeration and dissected under Ringer's solution. For light micros- copy studies, grasshopper tracheae were fixed in alcoholic Bouin's (Brasil's) fluid and stained with haematoxylin and eosin. For trans- mission electron microscopy studies, the tracheal glands of cold- anesthetized grasshoppers were dissected and immediately fixed in cold 2% glutaraldehyde, buffered with 0.05 M sodium cacodylate (pH = 7.3) in 0.15 M sucrose. After postfixation in 2% osmium tetroxide in the same buffer, tissues were dehydrated in a graded acetone series and embedded in AralditeB. Thin sections from both sexes were stained with uranyl acetate followed by lead citrate, then examined with a Philips EM 400 electron microscope. Semithin sections stained with thionin and methylene blue were also examined by light microscopy. To investigate stimuli influencing secretion release, we performed the following routine on 40 adult ground-foraging grasshoppers encountered in the field between 13:00 and 15:OO (T,,, -30°C): the experimenter (i) advanced to within 30 cm of grasshopper; (ii) rapidly moved an open hand toward grasshopper (five times in 10 s); (iii) lightly touched grasshopper (five times in 10 s); (iv) roughly poked insect, knocking it off balance (five times); (v) held insect and squeezed one antenna; (vi) held insect and squeezed one front leg; (vii) squeezed head; and (viii) squeezed insect's anterior abdomen. All grasshoppers received all eight stimuli, and approximately 5 s separated different stimuli. Any secretion discharge was recorded. Molting, mating, and ovipositing adults were also disturbed by squeezing their thoraces or heads. For volumetric studies, discharge was collected into capillary tubes and measured. Results The respiratory system of Romalea guttata, as in other grasshoppers (Uvarov 1966), consists of 10 pairs of spiracles and various interconnecting tracheae, air sacs, and tracheoles. FIG. 1. Foamy defensive secretion emerging from Romalea guttata Each spiracle possesses a sclerotized or membranous valve metathoracic spiracles. serving to regulate air flow into and out of the body. The spiracles differ in size, gegree of sclerotization, and develop- dichlorophenol was reported to occur in the secretion of ment of a surrounding cuticular plate (peritreme) (Fig. 2). The Romalea (Eisner et al. 1971). anterior mesothoracic spiracles (Ms) are the largest and are The phenolic products of Romalea tracheal glands are well- hidden from view beneath the posteroventral flanges of the known defensive agents in both plants and arthropods (Blum prothorax. They are located in a membranous field immediately 198 1; Rodriquez et al. 1984). The secretion from,Romalea anterior to the sclerotized anterior border of the mesopleuron, repels ants (Eisner et al. 1971; Jones et al. 1987), and the have well-sclerotized spiracular valves, and a large, posteriorly secretion of the related T. eques is repellent to grasshopper directed protuberance (P) that presumably prevents occlusion mice (Whitman et al. 1985). The metathoracic secretions of of the spiracular opening by the overlying pronotum (Fig. 3). both Taeniopoda and Romalea females also function as con- The metathoracic spiracles (Mt) are slightly smaller than the tact sexual pheromones, eliciting mating behavior in males mesothoracic spiracles and are located directly above the (Whitman 1982; D. W. Whitman, unpublished data). mesocoxal cavities. They lack a protuberance and are situated Although the composition and function
Recommended publications
  • Diet-Mixing in a Generalist Herbivore: Trade-Offs Between Nutrient And
    DIET-MIXING IN A GENERALIST HERBIVORE: TRADE-OFFS BETWEEN NUTRIENT AND ALLELOCHEMICAL REGULATION A Dissertation by MARION LE GALL Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Spencer Behmer Committee Members, Micky Eubanks Keyan Zhu-Salzman Gil Rosenthal Jon Harrison Head of Department, David Ragsdale May 2014 Major Subject: Entomology Copyright 2014 Marion Le Gall ABSTRACT Despite decades of research, many key aspects related to the physiological processes and mechanisms insect herbivores use to build themselves remain poorly understood, and we especially know very little about how interactions among nutrients and allelochemicals drive insect herbivore growth processes. Understanding the physiological effects of these interactions on generalist herbivores is a critical step to a better understanding and evaluation of the different hypothesis that have been emitted regarding the benefits of polyphagy. I used both lab and field experiments to disentangle the respective effect of protein, carbohydrates and allelochemicals on a generalist herbivore, the grasshopper Melanoplus differentialis. The effect of protein and carbohydrates alone were examined using artificial diets in choice and no-choice experiments. Results were plotted using a fitness landscape approach to evaluate how protein-carbohydrate ratio and/or concentration affected performance and consumption. Growth was best near the self-selected ratio obtained from the choice experiment, most likely due to the fact that the amount of food digested was also higher on that ratio. By contrast, development time was not best near the preferred ratio most likely due to the trade-off existing between size and development time.
    [Show full text]
  • Draft Coronado Revised Plan
    Coronado National United States Forest Department of Agriculture Forest Draft Land and Service Resource Management August 2011 Plan The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means of communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TTY). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW, Washington, DC 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TTY). USDA is an equal opportunity provider and employer. Printed on recycled paper – Month and Year Draft Land and Resource Management Plan Coronado National Forest Cochise, Graham, Pima, Pinal, and Santa Cruz Counties, Arizona Hidalgo County, New Mexico Responsible Official: Regional Forester Southwestern Region 333 Broadway Boulevard SE Albuquerque, NM 87102 (505) 842-3292 For more information contact: Forest Planner Coronado National Forest 300 West Congress, FB 42 Tucson, AZ 85701 (520) 388-8300 TTY 711 [email protected] ii Draft Land and Management Resource Plan Coronado National Forest Table of Contents Chapter 1: Introduction ...................................................................................... 1 Purpose of Land and Resource Management Plan ......................................... 1 Overview of the Coronado National Forest .....................................................
    [Show full text]
  • FROM AZAD JAMMU and KASHMIR ANSA TAMKEEN Reg. No. 2006
    BIOSYSTEMATICS OF GRASSHOPPERS (ACRIDOIDEA: ORTHOPTERA) FROM AZAD JAMMU AND KASHMIR ANSA TAMKEEN Reg. No. 2006. URTB.9184 Session 2006-2009 DEPARTMENT OF ENTOMOLOGY FACULTY OF AGRICULTURE, RAWALAKOT UNIVERSITY OF AZAD JAMMU AND KASHMIR BIOSYSTEMATICS OF GRASSHOPPERS (ACRIDOIDEA: ORTHOPTERA) FROM AZAD JAMMU AND KASHMIR By ANSA TAMKEEN (Reg. No. 2006. URTB.9184) M.Sc. (Hons.) Agri. Entomology A thesis submitted in partial fulfillment of the requirements of the degree of Doctor of philosophy In ENTOMOLOGY Department of Entomology Session 2006-2010 FACULTY OF AGRICULTURE, RAWALAKOT THE UNIVERSITY OF AZAD JAMMU AND KASHMIR DECLARATION I declare publically that, this thesis is entirely my own work and has not been presented in any way for any degree to any other university. October, 2015 Signature ______________________________ Ansa Tamkeen To Allah Hazarat Muhammad (PBUH) & My Ever loving Abu & Ammi CONTENTS CHAPTER TITLE PAGE ACKNOWLEDGEMENTS xvii ABSTRACT 1. INTRODUCTON………………...……………………………………………1 2. REVIEW OF LITERATURE…………………………………….………..…6 3. MATERIALS AND METHODS…………...…...………………...................14 4. RESULTS.……..………..………..….…………….………………….……...21 SUPERFAMILY ACRIDOIDAE FAMILY DERICORYTHIDAE ..................................................24 SUBFAMILY CONOPHYMINAE………………………….…24 FAMILY PYRGOMORPHIDAE…………………...…..….……26 FAMILY ACRIDIDAE……………………………………...……37 SUBFAMILY MELANOPLINAE………………………….….46 SUBFAMILY HEMIACRIDINAE……………………….……47 SUBFAMILY OXYINAE ……………………………………..62 SUBFAMILY TROPIDOPOLINAE ……………………...…...75 SUBFAMILY CYRTACANTHACRIDINAE……………..…..76
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • Orthoptera) Da Reserva Biológica De Pedra Talhada
    6 6. 6. GAFANhotos, grilos E EsperANÇAS (OrthopterA) DA ReservA biolÓgiCA de pedrA TAlhADA Laurent GODÉ Edison Zefa MARIA Kátia Matiotti da Costa JULIANA Chamorro-RENGIFO Godé, L., E. Zefa, M. K. M. Costa & J. Chamorro-Rengifo. 2015. Gafanhotos , Grilos e Esperanças (Orthoptera) da Reserva Biológica de Pedra Talhada. In : Studer, A., L. Nusbaumer & R. Spichiger (Eds.). Biodiversidade da Reserva Biológica de Pedra Talhada (Alagoas, Per- nambuco - Brasil). Boissiera 68: 251-265. INsetos 252 Tropidacris collaris. GAFANhotos, GRILOS E ESPERANÇAS (ORTHOPTERA) DA RESERVA BIOLÓGICA DE PEDRA TALHADA 6 6. 6. Os insetos da Ordem Orthoptera incluem espécies Chromacris (6.6.6.1, todas as fotos do capítulo são de aparelho bucal mastigador, metamorfose incom­ provenientes de indivíduos encontrados na Reserva pleta e fêmures posteriores dilatados e adaptados Biológica de Pedra Talhada (Reserva)) que usualmen­ para o salto. A ordem contém duas subordens, te alimentam­se de folhas de solanáceas. Durante as Ensifera e Caelifera. A primeira agrupa os grilos, fases de ninfa, a prole originada de uma ooteca, per­ as esperanças e as paquinhas, com antenas longas, manece junta e só se dispersa quando chega ao es­ tímpanos localizados na tíbia do primeiro par de tágio adulto (6.6.6.2). O gregarismo ocasional ocorre pernas, aparelho estridulador nas asas anteriores em espécies como Schistocerca cancellata (6.6.6.3) e ovipositor espadiforme. A outra subordem inclui com comportamento solitário durante vários anos. os gafanhotos, com antenas curtas, tímpanos loca­ Em determinadas ocasiões, geralmente após uma lizados no primeiro segmento abdominal, aparelho sucessão de anos secos, juntam­se em grandes estridulador combinando estruturas presentes nas bandos e migram para o sul e leste das regiões on­ asas anteriores, ou asa/fêmur e ovipositor curto de normalmente vivem, como o Chaco argentino, (SNODGRASS, 1935, COSTA­lIMA, 1938).
    [Show full text]
  • An Illustrated Key of Pyrgomorphidae (Orthoptera: Caelifera) of the Indian Subcontinent Region
    Zootaxa 4895 (3): 381–397 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4895.3.4 http://zoobank.org/urn:lsid:zoobank.org:pub:EDD13FF7-E045-4D13-A865-55682DC13C61 An Illustrated Key of Pyrgomorphidae (Orthoptera: Caelifera) of the Indian Subcontinent Region SUNDUS ZAHID1,2,5, RICARDO MARIÑO-PÉREZ2,4, SARDAR AZHAR AMEHMOOD1,6, KUSHI MUHAMMAD3 & HOJUN SONG2* 1Department of Zoology, Hazara University, Mansehra, Pakistan 2Department of Entomology, Texas A&M University, College Station, TX, USA 3Department of Genetics, Hazara University, Mansehra, Pakistan �[email protected]; https://orcid.org/0000-0003-4425-4742 4Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA �[email protected]; https://orcid.org/0000-0002-0566-1372 5 �[email protected]; https://orcid.org/0000-0001-8986-3459 6 �[email protected]; https://orcid.org/0000-0003-4121-9271 *Corresponding author. �[email protected]; https://orcid.org/0000-0001-6115-0473 Abstract The Indian subcontinent is known to harbor a high level of insect biodiversity and endemism, but the grasshopper fauna in this region is poorly understood, in part due to the lack of appropriate taxonomic resources. Based on detailed examinations of museum specimens and high-resolution digital images, we have produced an illustrated key to 21 Pyrgomorphidae genera known from the Indian subcontinent. This new identification key will become a useful tool for increasing our knowledge on the taxonomy of grasshoppers in this important biogeographic region. Key words: dichotomous key, gaudy grasshoppers, taxonomy Introduction The Indian subcontinent is known to harbor a high level of insect biodiversity and endemism (Ghosh 1996), but is also one of the most poorly studied regions in terms of biodiversity discovery (Song 2010).
    [Show full text]
  • Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated with Unpalatability
    ORIGINAL RESEARCH published: 16 December 2019 doi: 10.3389/fevo.2019.00480 Nonchalant Flight in Tiger Moths (Erebidae: Arctiinae) Is Correlated With Unpalatability Nicolas J. Dowdy 1,2* and William E. Conner 1 1 Department of Biology, Wake Forest University, Winston-Salem, NC, United States, 2 Department of Zoology, Milwaukee Public Museum, Milwaukee, WI, United States Many aposematic animals are well-known to exhibit generally sluggish movements. However, less is known about their escape responses when under direct threat of predation. In this study, we characterize the anti-bat escape responses of 5 species of tiger moth (Erebidae: Arctiinae), a subfamily of Lepidoptera which possess ultrasound-sensitive ears. These ears act as an early-warning system which can detect the ultrasonic cries of nearby echolocating bats, allowing the moths to enact evasive flight behaviors in an effort to escape predation. We examine the role that unpalatability plays in predicting the likelihood that individuals of a given species will enact escape behaviors in response to predation. We hypothesized that more unpalatable species would be less likely to exhibit escape maneuvers (i.e., more nonchalant) than their less unpalatable counterparts. Our results demonstrate significant interspecific variation in Edited by: the degree to which tiger moths utilize evasive flight behaviors to escape bat predators Piotr Jablonski, as well as in their degree of unpalatability. We provide evidence for the existence of a Seoul National University, South Korea nonchalance continuum of anti-bat evasive flight response among tiger moths and show Reviewed by: Changku Kang, that species are arrayed along this continuum based on their relative unpalatability to Carleton University, Canada bat predators.
    [Show full text]
  • Spreading of Heterochromatin and Karyotype Differentiation in Two Tropidacris Scudder, 1869 Species (Orthoptera, Romaleidae)
    COMPARATIVE A peer-reviewed open-access journal CompCytogen 9(3): 435–450 (2015)Spreading of heterochromatin in Tropidacris 435 doi: 10.3897/CompCytogen.v9i3.5160 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Spreading of heterochromatin and karyotype differentiation in two Tropidacris Scudder, 1869 species (Orthoptera, Romaleidae) Marília de França Rocha1, Mariana Bozina Pine2, Elizabeth Felipe Alves dos Santos Oliveira3, Vilma Loreto3, Raquel Bozini Gallo2, Carlos Roberto Maximiano da Silva2, Fernando Campos de Domenico4, Renata da Rosa2 1 Departamento de Biologia, ICB, Universidade de Pernambuco, Recife, Pernambuco, Brazil 2 Departamento de Biologia Geral, CCB, Universidade Estadual de Londrina (UEL), Londrina, Paraná, Brazil 3 Depar- tamento de Genética, CCB, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil 4 Museu de Zoologia, Instituto de Biociência, Universidade de São Paulo, São Paulo, São Paulo, Brazil Corresponding author: Renata da Rosa ([email protected]) Academic editor: V. Gokhman | Received 22 April 2015 | Accepted 5 June 2015 | Published 24 July 2015 http://zoobank.org/12E31847-E92E-41AA-8828-6D76A3CFF70D Citation: Rocha MF, Pine MB, dos Santos Oliveira EFA, Loreto V, Gallo RB, da Silva CRM, de Domenico FC, da Rosa R (2015) Spreading of heterochromatin and karyotype differentiation in twoTropidacris Scudder, 1869 species (Orthoptera, Romaleidae). Comparative Cytogenetics 9(3): 435–450. doi: 10.3897/CompCytogen.v9i3.5160 Abstract Tropidacris Scudder, 1869 is a genus widely distributed throughout the Neotropical region where specia- tion was probably promoted by forest reduction during the glacial and interglacial periods. There are no cytogenetic studies of Tropidacris, and information allowing inference or confirmation of the evolutionary events involved in speciation within the group is insufficient.
    [Show full text]
  • A Comparative Study of Mating Behaviour in Some Neotropical Grasshoppers (Acridoidea)
    Ethology 76, 265-296 (1987) 0 1987 Paul Parey Scientific Publishers, Berlin and Hamburg ISSN 0179-1613 Max-Planck-Institut fur Verhaltensphysiologie, Seewiesen A Comparative Study of Mating Behaviour in Some Neotropical Grasshoppers (Acridoidea) KLAUSRIEUE With 11 figures and one colour plate Received: September 23, 1986 Accepted: January 20, 1987 (W. Wickler) Abstract Aspects of premating and mating behaviour in several South American grasshopppers (Acridoidea) are described and compared. Examples of communication by acoustical, visual and chemical means are given. Acoustic signals are emitted only by species of the subfamilies Gomphocerinae, Acridinae, Romaleinae and Copiocerinae. Each subfamily has distinct sound-producing mechanisms, and the songs occur in different behavioural contexts. In Gomphocerinae and Acridinae the sexes recognize and attract each other by species-specific songs produced by a femuro-tegminal stridulatory mecha- nism. In contrast, Romaleinae produce a simple song by rubbing the hindwings against the forewings. These songs are similar in different species and no attraction of females could be demonstrated, but the behaviour may function in male-male interaction and during copulation. Sexual pheromones also play a role in this subfamily. Acoustic activity during copulation has been observed in Aleuasini (Copiocerinae), but its function is still unclear. No sound production at all exists in the Leptysminae, Rhytidochrotinae, Ommatolampinae, Melanoplinae, Proctolabinae and Bactrophorinae, but conspicuous movements of hindlegs (knee- waving) and antennae were observed. In some species these form part of a soundless courtship display. Ecological constraints have little influence on the basic mating strategies: romaleine, gom- phocerine and melanopline grasshoppers often coexist in various habitats, but show the divergent behaviour patterns characteristic of their respective subfamilies.
    [Show full text]
  • Contribución Al Conocimiento De Los Acridoideos (Insecta: Orthoptera) Del Estado De Querétaro, México
    Acta Zoológica MexicanaActa Zool. (n.s.) Mex. 22(2):(n.s.) 22(2)33-43 (2006) CONTRIBUCIÓN AL CONOCIMIENTO DE LOS ACRIDOIDEOS (INSECTA: ORTHOPTERA) DEL ESTADO DE QUERÉTARO, MÉXICO Manuel Darío SALAS ARAIZA1,Patricia ALATORRE GARCÍA1 y Eliseo URIBE GONZÁLEZ2 1Instituto de Ciencias Agrícolas. Universidad de Guanajuato A. Postal 311. Irapuato CP 36500, Gto. MÉXICO. [email protected] 2Comité Estatal de Sanidad Vegetal de Querétaro. Calamanda de Juárez. Km. 186.8 Autopista México-Querétaro MÉXICO RESUMEN Se determinaron 25 especies y 17 géneros de la superfamilia Acridoidea en el estado de Querétaro. La subfamilia Gomphocerinae de Acrididae presentó el mayor número de géneros y especies con 3 y 5, respectivamente. Melanoplus differentialis differentialis y Sphenarium purpurascens fueron las especies más abundantes. Dactylotum bicolor variegatum, Melanoplus lakinus, Orpulella pelidna y Schistocerca albolineata son nuevos registros para el estado de Querétaro. Palabras Clave: Acridoideos, taxonomía, Querétaro, México. ABSTRACT Twenty five species were determined in 17 genera of the superfamily Acridoidea in the state of Queretaro. Gomphocerinae belonging to Acrididae, showed the greatest number of genera and species with 3 and 5 respectively. Melanoplus differentialis differentialis and Sphenarium purpurascens were the most abundant species. Dactylotum bicolor variegatum, Melanoplus lakinus, Orpulella pelidna y Schistocerca albolineata are new records in the state of Queretaro. Key Words: Acridoidea, taxonomy, Queretaro state, Mexico. INTRODUCCIÓN En los últimos años diversas especies de chapulines han ocasionado serios daños a los cultivos en diversas partes de México, estos ortópteros se distribuyen ampliamente en las zonas tropicales y templadas. Algunas especies son de hábitos migratorios y periódicamente forman grandes agregados que ocasionan severos daños a su paso.
    [Show full text]
  • President's Message
    ISSN 2372-2517 (Online), ISSN 2372-2479 (Print) METALEPTEAMETALEPTEA THE NEWSLETTER OF THE ORTHOPTERISTS’ SOCIETY TABLE OF CONTENTS President’s Message (Clicking on an article’s title will take you By DAVID HUNTER to the desired page) President [email protected] [1] PRESIDENT’S MESSAGE [2] SOCIETY NEWS ear Fellow Orthopterists! [2] Call for the 2020 Theodore J. Cohn Research Fund by M. LECOQ [2] Grants supporting the Orthoptera Species As I am writing this File by M.M. CIGLIANO from Canberra, the sky is [3] A call for manuscripts Special Issue “Locusts and Grasshoppers: Biology, Ecology and Man- filled with dense smoke agement” by A.V. LATCHININSKY D from the catastrophic [3] A call for DNA-grade specimens to recon- D sruct a comprehensive phylogeny of Ensifera fires we have had in Australia this by H. SONG fire season. Continuing drought and [4] Updates from the GLI by R. OVERSON [5] Reminder: Seeking Speakers for the 2020 weeks of unusually high temperatures ICE Symposium: “Polyneoptera for our Planet” have led to widespread fires covering by D.A. WOLLER ET AL. [5] REGIONAL REPORTS millions of hectares: as of the first [5] East Europe - North and Central Asia by week in January, 6.3 million ha have M.G. SERGEEV [6] Central & Southern Africa burnt which is just under half the area by V. COULDRIDGE of England! A catastrophic situation [8] T.J. COHN GRANT REPORTS indeed! [8] On the study of gregarine parasites in Orthoptera by J.H. MEDINA DURÁN Our society continues our support [10] Genetic diversity in populations of for research through OSF grants and Anonconotus italoaustriacus Nadig, 1987 (Insecta, Orthoptera) in North-East Italy by F.
    [Show full text]
  • Fundamental and Applied Agriculture Vol
    Fundamental and Applied Agriculture Vol. 5(3), pp. 295–302: 2020 doi: 10.5455/faa.123992 PLANT PROTECTION j PERSPECTIVE ARTICLE Early preparedness: Bangladesh proactive steps towards desert locust invasion in South Asia Mohammad Shaef Ullah 1*, Dilruba Sharmin1,2, Malvika Chaudhary 3 1Laboratory of Applied Entomology and Acarology, Department of Entomology, Bangladesh Agricultural University, Mymensingh, Bangladesh 2National Pest management Expert, Food and Agriculture Organization of the United Nations (FAO), Dhaka, Bangladesh 3Asia Regional Coordinator - Plantwise, CABI, New Delhi 110012, India ARTICLE INFORMATION ABSTRACT Article History The desert locust Schistocerca gregaria (Forskål) is considered as the most Submitted: 10 Aug 2020 devastating transboundary pest of all migratory pest species in the world Accepted: 13 Aug 2020 due to its high reproduction rate, ability to migrate long distances, and de- First online: 14 Aug 2020 struct the crops. The ongoing spread of desert locusts in the region of South Asia represents an unprecedented threat to food security and livelihoods. Although there are many factors involved, change in climate directs unpre- dictable direction to wind which is responsible for this unusual spread of Academic Editor pest from India towards Nepal. According to the Food and Agriculture A K M Mominul Islam Organization of the United Nations (FAO), even before the cyclone Amphan [email protected] hit the country, dry conditions prevailing in the west forced immature adult swarms to move eastward in India, crossing the entire northern India as far as Bihar and Orissa. Though the risk posed by desert locust is extremely low *Corresponding Author in Bangladesh, the chances get much lower because of the monsoon.
    [Show full text]