Introducing Biological Rhythms INTRODUCING BIOLOGICAL RHYTHMS

Total Page:16

File Type:pdf, Size:1020Kb

Introducing Biological Rhythms INTRODUCING BIOLOGICAL RHYTHMS Introducing Biological Rhythms INTRODUCING BIOLOGICAL RHYTHMS A Primer on the Temporal Organization of Life, with Implications for Health, Society, Reproduction and the Natural Environment Willard L. Koukkari and Robert B. Sothern College of Biological Sciences University of Minnesota St. Paul, MN, USA Willard L. Koukkari Robert B. Sothern Plant Biology Plant Biology & Laboratory Medicine University of Minnesota and Pathology 250 Bio Sciences Building University of Minnesota 1445 Gortner Avenue 250 Bio Sciences Building St. Paul, MN 55108 1445 Gortner Avenue USA St. Paul, MN 55108 [email protected] USA [email protected] Library of Congress Control Number: 2005926926 ISBN-10: 1-4020-3691-4 ISBN-13: 978-1-4020-3691-0 Printed on acid-free paper. © 2006 Springer ScienceϩBusiness Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceϩBusiness Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (SPI/SBA) 987654321 springer.com “Be ruled by time, the wisest counselor of all.” —Plutarch (~46–120 AD) Greek essayist and biographer DEDICATION To my family, colleagues and friends and all who endured the many inquiries and requests and otherwise offered their patience, understanding, advice and support during the creation of this text (RBS). Preface Reading this book will not necessarily make you a better student of life. It will, however, help you to see, to hear, and to observe “that” which would otherwise escape your attention. In the present context, “that” represents the rhythms of life, which occur within us and around us. This book has been written for students and others, including teachers in the life sciences, clinical personnel, biomedical researchers, and the general public, who are interested in the topic of biological rhythms. It is not a comprehensive treatise, but a “primer” that serves to introduce individuals to the important and fascinat- ing topic regarding the rhythmic changes that affect all living organisms. During the more than three decades that we have been engaged in research and teaching the subject of biological rhythms, our students have depleted the available supply of different books1 that provided supplemental reading material for these courses. Discussions with students, colleagues, and others often led to the question “Where can I find out more about this topic?” Faced with such a situation, we embarked upon the journey of writing this book, first putting fingers to the keyboard in the fall of 1998. Since biological rhythms are a fundamental property of all life and encompass a wide range of frequencies, from seconds to a century or more, we chose to write a book that is broad in scope, covers all major groups of organisms, and discusses rhythms with periods that span the ultradian, circadian, and infra- dian domains. In many educational institutions, a biological rhythms course serves as an elec- tive for satisfying a science requirement, as a seminar or for continuing education credit. Even for those who are outside the academic disciplines, the book serves as a primer that introduces the major characteristics of biological rhythms, cites scientific results and references, and discusses the implications and applications of rhythms. Essays provide in-depth historic and other background information that relate to the main topics. 1 E. Bünning (1958) The Physiological Clock. Berlin: Springer-Verlag. Moore-Ede MC, Sulzman FM, Fuller CA. (1982). The Clocks That Time Us. Physiology of the Circadian Timing System. Cambridge: Harvard University Press. vii viii Preface We trust that the following pages will serve as an easy to understand book that will enlighten and involve the novice, while being sufficiently technical and detailed for the experienced professional. The book includes a unique chapter on self-monitoring of one’s own rhythms (autorhythmometry), which has been one of the more fascinating topics for our students in helping them to develop a greater understanding of the characteristics and role of biological rhythms in the tempo- ral organization of their own lives. Rather than focus on a few specialized areas, our aim has been to provide a book that broadly covers the field of biological rhythms, without the pretext of being completely comprehensive. For this reason, we may have overlooked cer- tain topics or missed citing some key references. If we did not delve deeply enough into an area, we trust that the material presented will sufficiently intrigue the reader to seek out additional information. New information on molecular clocks, genes, and pathways continues to accu- mulate at a rapid pace, as do findings from chronotherapy (timing of medications), investigations into sleep and its disorders, the clinical relevance of melatonin, and the effects of excess light or unusual lighting schedules on the health and survival of organisms, including humans. Names of authors and key words in the refer- ences cited provide a starting point for the search for additional information or clarification on topics of further interest. Finally, while we have tried to be as conscientious as possible in citing and writing about topics and facts contained herein, an error now and then might have occurred. In spite of the eyes of many, any such errors that slipped by our atten- tion are entirely our responsibility. We certainly welcome comments from the readers on any aspect of this book. June 2005 Willard L. Koukkari Robert B. Sothern Acknowledgments We wish to thank both old and new associates with whom we have collaborated and learned from over several decades. In addition, we are indebted to more than a hundred students who read and commented upon the many early drafts of vari- ous chapters as part of their biological rhythms coursework or independent study. We especially thank Van D. Gooch, Mary Hoff, and Tom Soulen for providing invaluable comments and suggestions to early versions of this book. We thank Kathleen Ball for checking facts in the final version against the references. We gratefully acknowledge our many colleagues, co-workers, faculty, staff, students, and friends who provided invaluable assistance with several aspects of this book, including comments, data, drawings, photos, references, and reviews. These include (in alphabetical order): Martina Abramovich, Mary Albury-Noyse, Kathy Allen, Tracy Anderson, Leonard Banaszak, Frank Barnwell, Evelyn Borchert, Robert Brambl, Ris Char- vat, Anita Cholewa, Philip Clausen, Germaine Córnelissen-Guillaume, Jayna Ditty, Jay Dunlap, Ann Dunnigan, Mark Ebbers, Linda Eels, Roger Eggen, John Erwin, Jim Fuchs, David Gartner, Steve Gantt, Florence Gleason, Stuart Gold- stein, William Gray, Francis Guillaume, Franz Halberg, David Hansen, Leon Hardman, Geoffrey Harms, Lynn Hartweck, Odette Holter, David Houghton, Roberta Humphries, Anders Johansson, Eugene Kanabrocki, Daniel Kaplan, John Kettinger, Marcia Koukkari, Mark Koukkari, Kristin Kramer, Mitch Lazar, Don Luce, Scott Madill, Julie Martinez, Krishona Martinson, C. Robertson McClung, David McGlaughlin, Robert McKinnell, Bernard Millet, Cathy Moore-Arcand, Kris Morgan, Mary Mortenson, David Mottet, Dwight Nelson, Sally Noll, Karen Oberhauser, Adeola Okusami, Neil Olszewski, Sandra Orcutt, James Orf, Dana Peterson, Richard Philips, Brian Piasecki, Nora Plesofsky, Korise Rasmusson, Anke Reinders, Tony Sanderfoot, Mark Sanders, Bill Schmidt, Janet Schottle, Michael Simmons, Carolyn Silflow, Gail Slover-Arcari, Pete Snustad, Jo Strand, Régine Terracol, John Tester, James Thompson, Edgar Wagner, John Ward, Chad Walstrom, Thomas Waters, George Weiblen, Andi Weydahl, and Michael Young. To all of those listed above go our profound and heartfelt thanks for their unstinted and cheerfully rendered help! ix Contents Preface vii Acknowledgments ix 1 The Study of Biological Rhythms Introduction ................................................................................................... 1 A Time for Everything .................................................................................. 4 Three Rhythm Domains ................................................................................ 6 Implications of Body Clocks ....................................................................... 11 Essay 1.1: Accidents and Catastrophes ................................................... 11 Chronobiology: An Integrating Discipline .................................................. 12 Chapters in This Book ................................................................................. 14 Take-Home Message ................................................................................... 15 2 General Features of Rhythms: Terminology and Characteristics Introduction ................................................................................................. 19 Details of a Rhythm..................................................................................... 20 Period
Recommended publications
  • Characterization of Two Undescribed Mucoralean Species with Specific
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 March 2018 doi:10.20944/preprints201803.0204.v1 1 Article 2 Characterization of Two Undescribed Mucoralean 3 Species with Specific Habitats in Korea 4 Seo Hee Lee, Thuong T. T. Nguyen and Hyang Burm Lee* 5 Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, 6 Chonnam National University, Gwangju 61186, Korea; [email protected] (S.H.L.); 7 [email protected] (T.T.T.N.) 8 * Correspondence: [email protected]; Tel.: +82-(0)62-530-2136 9 10 Abstract: The order Mucorales, the largest in number of species within the Mucoromycotina, 11 comprises typically fast-growing saprotrophic fungi. During a study of the fungal diversity of 12 undiscovered taxa in Korea, two mucoralean strains, CNUFC-GWD3-9 and CNUFC-EGF1-4, were 13 isolated from specific habitats including freshwater and fecal samples, respectively, in Korea. The 14 strains were analyzed both for morphology and phylogeny based on the internal transcribed 15 spacer (ITS) and large subunit (LSU) of 28S ribosomal DNA regions. On the basis of their 16 morphological characteristics and sequence analyses, isolates CNUFC-GWD3-9 and CNUFC- 17 EGF1-4 were confirmed to be Gilbertella persicaria and Pilobolus crystallinus, respectively.To the 18 best of our knowledge, there are no published literature records of these two genera in Korea. 19 Keywords: Gilbertella persicaria; Pilobolus crystallinus; mucoralean fungi; phylogeny; morphology; 20 undiscovered taxa 21 22 1. Introduction 23 Previously, taxa of the former phylum Zygomycota were distributed among the phylum 24 Glomeromycota and four subphyla incertae sedis, including Mucoromycotina, Kickxellomycotina, 25 Zoopagomycotina, and Entomophthoromycotina [1].
    [Show full text]
  • A Molecular Perspective of Human Circadian Rhythm Disorders Nicolas Cermakian* , Diane B
    Brain Research Reviews 42 (2003) 204–220 www.elsevier.com/locate/brainresrev Review A molecular perspective of human circadian rhythm disorders Nicolas Cermakian* , Diane B. Boivin Douglas Hospital Research Center, McGill University, 6875 LaSalle boulevard, Montreal, Quebec H4H 1R3, Canada Accepted 10 March 2003 Abstract A large number of physiological variables display 24-h or circadian rhythms. Genes dedicated to the generation and regulation of physiological circadian rhythms have now been identified in several species, including humans. These clock genes are involved in transcriptional regulatory feedback loops. The mutation of these genes in animals leads to abnormal rhythms or even to arrhythmicity in constant conditions. In this view, and given the similarities between the circadian system of humans and rodents, it is expected that mutations of clock genes in humans may give rise to health problems, in particular sleep and mood disorders. Here we first review the present knowledge of molecular mechanisms underlying circadian rhythmicity, and we then revisit human circadian rhythm syndromes in light of the molecular data. 2003 Elsevier Science B.V. All rights reserved. Theme: Neural basis of behavior Topic: Biological rhythms and sleep Keywords: Circadian rhythm; Clock gene; Sleep disorder; Suprachiasmatic nucleus Contents 1 . Introduction ............................................................................................................................................................................................ 205
    [Show full text]
  • <I>Mucorales</I>
    Persoonia 30, 2013: 57–76 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X666259 The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies K. Hoffmann1,2, J. Pawłowska3, G. Walther1,2,4, M. Wrzosek3, G.S. de Hoog4, G.L. Benny5*, P.M. Kirk6*, K. Voigt1,2* Key words Abstract The Mucorales (Mucoromycotina) are one of the most ancient groups of fungi comprising ubiquitous, mostly saprotrophic organisms. The first comprehensive molecular studies 11 yr ago revealed the traditional Mucorales classification scheme, mainly based on morphology, as highly artificial. Since then only single clades have been families investigated in detail but a robust classification of the higher levels based on DNA data has not been published phylogeny yet. Therefore we provide a classification based on a phylogenetic analysis of four molecular markers including the large and the small subunit of the ribosomal DNA, the partial actin gene and the partial gene for the translation elongation factor 1-alpha. The dataset comprises 201 isolates in 103 species and represents about one half of the currently accepted species in this order. Previous family concepts are reviewed and the family structure inferred from the multilocus phylogeny is introduced and discussed. Main differences between the current classification and preceding concepts affects the existing families Lichtheimiaceae and Cunninghamellaceae, as well as the genera Backusella and Lentamyces which recently obtained the status of families along with the Rhizopodaceae comprising Rhizopus, Sporodiniella and Syzygites. Compensatory base change analyses in the Lichtheimiaceae confirmed the lower level classification of Lichtheimia and Rhizomucor while genera such as Circinella or Syncephalastrum completely lacked compensatory base changes.
    [Show full text]
  • THE Fungus FILES 31 REPRODUCTION & DEVELOPMENT
    Reproduction and Development SPORES AND SO MUCH MORE! At any given time, the air we breathe is filled with the spores of many different types of fungi. They form a large proportion of the “flecks” that are seen when direct sunlight shines into a room. They are also remarkably small; 1800 spores could fit lined up on a piece of thread 1 cm long. Fungi typically release extremely high numbers of spores at a time as most of them will not germinate due to landing on unfavourable habitats, being eaten by invertebrates, or simply crowded out by intense competition. A mid-sized gilled mushroom will release up to 20 billion spores over 4-6 days at a rate of 100 million spores per hour. One specimen of the common bracket fungus (Ganoderma applanatum) can produce 350 000 spores per second which means 30 billion spores a day and 4500 billion in one season. Giant puffballs can release a number of spores that number into the trillions. Spores are dispersed via wind, rain, water currents, insects, birds and animals and by people on clothing. Spores contain little or no food so it is essential they land on a viable food source. They can also remain dormant for up to 20 years waiting for an opportune moment to germinate. WHAT ABOUT LIGHT? Though fungi do not need light for food production, fruiting bodies generally grow toward a source of light. Light levels can affect the release of spores; some fungi release spores in the absence of light whereas others (such as the spore throwing Pilobolus) release during the presence of light.
    [Show full text]
  • Morphological and Molecular Characterization of Ascobolus and Pilobolus Fungi in Wild Herbivore Dung in Nairobi National Park Mi
    MORPHOLOGICAL AND MOLECULAR CHARACTERIZATION OF ASCOBOLUS AND PILOBOLUS FUNGI IN WILD HERBIVORE DUNG IN NAIROBI NATIONAL PARK MIYUNGA ANTOINETTE ALUOCH A Research Thesis Submitted to the Graduate School in Partial Fulfilment for the Requirements of the Award of Master of Science Degree in Biochemistry of Egerton University EGERTON UNIVERSITY NOVEMBER, 2015 DECLARATION AND RECOMMENDATION Declaration This thesis is my original work and has not been submitted or presented for examination in any institution Miyunga Antoinette Aluoch SM14/3263/12 Signature..................................................... Date………………………………….. Recommendation This thesis has been submitted for examination with our approval as supervisors Dr. Meshack Obonyo Senior Lecturer Department of Biochemistry and Molecular Biology Egerton University Signature..................................................... Date………………………………….. Dr. Daniel Okun Lecturer Department of Biochemistry and Biotechnology Kenyatta University Signature..................................................... Date………………………………….. ii COPYRIGHT ©2015 Miyunga A Aluoch No parts of this work may be reproduced, stored in a retrieval system or transmitted by any means, mechanical photocopying and electronic process, recording or otherwise copied for public or private use without the prior written permission from Egerton University. All rights reserved. iii DEDICATION This thesis is dedicated to my family for their love and support always. iv ACKNOWLEDGEMENT I thank my supervisors Dr. Meshack Obonyo of Department
    [Show full text]
  • THE Fungus FILES BIOLOGY & CLASSIFICATION
    REPRODUCTION & DEVELOPMENT The Fung from the Dung Flipbook OBJECTIVE Activity 2.3 • To illustrate how one fungus disperses its spores BACKGROUND INFORMATION GRADES Fungi have developed many bizarre and interesting adaptations to K-6 (Care partners for K-2) disperse their spores. The hat thrower fungus, Pilobolus, is especially intriguing. This mushroom is coprophilic which means it likes to TYPE OF ACTIVITY live in dung. Pilobolus has evolved a way to shoot its spores onto Flipbook the grass where it is eaten by cattle. Its “shotgun” is a stalk swollen with cell sap, with a black mass of spores on the top. Below, the MATERIALS swollen tip is a light-sensitive area. The light sensing region affects • letter sized paper the growth of Pilobolus by causing it to orient toward the sun. As (cardstock would be ideal) the fungus matures, water pressure builds in the stalk until the tip • pencil crayons, crayons, or explodes, launching the spores into the daylight at speeds up to markers 50km/hr and for distances up to 2.5m! Shooting the spores into the • copies of page 45-46 for daylight gives them a better chance of landing in a sunny place each student where grass is growing. When the grass is eaten by the cattle, the • scissors tough spores pass through their digestive system and begin to grow • heavy duty stapler in a pile of dung where the cycle begins again. • copies of the poem, “Pilobolus, the Fung in the TEACHER INSTRUCTIONS Dung” from Tom Volk’s 1. Make copies of pages 45-46 and handout to each student.
    [Show full text]
  • Circadian Phase Sleep and Mood Disorders (PDF)
    129 CIRCADIAN PHASE SLEEP AND MOOD DISORDERS ALFRED J. LEWY CIRCADIAN ANATOMY AND PHYSIOLOGY SCN Efferent Pathways Anatomy Not much is known about how the SCN entrains overt circadian rhythms. We know that the SCN is the master The Suprachiasmatic Nucleus: Locus of the pacemaker, but regarding its regulation of the rest/activity Biological Clock cycle, core body temperature rhythm and cortisol rhythm, Much is known about the neuroanatomic connections of among others, it is not clear if there is a humoral factor or the circadian system. In vertebrates, the locus of the biologi- neural connection that transmits the SCN’s efferent signal; cal clock (the endogenous circadian pacemaker, or ECP) however, a great deal is known about the efferent neural pathway between the SCN and pineal gland. that drives all circadian rhythms is in the hypothalamus, specifically, the suprachiasmatic nucleus (SCN)(1,2).This paired structure derives its name because it lies just above The Pineal Gland the optic chiasm. It contains about 10,000 neurons. The In mammals, the pineal gland is located in the center of molecular mechanisms of the SCN are an active area of the brain; however, it lies outside the blood–brain barrier. research. There is also a great deal of interest in clock genes Postganglionic sympathetic nerves (called the nervi conarii) and clock components of cells in general, not just in the from the superior cervical ganglion innervate the pineal (4). SCN. The journal Science designated clock genes as the The preganglionic neurons originate in the spinal cord, spe- second most important breakthrough for the recent year; cifically in the thoracic intermediolateral column.
    [Show full text]
  • Control Theory Approach to the Study of Circadian Leaf Movement in Trifolium Repens
    CONTROL THEORY APPROACH TO THE STUDY OF CIRCADIAN LEAF MOVEMENT IN TRIFOLIUM REPENS by G.R. Robinson B..Sc. Hons.) submitted in fulfilment of the requirements for the degree of Doctor of Philosophy. UNIVERSITY OF TASMANIA HOBART JANUARY, 1979 Thithesis.contains.no material which has been laccepted for the award of any.other.degree . or diploma in any university. To.the best of my knowledge and.belief, the thes is contains.no material previously published . or written by another person except where due reference is made in the text. G.R. Robinson CONTENTS Page SUMMARY ACKNOWLEDGEMENTS iv CHAPTER ONE : GENERAL INTRODUCTION CHAPTER TWO : CIRCADIAN RHYTHMS IN BIOLOGICAL SYSTEMS 1.1 Introduction 5 2.2 Occurrence 6 . 2.3 Characteristics of circadian systems. (a) Light effects 8 (b) Temperature effects . 10 (c) Chemical effects 12 2.4 ModelS:, ,-; -14 CHAPTER THREE : CONTROL THEORY AND ITS APPLICATION ' TO BIOLOGICAL SYSTEMS 5.1 Introduction 18 3.2 Basic concepts 18 3.3 Linear systems . 21 :3.4 The Laplace transformand system transfer .function 23 3.5 System frequency response 25 :3.6 .Relationahip.between frequency response and 25 impulse response 3.7 Determination of frequency.response 27 . (1) Transient inputs 27 (2) Continuous inputs :3.8 Matching a . transfer function to the 28 frequency response Page 3.9 Frequency response for a biological system 31 1.10 Examples of application to biological systems -34 1.11Pulse-phase response curves 36 CHAPTER FOUR : ANALYTICAL METHODS 4.1 Introduction 44 4.2 The discrete Fourier transform 45 4.3 Spectral analysis from a least squares viewpoint 47 4.3.1 Estimating amplitude and phase 48 4.3.2 Estimation of frequency 50 4.3.3 Several periodic terms 51 4.4 Properties of the DFT 51 4.4.1 Leakage 52 4.4.2 Aliasing 58 4.5 Reliability of spectral estimates 64 4.5.1 Presence of frequency components 64 4.5.2 Reliability of frequency, amplitude and 66 phase estimates 4.5.3 Combination of estimates 69 4.6 Oscillations with nonstationary parameters 71 4.7 Future developments 72 CHAPTER FIVE : EXPERIMENTAL METHOD .
    [Show full text]
  • Pilobolusspecies Found on Herbivore Dung from the São Paulo
    Acta bot. bras. 22(3): 614-620. 2008 Pilobolus species found on herbivore dung from the São Paulo Zoological Park, Brazil Aírton Viriato1 Received: May 2, 2007. Accepted: September 4, 2007 RESUMO – (Espécies de Pilobolus encontradas em fezes de herbívoros do Parque Zoológico de São Paulo, Brasil). Para o estudo de espécies de Pilobolus, foram coletadas 168 amostras de fezes de animais herbívoros no Parque Zoológico da cidade de São Paulo. Dez espécies foram verificadas, ilustradas e descritas e uma chave de identificação é apresentada. Palavras-chave: fungos coprófilos, Mucorales, Zygomycota ABSTRACT – (Pilobolus species found on herbivore dung from the São Paulo Zoological Park, Brazil). A study of Pilobolus species from 168 dung samples of various herbivoresous animals, collected in the São Paulo Zoological Park, was carried out. Ten species were found, illustrated, described, and a key for their identification is provided. Key words: coprophilous fungi, Mucorales, Zygomycota Introduction other at the base of the subsporangial vesicle. The orange carotenoid pigments act as light sensors which Pilobolus is a saprotrophic genus belonging to the are lined up with each other by the expanded Mucorales (Zygomycota), frequently found in subsporangial vesicle acting as a lens, so that the herbivorous animals feces (Alexopoulos et al. 1996). sporangium is always aimed at the brightest light. The The genus is characterized by coprophilous habit, sporangia are black, sub-hemispherical and have positive phototropism and method of spore dispersal. resistant walls. The columellae are generally smooth In the dispersal process, the mature sporangium is and long-elliptical, and sometimes mammiform. The thrown more than 2 meters by dehiscence of the spores are spherical to ellipsoid, and generally smooth mucilage found at the junction of the columella with walled, hyaline or with carotenoid pigments.
    [Show full text]
  • 1 Evaluating the Explosive Spore Discharge Mechanism of Pilobolus
    Evaluating the explosive spore discharge mechanism of Pilobolus Crystallinus using mechanical measurements and mathematical modeling John Tuthill May 9, 2005 Biomechanics Professor Rachel Merz Abstract The coprophilous Zygomycete Pilobolus uses osmotic turgor pressure as a means of explosive spore discharge, shooting its sporangium up to several meters away from the sporangiophore. This study attempts to clarify the sporangial discharge model by offering the first mechanical measurements of the internal turgor pressure of Pilobolus. In order to account for the forces included within the hypothesized shooting mechanism, a mathematical model is used to model the sporangial projectile trajectory. Measurements of subsporangial turgor pressure using a miniature strain gauge were partially successful, showing a pressure of .11 MPa. The mathematical model found that a pressure of .474 MPa would be needed to propel the projectile over the average measured distance, 1.14 m. The difference between the measured and the predicted results is attributed to error within the mechanical measurements. These results emphasize the importance of using innovative and rigorous methods for measuring internal turgor pressure, and encourage further examination of the Pilobolus spore discharge apparatus. Introduction The unfortunate immobility of the fungi is a limiting factor for their dispersal and distribution. Their sessile state generally leaves two methods of expansion: growth into an adjoining area or dispersal of spores. The latter is often the more feasible option. Fungal spores are lighter and smaller than plant seeds, and consequently encounter increased effects from drag (Vogel 2005). Most fungi do not grow tall enough to effectively send their spores through the sluggish boundary layer of still air surrounding them.
    [Show full text]
  • Biological Rhythms Workshop I: Introduction to Chronobiology
    Downloaded from symposium.cshlp.org on November 30, 2008 - Published by Cold Spring Harbor Laboratory Press Biological Rhythms Workshop I: Introduction to Chronobiology S. J. Kuhlman, S. R. Mackey and J. F. Duffy Cold Spring Harb Symp Quant Biol 2007 72: 1-6 Access the most recent version at doi:10.1101/sqb.2007.72.059 References This article cites 24 articles, 6 of which can be accessed free at: http://symposium.cshlp.org/content/72/1.refs.html Article cited in: http://symposium.cshlp.org/content/72/1.abstract.html#related-urls Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Cold Spring Harbor Symposia on Quantitative Biology go to: http://symposium.cshlp.org/subscriptions/ © Cold Spring Harbor Laboratory Press Downloaded from symposium.cshlp.org on November 30, 2008 - Published by Cold Spring Harbor Laboratory Press Biological Rhythms Workshop I: Introduction to Chronobiology S.J. KUHLMAN,* S.R. MACKEY,†‡ AND J.F. DUFFY§ *Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724; †Department of Biology, The Center for Research on Biological Clocks, Texas A&M University, College Station, Texas 77843-3258; §Division of Sleep Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts 02115 In this chapter, we present a series of four articles derived from a Introductory Workshop on Biological Rhythms presented at the 72nd Annual Cold Spring Harbor Symposium on Quantitative Biology: Clocks and Rhythms. A diverse range of species, from cyanobacteria to humans, evolved endogenous biological clocks that allow for the anticipation of daily variations in light and temperature.
    [Show full text]
  • Circadian Rhythm Phase Shifts Caused by Timed Exercise Vary with Chronotype in Young Adults
    University of Kentucky UKnowledge Theses and Dissertations--Kinesiology and Health Promotion Kinesiology and Health Promotion 2019 CIRCADIAN RHYTHM PHASE SHIFTS CAUSED BY TIMED EXERCISE VARY WITH CHRONOTYPE IN YOUNG ADULTS J. Matthew Thomas University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2019.406 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Thomas, J. Matthew, "CIRCADIAN RHYTHM PHASE SHIFTS CAUSED BY TIMED EXERCISE VARY WITH CHRONOTYPE IN YOUNG ADULTS" (2019). Theses and Dissertations--Kinesiology and Health Promotion. 64. https://uknowledge.uky.edu/khp_etds/64 This Doctoral Dissertation is brought to you for free and open access by the Kinesiology and Health Promotion at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Kinesiology and Health Promotion by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]