Dacite Block and Ash Avalanche Hazards in Mountainous Terrain: 2360 Yr

Total Page:16

File Type:pdf, Size:1020Kb

Dacite Block and Ash Avalanche Hazards in Mountainous Terrain: 2360 Yr DACITE BLOCK AND ASH AVALANCHE HAZARDS IN MOUNTAINOUS TERRAIN: 2360 YR. BP ERUPTION OF MOUNT MEAGER, BRITISH COLUMBIA by MARTIN L. STEWART B.Sc, (Honours), Carleton University, 1998 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF EARTH AND OCEAN SCIENCES We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA December 2002 © Martin L. Stewart, 2002 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of LoM^ r QatA^ Sc/t^n? The University of British Columbia Vancouver, Canada Date IB * zooi DE-6 (2/88) Abstract The Mount Meager volcanic complex hosts deposits from the youngest known explosive volcanic eruption in Canada (2360 yr. BP). These deposits reflect the consequences of erupting dacite magmas into a region of extreme topographic relief. Regions of this kind represent one of the most hazardous and, potentially, high risk natural environments on the planet. Mapping of the Pebble Creek Formation deposits has elucidated a unique distribution of hazardous events of varying intensity, timing, and frequency associated with the 2360 yr. BP eruption event. For example, lavas erupted onto the steep slopes of the volcano failed under gravitational stresses producing hot block and ash avalanches. During the later stages of this extrusive activity, cold rock avalanches were produced on the oversteepened slopes of the volcano, in one case mixing with a hot block and ash avalanche. Both volcanic and rock avalanches were highly mobile, travelling down the slopes of the volcano, fdling the valley and running up the opposite valley wall. Deposits from these events preserve features that are diagnostic of their hot volcanic or cold mass wasting origins and allow these two deposit types to be distinguished in the field. Discrimination is essential because these deposits are superficially very similar in appearance and may be complexly interlayered, but they have different hazard implications. The steep narrow valleys surrounding the Mount Meager volcano provide an efficient catchment for volcanic and rock avalanches. During the 2360 yr. BP eruption cycle thick block and ash avalanche deposits formed a natural dam against the flow of the Lillooet River, a major drainage system. Volume estimates and flow rates of the current Lillooet River suggests there was an ongoing competition between building of the ii pyroclastic dam and filling of the lake. Gradual buildup of the dam was periodically interrupted by overtopping and catastrophic failure of the dam by the encroaching lake. This catastrophic failure released high volumes of water, flooding the Lillooet valley as far as Pemberton, B.C. and produced highly destructive debris flows. Properly assessing the distribution and nature of volcanic and associated hazards in mountainous regions features is requisite for formulating a risk model for areas such as Mount Meager. Mapping of the deposits elucidates the distribution, and frequency of past hazardous events. The detailed stratigraphic analysis presented in this study demonstrates the destructive potential of these events based on the intensity and time of onset for analogous modern events. iii Table of Contents Abstract 11 Table of Contents iv List of Figures vi List of Tables viii Insert ix Acknowledgments x 1. Introduction 1 2. The Pebble Creek Formation 2.1 Introduction 5 2.2 Geologic Setting 5 2.3 Volcanic Deposits 11 2.4 Non-volcanic Deposits 21 2.5 Eruption History 26 3. Discriminating Hot Versus Cold Avalanches 3.1 Introduction 30 3.2 Criteria for Distinguishing Deposits in the Field 31 3.3 Comparing Rock and Volcanic Avalanche Hazards 35 4. Block and Ash Avalanche Formation 4.1 Introduction 39 4.2 Duration of Block and Ash Avalanche Production 39 4.3 Source of Block and Ash Avalanches 42 iv 4.4 Failure Mechanisms of Viscous Lavas 44 4.5 Change in Behaviour of Erupting Lavas 56 5. Failure of a Pyroclastic Dam 5.1 Introduction 61 5.2 Pyroclastic dam structure 62 5.3 Filling of the paleo-Salal Lake 64 5.4 Dam Failure and Flooding 67 6. Discussion: Volcanic Hazards of a Dacite Erupting in Mountainous Terrain 72 List of References 79 Appendices I. Geochemical Data 93 II. Clast Count Data 100 III. Volume Maps and Cross-Section Key 102 IV. Lake Volume Data 108 v List of Figures 1. Distribution of Quaternary volcanoes in the Garibaldi volcanic belt, including rock avalanches associated with the major edifices (map) 6 2. Distribution of deposits within the Lillooet River valley (sketch map based on outcrop map insert) 9 3. Chemical discrimination plot of major elements from whole rock and electron microprobe analysis (from LeBas et al., 1986) 10 4. Images of pyroclastic fallout and pumiceous pyroclastic flow deposits 12 5. Stratigraphic sections of the Pebble Creek formation volcanic deposits 13 6. Clast abundances in pyroclastic fall section and images of a welded pumice breccia accessory clast 14 7. Overview image of the pyroclastic deposits from the Northern slopes of the Lillooet valley 17 8. Images of block and ash avalanche deposits and lava flow 18 9. Images of rock avalanche, reworked pumice, delta and outburst flood deposits 22 10. Stratigraphic sections of non-volcanic deposits illustrating lake stand elevations on lateral continuity of the late rock avalanche deposit 24 11. Flow chart for discriminating rock avalanches and volcanic avalanches from field criteria 32 12. Images clast features that illustrate hot versus cold origins for avalanche deposits ..33 13. Cross sections of the angle of reach and runout for rock avalanches and block and ash avalanches 45 14. Schematic illustrations of simple lava flow models including: vi a) a static block model lava flow for calculating critical resolved shear stresses 47 b) a steady state lava flow velocity profde to calculate strain deriving from a velocity gradient 47 15. Temperature dependent viscosity and relaxation timescale curves: a) temperature dependent viscosities of some natural volcanic lavas ....50 b) relaxation timescales based on (a) and relationships in Dingwell and Webb (1990) 50 16. Curves comparing critical resolved shear stresses acting on the base of a lava flow and the glass transition calculated from rheological properties of a Newtonian viscous liquid 52 17. Slope values of the North face of Mount Meager along the axis of travel of mapped avalanches 59 18. Idealized cross section and images of the deposits comprising the pyroclastic dam that blocked the Lillooet River 63 19. Image and cross sections of the pyroclastic dam and canyon eroded into the dam ...65 20. Lake highstand and peak discharge curves a) lake elevations based on filling rates and relevant stratigraphic features 68 b) peak water discharge curve for dam failure based on the lake volume and dam height 68 21. Conceptual curve of dam elevation and lake elevation versus time 69 22. Time scales of eruption processes and associated hazards 74 23. Summary chart of the characteristics of hazards affecting the Lillooet valley 78 vii List of Tables 1. Summary of recorded avalanche and eruption events in the Mount Meager volcanic complex over the last 2 million years 7 2. Criteria from field observations allowing discrimination of hot (volcanic) and cold (mass wasting) avalanche deposits 35 3. Summary of extrusion rates recorded from historical eruptions of silicic volcanoes 41 4. Example of parameters and solution for length scales of strain in a steady state velocity profile which would result in the failure of a Newtonian viscous liquid 54 viii Insert DATA CD: Files Include: 1. Data - Geochemical data files (.xls format) 2. MeagerGIS - GIS mapping data files (ARCView format) 3. PCFmap - Digital outcrop map and field station map (.pdf format) 4. Thesis - Thesis (.pdf format) 5. Thesiscdr - Draft: thesis figures (xdr format) 6. Thesisdoc - Draft: thesis text (.doc format) ix Acknowledgments I would like to thank my advisor, Kelly Russell for his patience and vigilance during the course of this thesis. Contributions from committee members including Cathie Hickson, Greg Dipple, Mati Raudsepp proved invaluable. Financial support for this research included a University Graduate Fellowship (1999), Mineralogical Association of Canada National Scholarship (2000), NSERC PGS B Scholarship (2001), Lorntzen Scholarships (1999-2001), and NSERC operating grant #589820 (J.K. Russell). Field and technical support was provided in part by the Geological Survey of Canada and Garth Carefoot (Great Pacific Pumice Inc.). I am indebted to Mark Stasiuk, Kirstie Simpson, Kaz Shimamura, Oldrich Hungr, John Clague and members of the University of British Columbia (UBC) faculty for enlightened discussion and assistance on the issues presented here. Steve Quane deserves special mention for helping me survive my time at UBC and in Vancouver. A debt of gratitude goes to Scotty, Steve, Justin and my grad student friends for always keeping it real. To all the undergraduates at UBC I have had the privilege to become acquainted with, my family from 7th avenue, and all the field assistants over the years, thanks for the good times. Finally thanks to my family back home, here's another one for the shelf. x 1. Introduction Chapter 1 Introduction The margins of convergent plates commonly have landscapes that feature large volcanic edifices (in particular, stratovolcanoes) situated in regions of extreme topographic relief (Wood and Kienle, 1990; Perfit and Davidson, 2000).
Recommended publications
  • Garibaldi Provincial Park 2010 Olympic Venue
    1 Garibaldi Provincial Park 2010 Olympic Venue Garibaldi Provincial Park, located in the traditional territory of the Squamish people, forms much of the backdrop to Whistler/ Blackcomb, site of the downhill events of the 2010 Winter Games. Sitting in the heart of the Coast Mountains, the park takes its name from the towering 2,678 metre peak, Mount Garibaldi. Garibaldi Park is known for its pristine beauty and spectacular natural features. Just 70 km north of Vancouver, the park offers over 90 km of established hiking trails, and is a favourite year-round destination for outdoor enthusiasts. Interesting Garibaldi Park Facts • The southern portion of Garibaldi Park is home to the Garibaldi Volcano, part of the Garibaldi Volcanic Belt and made up of Mount Garibaldi, Atwell Peak, and Dalton Dome. This stratavolcano, so named because of its conelike layers of hardened lava, rock and volcanic ash, last erupted 10,000 to 13,000 years ago under glacial ice. It is this event that is responsible for forming some of the fascinating geological features in the park, such as Opal Cone, the Table and Black Tusk. • The “Barrier” is a natural rock formation created by the volcanic explosion of Mount Price thousands of years ago; the lava created a natural dam for the melt streams from nearby glaciers. As a result Garibaldi Lake formed. The lake reaches depths of up to 300 metres in places and is rich in silt (or ‘rock flour’), which gives the lake its characteristic milky blue colour. www.bcparks.ca 2 Garibaldi Provincial Park 2010 Olympic Venue History In 1860, while surveying Howe Sound on board the Royal Navy ship H.M.S.
    [Show full text]
  • Garibaldi Provincial Park M ASTER LAN P
    Garibaldi Provincial Park M ASTER LAN P Prepared by South Coast Region North Vancouver, B.C. Canadian Cataloguing in Publication Data Main entry under title: Garibaldi Provincial Park master plan On cover: Master plan for Garibaldi Provincial Park. Includes bibliographical references. ISBN 0-7726-1208-0 1. Garibaldi Provincial Park (B.C.) 2. Parks – British Columbia – Planning. I. British Columbia. Ministry of Parks. South Coast Region. II Title: Master plan for Garibaldi Provincial Park. FC3815.G37G37 1990 33.78”30971131 C90-092256-7 F1089.G3G37 1990 TABLE OF CONTENTS GARIBALDI PROVINCIAL PARK Page 1.0 PLAN HIGHLIGHTS 1 2.0 INTRODUCTION 2 2.1 Plan Purpose 2 2.2 Background Summary 3 3.0 ROLE OF THE PARK 4 3.1 Regional and Provincial Context 4 3.2 Conservation Role 6 3.3 Recreation Role 6 4.0 ZONING 8 5.0 NATURAL AND CULTURAL RESOURCE MANAGEMENT 11 5.1 Introduction 11 5.2 Natural Resources Management: Objectives/Policies/Actions 11 5.2.1 Land Management 11 5.2.2 Vegetation Management 15 5.2.3 Water Management 15 5.2.4 Visual Resource Management 16 5.2.5 Wildlife Management 16 5.2.6 Fish Management 17 5.3 Cultural Resources 17 6.0 VISITOR SERVICES 6.1 Introduction 18 6.2 Visitor Opportunities/Facilities 19 6.2.1 Hiking/Backpacking 19 6.2.2 Angling 20 6.2.3 Mountain Biking 20 6.2.4 Winter Recreation 21 6.2.5 Recreational Services 21 6.2.6 Outdoor Education 22 TABLE OF CONTENTS VISITOR SERVICES (Continued) Page 6.2.7 Other Activities 22 6.3 Management Services 22 6.3.1 Headquarters and Service Yards 22 6.3.2 Site and Facility Design Standards
    [Show full text]
  • Community Risk Assessment
    COMMUNITY RISK ASSESSMENT Squamish-Lillooet Regional District Abstract This Community Risk Assessment is a component of the SLRD Comprehensive Emergency Management Plan. A Community Risk Assessment is the foundation for any local authority emergency management program. It informs risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflects their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property. SLRD Emergency Program [email protected] Version: 1.0 Published: January, 2021 SLRD Community Risk Assessment SLRD Emergency Management Program Executive Summary This Community Risk Assessment (CRA) is a component of the Squamish-Lillooet Regional District (SLRD) Comprehensive Emergency Management Plan and presents a survey and analysis of known hazards, risks and related community vulnerabilities in the SLRD. The purpose of a CRA is to: • Consider all known hazards that may trigger a risk event and impact communities of the SLRD; • Identify what would trigger a risk event to occur; and • Determine what the potential impact would be if the risk event did occur. The results of the CRA inform risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflect their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property.
    [Show full text]
  • Discrimination of Hot Versus Cold Avalanche Deposits: Implications for Hazards Assessment at Mount Meager, British Columbia
    Geological Survey of Canada CURRENT RESEARCH 2001-A10 Discrimination of hot versus cold avalanche deposits: implications for hazards assessment at Mount Meager, British Columbia M.L. Stewart, J.K. Russell, and C.J. Hickson 2001 ©Her Majesty the Queen in Right of Canada, 2001 Catalogue No. M44-2001/A10E ISBN 0-660-18390-0 A copy of this publication is also available for reference by depository libraries across Canada through access to the Depository Services Program's website at http://dsp-psd.pwgsc.gc.ca A free digital download of this publication is available from the Geological Survey of Canada Bookstore web site: http://gsc.nrcan.gc.ca/bookstore/ Click on Free Download. All requests for permission to reproduce this work, in whole or in part, for purposes of commercial use, resale or redistribution shall be addressed to: Earth Sciences Sector Information Division, Room 200, 601 Booth Street, Ottawa, Ontario K1A 0E8. Authors’ addresses M.L. Stewart ([email protected]) J.K. Russell ([email protected]) Igneous Petrology Laboratory Earth and Ocean Sciences The University of British Columbia 6339 Stores Road Vancouver, B.C. V6T 1Z4 C.J. Hickson ([email protected]) GSC Pacific, Vancouver 101-605 Robson Street, Vancouver, B.C. V6B 5J3 Discrimination of hot versus cold avalanche deposits: implications for hazards assessment at Mount Meager, British Columbia M.L. Stewart, J.K. Russell, and C.J. Hickson GSC Pacific, Vancouver Stewart, M.L., Russell, J.K., and Hickson, C.J., 2001: Discrimination of hot versus cold avalanche deposits: implications for hazards assessment at Mount Meager, British Columbia; Geological Survey of Canada, Current Research 2001-A10, 10 p.
    [Show full text]
  • Implications for Hazard Assessment at Mount Meager, BC
    Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C. M. L. Stewart, J. K. Russell, C. J. Hickson To cite this version: M. L. Stewart, J. K. Russell, C. J. Hickson. Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C.. Natural Hazards and Earth System Sciences, Copernicus Publ. / European Geosciences Union, 2003, 3 (6), pp.713-724. hal-00299093 HAL Id: hal-00299093 https://hal.archives-ouvertes.fr/hal-00299093 Submitted on 1 Jan 2003 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Natural Hazards and Earth System Sciences (2003) 3: 713–724 © European Geosciences Union 2003 Natural Hazards and Earth System Sciences Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C. M. L. Stewart1, J. K. Russell1, and C. J. Hickson2 1Igneous Petrology Laboratory, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada 2Pacific Division, Geological Survey of Canada, Vancouver B.C., Canada Received: 5 February 2003 – Revised: 26 May 2003 – Accepted: 29 May 2003 Abstract. The surficial deposits surrounding the Mount represent an obvious hazard and, in many instances, the na- Meager volcanic complex include numerous avalanche de- ture or magnitude of these volcanic hazards can be substan- posits.
    [Show full text]
  • Could Glacial Retreat-Related Landslides Trigger Volcanic Eruptions? Insights from Mount Meager, British Columbia
    Could Glacial Retreat-Related Landslides Trigger Volcanic Eruptions? Insights from Mount Meager, British Columbia Gioachino Roberti, Brent Ward, Benjamin van Wyk de Vries, Nicolas Le Corvec, Swetha Venugopal, Glyn Williams-Jones, John J. Clague, Pierre Friele, Giacomo Falorni, Geidy Baldeon, Luigi Perotti, Marco Giardino, and Brian Menounos Abstract chamber at 3–16 km depth. Based on numerical model simulations carried out to constrain the stress change, the Mount Meager, a glacier-clad volcanic complex in British failure would affect the stress field to depths of up to Columbia, Canada, is known for its large landslides, as *6 km, with changes in effective stress of up to well as a major eruption about 2360 years ago. In 2010, *4 MPa. The change in effective stress following such after decades of glacier retreat, the south flank of Mount a landslide might destabilize the magmatic chamber and Meager collapsed, generating a huge (53 Mm3) landslide. trigger an eruption. This result also suggests that a In 2016, fumaroles formed ice caves in one of the glaciers previously documented major flank collapse may have on the complex. This glacier is bordered by a large had a role in the 2360 cal yr BP eruption. unstable slope presently moving about 3.5 cm per month. If this slope were to fail, a long-runout debris avalanche Keywords would reach the floor of the Lillooet River valley, with possible destructive effects on downstream infrastructure. Volcanic landslide Á Stress changes Á Eruption trigger Á The unloading of the volcanic edifice from an abrupt FEM Á InSAR failure would also have unknown effects on the magmatic plumbing system.
    [Show full text]
  • Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
    Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust.
    [Show full text]
  • Garibaldi Park Alpine Jewel of Howe Sound
    Garibaldi Park Alpine jewel of Howe Sound Bob Turner Bowen Island Conservancy [email protected] Retired, Geological Survey of Canada “We can create beauty through the dailyness of our lives, standing our ground in the places we love” Terry Tempest Williams Mt Garibaldi from Pam Rocks Bowen Island Trail just below Black Tusk Bioregionalism: Taking root in my home watershed Garibaldi Bowen Island Nch’kay - Sacred Mountain to the Squamish People Sacred Mountain Royal Navy survey ship H.M.S. Plumper, surveying the BCCaptain coast Vancouver’sin 1860 men, 1792 Giuseppe Garibaldi First ascent of Mt Garibaldi, 1907 First ascent of Mt Garibaldi, 1907 Early Mountaineering Garibaldi Lake area was a popular hiking area by 1910 Black Tusk Meadows PGE in Cheakamus Canyon … and BC’s 2nd Provincial Park by 1920 2006 Diamond Head2006 Chalet, 1945 Elfin Lakes, 1950s Ottar Brandvold Garibaldi today The famous western edge of Park Cheakamus Lake Access Rubble Creek Access Garibaldi Lake Mt Garibaldi Elfin Lakes Diamond Head Access Black Tusk, May 1986 A geologist’s view: Garibaldi’s FIRE and ICE story Deception Peak from Polemonium Ridge “FIRE”: We live in volcano country! Volcanoes Garibaldi the inevitable consequence of collision (subduction) zones The volcano factory Figure credit: Geological Survey of Canada Mount Garibaldi Garibaldi – just the top end of a 60-100 km deep plumbing system Figure credit: “Black Tusk” Black Tusk Helm Cr lava flow Cinder Cone Garibaldi Lake Mt Price volcano Mt Price, The Table Barrier lava flow Mt Garibaldi Opal Cone Elfin Lakes Opal Cone volcano Black Tusk volcano Diamond Head parking lot Ring Creek lava flow Not just 1 volcano, but 13! … and 4 lava flows Could Garibaldi erupt? Vital signs Last eruption 9000 years ago No hot springsGaribaldi’s or fumeroles vital signs Some seismicity; unclear significance ….
    [Show full text]
  • Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera
    GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 Natural Resources Ressources naturelles Canada Canada GEOLOGICAL SURVEY OF CANADA OPEN FILE 5906 Review of National Geothermal Energy Program Phase 2 – Geothermal Potential of the Cordillera A. Jessop 2008 ©Her Majesty the Queen in Right of Canada 2008 Available from Geological Survey of Canada 601 Booth Street Ottawa, Ontario K1A 0E8 Jessop, A. 2008: Review of National Geothermal Energy Program; Phase 2 – Geothermal Potential of the Cordillera; Geological Survey of Canada, Open File 5906, 88p. Open files are products that have not gone through the GSC formal publication process. The Meager Cree7 Hot Springs 22 Fe1ruary 1273 CONTENTS REVIEW OF NATIONAL GEOTHERMAL ENERGY PROGRAM PHASE 2 - THE CORDILLERA OF WESTERN CANADA CHAPTER 1 - THE NATURE OF GEOTHERMAL ENERGY INTRODUCTION 1 TYPES OF GEOTHERMAL RESOURCE 2 Vapour-domi ate reservoirs 3 Fluid-domi ated reservoirs 3 Hot dry roc) 3 PHYSICAL QUANTITIES IN THIS REPORT 3 UNITS 4 CHAPTER 2 - THE GEOTHERMAL ENERGY PROGRAMME 6 INTRODUCTION THE GEOTHERMAL ENERGY PROGRAMME 6 Ob.ectives 7 Scie tific base 7 Starti 1 the Geothermal E er1y Pro1ram 8 MA4OR PRO4ECTS 8 Mea1er Mou tai 8 Re1i a 9 ENGINEERING AND ECONOMIC STUDIES 9 GRO6 TH OF OUTSIDE INTEREST 10 THE GEOTHERMAL COMMUNITY 10 Tech ical groups a d symposia 10 ASSESSMENT OF THE RESOURCE 11 i CHAPTER 3 - TECTONIC AND THERMAL STRUCTURE OF THE CORDILLERA 12 TECTONIC HISTORY 12 HEAT FLO6 AND HEAT
    [Show full text]
  • Guidance Towards a Landslide Risk Management Plan
    The Meager and Pebble Creek Hotsprings near Pemberton, British Columbia: Guidance towards a Landslide Risk Management Plan By Cordilleran Geoscience Box 612, Squamish, BC VON 3GO For Teressa McMillan Recreation Technician Ministry of Forests, Lands and Natural Resource Operations Sea to Sky District and South Sunshine Coast District Phone: 604-898-2132 Cell: 604-848-5006 March 17, 2017 Draft V1, March 17, 2017 Table of Contents 1.0 Introduction ............................................................................................................................... 1 2.0 Study Area ................................................................................................................................ 2 3.0 Landslide Hazard, Frequency, Magnitude and Consequence ................................................... 4 4.0 Hazards Affecting Mount Meager Volcanic Complex ............................................................. 5 4.1 Non-eruption Related Landslide Hazard Overview .............................................................. 5 4.2 Incidents Involving Risk to Human Life .............................................................................. 6 4.3 Hazards Affecting the Meager Creek Hotsprings Recreation Site ....................................... 7 4.3.1 Hydrologic Clear Water Floods ..................................................................................... 7 4.3.2 Coarse Woody Debris and Sediment Loading ............................................................... 8 4.3.3 Outburst floods..............................................................................................................
    [Show full text]
  • 0X0a I Don't Know Gregor Weichbrodt FROHMANN
    0x0a I Don’t Know Gregor Weichbrodt FROHMANN I Don’t Know Gregor Weichbrodt 0x0a Contents I Don’t Know .................................................................4 About This Book .......................................................353 Imprint ........................................................................354 I Don’t Know I’m not well-versed in Literature. Sensibility – what is that? What in God’s name is An Afterword? I haven’t the faintest idea. And concerning Book design, I am fully ignorant. What is ‘A Slipcase’ supposed to mean again, and what the heck is Boriswood? The Canons of page construction – I don’t know what that is. I haven’t got a clue. How am I supposed to make sense of Traditional Chinese bookbinding, and what the hell is an Initial? Containers are a mystery to me. And what about A Post box, and what on earth is The Hollow Nickel Case? An Ammunition box – dunno. Couldn’t tell you. I’m not well-versed in Postal systems. And I don’t know what Bulk mail is or what is supposed to be special about A Catcher pouch. I don’t know what people mean by ‘Bags’. What’s the deal with The Arhuaca mochila, and what is the mystery about A Bin bag? Am I supposed to be familiar with A Carpet bag? How should I know? Cradleboard? Come again? Never heard of it. I have no idea. A Changing bag – never heard of it. I’ve never heard of Carriages. A Dogcart – what does that mean? A Ralli car? Doesn’t ring a bell. I have absolutely no idea. And what the hell is Tandem, and what is the deal with the Mail coach? 4 I don’t know the first thing about Postal system of the United Kingdom.
    [Show full text]
  • Serene Garibaldi Lake Hiking One of the Most Beautiful Trails in British Columbia by Mountain Man Dave Garibaldi Lake
    Northwest Explorer ETTE J AVE D Glaciers of Mount Garibaldi above Garibaldi Lake, British Columbia. As either a day hike or an overnight, this is one of B.C.’s most spectacular hikes, chock full of views, wilflowers and wildlife. Serene Garibaldi Lake Hiking one of the most beautiful trails in British Columbia By Mountain Man Dave Garibaldi Lake. It is here that you pay for best ones, #26 and #27. These campsites your campsite permit, $5/person/night are located just before the second kitchen Shortly after Labor Day, Mo Swanson, (Canadian funds, cash only), for either shelter on the lake. This was a fortunate Cecile, and I took a five-day backpack to Garibaldi Lake or Taylor Meadows. choice, for the next day was pretty stormy Garibaldi Lake in Garibaldi Provincial (Campsites there are nonreservable, and and we spent most of the time inside Park, 1.5 hours north of Vancouver, B.C. those at Garibaldi Lake of course fill up the nearby shelter (fully enclosed, but On Thursday afternoon, September 7, first.) At first there is a climb of 2,530 feet without heat). 2006 we left Seattle and drove to the in 3.7 miles to a junction (4,430 feet), on There were still some low clouds on very nice large campground in Alice a wide well-graded, but totally boring, day three, but we set off early to climb Lake Provincial Park, ten miles short trail in woods. Here, the left fork leads the forbidding Black Tusk (7,598 feet), of the turnoff to the trail to Garibaldi up about 400 feet to Taylor Meadows a huge volcanic plug around which Lake.
    [Show full text]