CH Instruments Model 600E Series User Manual

Total Page:16

File Type:pdf, Size:1020Kb

CH Instruments Model 600E Series User Manual Model 600E Series Electrochemical Analyzer/Workstation User Manual CH Instruments CH Instruments Model 600E Series User Manual © 2014 CH Instruments, Inc. All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. Printed: August 2014 in Austin, Texas. Contents i Table of Contents Chapter 1 General Information 1 1.1 Introduction................................................................................................................................... 2 1.2 Electrochemical................................................................................................................................... Techniques 4 1.3 Software................................................................................................................................... Features 6 1.4 System................................................................................................................................... Requirements 9 1.5 Hardware................................................................................................................................... Specifications 10 Chapter 2 Getting Started 11 2.1 Installation................................................................................................................................... 12 2.2 USB Driver................................................................................................................................... Installation 16 2.3 Testing................................................................................................................................... 19 2.4 Some................................................................................................................................... Useful Tips 20 Chapter 3 File Menu 21 3.1 Open................................................................................................................................... command 22 3.2 Save ...................................................................................................................................As command 24 3.3 Delete................................................................................................................................... command 26 3.4 Retrieve................................................................................................................................... command 27 3.5 Update................................................................................................................................... Instrument Program command 28 3.6 List Data................................................................................................................................... File command 29 3.7 Convert................................................................................................................................... to Text command 30 3.8 Text File................................................................................................................................... Format command 31 3.9 Import................................................................................................................................... Text File command 34 3.10 Print ...................................................................................................................................command 35 3.11 Print ...................................................................................................................................Multiple Files command 36 3.12 Print ...................................................................................................................................Setup command 37 3.13 Exit command................................................................................................................................... 39 Chapter 4 Setup Menu 41 4.1 Technique................................................................................................................................... command 42 4.2 Parameters................................................................................................................................... command 44 4.2.1 Cyclic Voltammetry.......................................................................................................................................................... Parameters dialog box 45 4.2.2 Linear ..........................................................................................................................................................Sw eep Voltammetry Parameters dialog box 47 4.2.3 Staircase.......................................................................................................................................................... Voltammetry Parameters dialog box 49 4.2.4 Tafel Plot.......................................................................................................................................................... Parameters dialog box 50 4.2.5 Chronoamperometry.......................................................................................................................................................... Parameters dialog box 51 4.2.6 Chronocoulometry.......................................................................................................................................................... Parameters dialog box 53 4.2.7 Differential.......................................................................................................................................................... Pulse Voltammetry Parameters dialog box 55 4.2.8 Normal.......................................................................................................................................................... Pulse Voltammetry Parameters dialog box 56 4.2.9 Differential.......................................................................................................................................................... Normal Pulse Voltammetry dialog box 57 © 2014 CH Instruments, Inc. ii CH Instruments Model 600E Series 4.2.10 Square.......................................................................................................................................................... Wave Voltammetry Parameters dialog box 58 4.2.11 AC Voltammetry.......................................................................................................................................................... Parameters dialog box 59 4.2.12 2nd Harmonic.......................................................................................................................................................... AC Voltammetry Parameters dialog box 60 4.2.13 FT AC.......................................................................................................................................................... Voltammetry Parameters dialog box 61 4.2.14 Amperometric.......................................................................................................................................................... i-t Curve dialog box 62 4.2.15 Differential.......................................................................................................................................................... Pulse Amperometry dialog box 63 4.2.16 Double.......................................................................................................................................................... Differential Pulse Amperometry dialog box 64 4.2.17 Triple.......................................................................................................................................................... Pulse Amperometry Parameters dialog box 66 4.2.18 Integrated.......................................................................................................................................................... Pulsed Amperometric Detection Parameters dialog box 68 4.2.19 Bulk Electrolysis.......................................................................................................................................................... w ith Coulometry Parameters dialog box 70 4.2.20 Hydrodynamic.......................................................................................................................................................... Modulation Voltammetry Parameters dialog box 71 4.2.21 Sw eep.......................................................................................................................................................... Step Function Parameters dialog box 72 4.2.22 Multi-Potential.........................................................................................................................................................
Recommended publications
  • Lecture Content
    EMT 518: METHODS IN ENVIROMENTAL ANALYSIS III (2 UNITS) Lecturer: Professor O. Bamgbose SYNOPSIS Electro-analytical method: Potentiometry, Reference electrode – Calomel, Ag/Agcl, indicator electrodes – 1st, 2nd and 3rd order, Metal Electrodes, membrane electrodes – glass electrode, types of liquid junction potential, solid state electrode, potentiometric titration, end point location in potentiometric titration –visual, plot of E/V, plot of derivative curves 1st and 2nd electrogravimetry, fixed potential, constant current, constant cathode potential coulometry: constant current coulometry, coulometric titration. Voltammetry: classical polarography, Description of dropping mercury electrode, condition for polarographic determination, qualitative and quantitative analysis conductance methods: description of limiting ionic conductance, conductance cell, conductomertic titration. Thermal methods: Thermogravimetry, differential thermal analysis (DTA) LECTURE CONTENT POTENTIOMETRY Is a measurement of a given chemical species in an equilibrium system by the use of an electrode, while potentiometric titration is the technique that is used for following the changes in the concentration of chemical species as function of added titrant using an electrode. In both cases a cell is needed and a cell consists of the following: (1) Reference electrode (2) Liquid junction (3) Analyte solution (4) indicator electrode. It is also possible to have a cell without liquid junction. REFERENCE ELECTRODE. In carrying out a potentiometric determination the half cell potential of one electrode must be known which should be constant, reproducible and completely insensitive to the reference electrode and must be fully polarised throughout the duration of the measurement i.e the potential of the reference electrode does not change through the whole measurement. A classical example of reference electrode is the calomel electrode.
    [Show full text]
  • Square-Wave Protein-Film Voltammetry: New Insights in the Enzymatic Electrode Processes Coupled with Chemical Reactions
    Journal of Solid State Electrochemistry https://doi.org/10.1007/s10008-019-04320-7 ORIGINAL PAPER Square-wave protein-film voltammetry: new insights in the enzymatic electrode processes coupled with chemical reactions Rubin Gulaboski1 & Valentin Mirceski2,3 & Milivoj Lovric4 Received: 4 April 2019 /Revised: 9 June 2019 /Accepted: 9 June 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Redox mechanisms in which the redox transformation is coupled to other chemical reactions are of significant interest since they are regarded as relevant models for many physiological systems. Protein-film voltammetry, based on surface confined electro- chemical processes, is a methodology of exceptional importance, which is designed to provide information on enzyme redox chemistry. In this work, we address some theoretical aspects of surface confined electrode mechanisms under conditions of square-wave voltammetry (SWV). Attention is paid to a collection of specific voltammetric features of a surface electrode reaction coupled with a follow-up (ECrev), preceding (CrevE) and regenerative (EC’) chemical reaction. While presenting a collection of numerically calculated square-wave voltammograms, several intriguing and simple features enabling kinetic char- acterization of studied mechanisms in time-independent experiments (i.e., voltammetric experiments at a constant scan rate) are addressed. The aim of the work is to help in designing a suitable experimental set-up for studying surface electrode processes, as well as to provide a means for determination of kinetic and/or thermodynamic parameters of both electrode and chemical steps. Keywords Kinetics of electrode reactions and chemical reactions . Surface EC′ catalytic mechanism . Surface ECrev mechanism . Surface CrevE mechanism . Square-wave voltammetry Introduction modulation applied, however, SWV is seldom explored as a technique for mechanistic evaluations.
    [Show full text]
  • Physical Electrochemical Software Brochure
    Redefining Electrochemical Measurement Physical Electrochemistry Software The Physical Electrochemistry Software is used with a to the limit. You can define the potentials as absolute Gamry Potentiostat to perform in-depth studies of the voltages or by their relationship to the Open-Circuit structure of the electrode interface and the mechanisms Potential. of electrochemical reactions. The software brings Cyclic Voltammetry and other recognized electrochemical The scan rate (mV/s) is determined by the interval between research techniques to the Gamry user. The Physical data points (sample period) and the Step Size (mV): Electrochemistry Software is a useful tool for Step Size() mV fundamental studies, sensor development, small-scale Scan Rate() mV s = energy storage devices, electrophysiology, etc. Sample Period() s The minimum sample period may be as low as 3.3 µs. The This software incorporates the following electrochemical maximum Scan Rate is a function of Step Size. For techniques: example, the maximum Scan Rate with a 2 mV step is 600 V/s. Higher steps provide faster scan rates, but at the ••• Cyclic Voltammetry expense of resolution. Step Sizes greater than 10 mV are ••• Linear Sweep Voltammetry likely to result in unsatisfactory data. ••• Chronoamperometry ••• Repeating Chronoamperometry The Physical Electrochemistry Software can save, and ••• MMuullttiipplleeMultiple-Multiple---StepStep Chronoamperometry display, up to 262,143 data points! The number of CV ••• ChronopotentChronopotentiometryiioommeettrryyiometry cycles that can be displayed is dependent upon the scan ••• Repeating Chronopotentiometry parameters. ••• Chronocoulometry Step Size() mV No. of Cycles =262,143 × ••• Controlled Potential Coulometry Voltage Span of theCV() mV Like most Gamry software, the Physical Electrochemistry Software and a Gamry Potentiostat use the Framework for data acquisition and the Echem Analyst for data analysis.
    [Show full text]
  • Stationary Electrode Voltammetry and Chronoamperometry in an Alkali Metal Carbonate-Borate Melt
    AN ABSTRACT OF THE THESIS OF DARRELL GEORGE PETCOFF for the Doctor of Philosophy (Name of student) (Degree) in Analytical Chemistry presented onC (O,/97 (Major) (Date) Title: STATIONARY ELECTRODE VOLTAMMETRY AND CHRONOAMPEROMETRY IN AN ALKALI METAL CARBONATE - BORATE. MFT T Abstract approved: Redacted for Privacy- Drir. reund The electrochemistry of the lithium-potassium-sodium carbonate-borate melt was explored by voltammetry and chrono- amperometry. In support of this, a controlled-potential polarograph and associated hardware was constructed.Several different types of reference electrodes were tried before choosing a porcelain mem- brane electrode containing a silver wire immersed in a silver sulfate melt.The special porcelain compounded was used also to construct a planar gold disk electrode.The theory of stationary electrode polarography was summarized and denormalized to provide an over- all view. A new approach to the theory of the cyclic background current was also advanced. A computer program was written to facilitate data processing.In addition to providing peak potentials, currents, and n-values, the program also resolves overlapping peaks and furnishes plots of both processed and unprocessed data. Rapid-scan voltammetry was employed to explore the electro- chemical behavior of Zn, Co, Fe, Tl, Sb, As, Ni, Sn, Cd, Te, Bi, Cr, Pb, Cu, and U in the carbonate-borate melt. Most substances gave reasonably well-defined peaks with characteristic peak potentials and n-values.Metal deposition was commonly accompanied by adsorp- tion prepeaks indicative of strong adsorption, and there was also evi- dence of a preceding chemical reaction for several elements, sug- gesting decomplexation before reduction.
    [Show full text]
  • Fundamentals of Electrochemistry
    Yonsei University Fundamentals of Electrochemistry References Electrochemical Methods : Fundamentals and Applications, 2nd edition. by A. J. Bard and L.R. Faulkner • Makes use of electrochemistry for the purpose of analysis • A voltage (potentiometry) or current (voltammetry) signal originating from an electrochemical cell is related to the activity or concentration of a particular species in the cell. • Excellent detection limit (10-8 ~ 10-3 M): 1959, Nobel Prize (Polarography) • Inexpensive technique. • Easily miniaturized : implantable and/or portable (biosensor, biochip) Electrochemical cells Galvanic cell Digital High input impedance voltmeter A B e- Anode reaction Zn Zn2+ + 2e- : oxidation e- Cathode reaction Cu2+ + 2e- Cu (-)KCl (+) : reduction Zn Cu Salt bridge Zn + Cu2+ Zn2+ + Cu K+ - - 2e Cl 2e- Cell potential : a measure of difference in electron Zn2+ energy between the two electrodes 2- SO4 Zn Cu Open-circuit potential (zero-current potential) Zn2+ Cu2+ 2+ 2+ Zn 2- 2- Cu : can be calculated from thermodynamic data, ie. SO4 SO 4 standard cell potentials of the half-cell reactions. Anode Cathode Fig. 27.1 Electrochemical cell consisting of a zinc electrode in 0.1 M ZnSO4, a copper electrode in 0.1 M CuSO4, and a salt bridge. Galvanic cell. (From Heineman book) Standard Electrode Potential Table 22.1 Standard Electrode Potentials Reaction E0 at 25 ℃, V - - Cl2(g) + 2e 2Cl +1.359 + - O2(g) + 4H +4e 2H2O +1.229 - - Br2(aq) + 2e 2Br +1.087 - - Br2(l) + 2e 2Br +1.065 Ag+ + e- Ag(s) +-.799 Reduction 자발적 Fe3+ + e- Fe2+ +0.771 - - - I3 + 2e 3I +0.536 Cu2+ + 2e- Cu(s) +0.337 - - Hg2Cl2(s) + 2e 2Hg(l) + 2Cl +0.268 AgCl(s) + e- Ag(s) + Cl- +0.222 3- - 2- A quantitative description of the relative driving force Ag(S2O3)2 + e Ag(s) + 2S2O3 +0.010 for a half-cell reaction.
    [Show full text]
  • COULOMETRY for the DETERMINATION of URANIUM and PLUTONIUM: PAST and PRESENT by M.K
    BARC/2012/E/001 BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division 2012 BARC/2012/E/001 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2012 BARC/2012/E/001 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2012/E/001 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : Coulometry for the determination of uranium and plutonium: past and present 11 Collation : 34 p., 2 figs., 7 tabs. 13 Project No. : 20 Personal author(s) : M.K. Sharma; J.V. Kamat; A.S. Ambolikar; J.S. Pillai; S.K. Aggarwal 21 Affiliation of author(s) : Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s) : Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Fuel Chemistry Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type : Government Contd... BARC/2012/E/001 30 Date of submission : December 2011 31 Publication/Issue date : January 2012 40 Publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard copy 50 Language of text : English 51 Language of summary : English, Hindi 52 No.
    [Show full text]
  • Computer-Aided Analytical Methods - a Review
    COMPUTER-AIDED ANALYTICAL METHODS - A REVIEW Läszlö Kekedy-Nagy Chair of Analytical Chemistry Faculty of Chemistry and Chemical Engineering Babe§-Bolyai University 3400 Cluj-Napoca, Romania INTRODUCTION Digital computers have become integral components of modern methods of analysis, influencing both instrument design and analytical methods. To understand the role of a computer in a specific instrumental method, it is necessary to consider the interaction among instrument, computer and analyst. Computers are being increasingly used in analytical work, but a survey of the literature shows that their potential has not yet been fully utilized. They offer enormous flexibility and sophistication in the execution and control of experiments, and their influence will doubtless be more and more widely felt. The following should be mentioned as main concerns: 1) Determination of the optimum analytical conditions, selecting the values of different parameters (e.g., the input signal) such that the best response is possible. In this respect, in order to avoid excessive experimental work and calculations and simplify operations, the mathematical modeling of the relations investi- gated is necessary. 2) Control of the measurement of analytical signals, used, e.g., to control the timing of different phases of the experiment, to prevent or warn against operator errors. 3) Data acquisition and storage of the analytical information. 4) Processing of analytical data is perhaps the main benefit that computers offer for analytical chemists. The computer makes it possible to qualify and classify the hidden information, using various chemometric methods including application of analytical intelligence, such as pattern recognition or expert control of chemical analysis systems.
    [Show full text]
  • Plutonium Analysis from Controlled-Potential Coulometry for the Certification of the MP3 Standard Material
    P5_14 Plutonium analysis from controlled-potential coulometry for the certification of the MP3 standard material. A. Ruas, V. Dalier, J. Pivato CEA-Marcoule BP 17171 30207 Bagnols-sur-Cèze Cedex, France [email protected] Abstract – For contributing to the certification of the new metal plutonium reference material (MP3), controlled-potential coulometry (CPC) has many advantages: it is a high accuracy absolute chemical analysis technique. Many studies are now conducted on plutonium solutions, to improve the operating conditions and the current apparatus, for mass determination with a precision of 0.1%. The different experimental preliminary results are discussed and the apparatus described. The coulometry cell assembly comprises a motor connected to a stirrer designed to prevent splashing, an inlet tube for inert gas, three electrodes, and a thermocouple for measuring the temperature. The measuring system includes a potentiostat, a CPU, a calibrated current generator, a temperature indicator and a voltmeter, all maintained at a constant temperature. Current integration is made by electronic components, introduced in the potentiostat and the CPU. + − + INTRODUCTION Pu 4 + e ↔ Pu 3 (1) Experimental electrolysis is performed using a Coulometry is an assay method in which the metal electrode with a large surface area quantity of the element analyzed is determined (working electrode) immersed in the test by measuring a quantity of electricity; under solution. The quantity of electricity used for the certain conditions it is capable of providing a conversion is related to the quantity matter in very accurate determination of the plutonium solution by Faraday’s law of electrolysis: mass concentration. The advantage of this M method is that it is absolute and uses only small m = ⋅Q (2) masses of material.
    [Show full text]
  • School of Engineering and Science to My Beloved Parents Abstract
    Hybrid Organic-Inorganic Polyoxometalates Functionalized by Diorganotin Groups by Firasat Hussain A thesis submitted in partial ful¯llment of the requirements for the degree of Doctor of Philosophy Approved, Thesis Committee: Prof. Ulrich Kortz (Mentor), IUB Prof. Ryan M Richards, IUB Dr. Michael H Dickman, IUB Prof. Michael T Pope Georgetown University, U.S.A. Prof. Emmanuel Cadot Universit¶ede Versailles, France Date of defense: 19 May 2006 School of Engineering and Science To my beloved parents Abstract Polyoxometalates (POMs) are a well-known class of inorganic metal-oxygen clusters with an unmatched structural variety combined with a multitude of properties. The search for novel POMs is predominantly driven by exciting catalytic, medicinal, material science and bioscience applications. However, the mechanism of action of most polyoxoanions is not selective towards a speci¯c target. In order to improve selectivity it appears highly desirable to attach organic functionalities covalently to the surface of polyoxoanions. The hydrolytic stability of the Sn-C bond enables the synthesis of a novel class of polyoxoanions via attachment of organometallic functionalities based on Sn(IV) to the surface of lacunary polyoxoanion precursors. III III By reacting (CH3)2SnCl2 with Na9(®-XW9O33) (X = As , Sb ) in aqueous acidic medium leads to the formation of 2-D solid-state structures with inorganic and organic surface, which are rare examples of discrete polyoxoanions. (CsNa4f(Sn(CH3)2)3O(H2O)4 (¯-AsW9O33)g¢5H2O)1 (CsNa-1) and the isostructural (CsNa4[(Sn(CH3)2)3O(H2O)4( ¯-SbW9O33)]¢5H2O)1 (CsNa-2)It has been synthesized and characterized by multinu- clear NMR spectroscopy, FTIR spectroscopy and elemental analysis.
    [Show full text]
  • Chronoamperometry
    Chronoamperometry • Stationary electrode • Unstirred = mass transport by diffusion • Constant potential • Measure current vs time Theory assume Ox + n e- Red - both Ox and Red are soluble - reversible reaction (electrochemically) - potential set so reduction goes to completion at the electrode surface Components of output signal in Chronoamperometry IFar decreases because Ox used up at electrode surface and Ox is only replenished by diffusion Faradaic current (IFar) follows Cottrell equation I Capacitive current (Icap) (current) decays exponentially for a constant applied potential t (time) Icap is high as electrode capacitive layer charges up, then drops off Processes perturbing system can cause data to differ from Cottrell Equation 1) Capacitive Current – charging current is exponential as shown -kt Icap = e Note: Capacitive current decreases more rapidly than Faradaic current so at longer times the ratio IFar/Icap is larger 2) Occurrence of coupled chemical reactions e.g. Ox + n e- Red 2 Red A A + n e- B Affects the shape of the current-time curve Chronoamperometry Applications • Can measure concentration by measuring I vs conc. at any fixed time • Can analyze the shape of the current-time curve in order to study coupled chemical reactions • There are better ways to do both of these with more modern techniques • Chronoamperometry is important because it is a fundamental method on which other techniques are based Chronopotentiometry • Stationary electrode • Unstirred = mass transport by diffusion • Constant current applied between
    [Show full text]
  • Hydrodynamic Studies of the Electrochemical Oxidation of Organic Fuels
    Hydrodynamic Studies of the Electrochemical Oxidation of Organic Fuels by c Azam Sayadi A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Chemistry Memorial University of Newfoundland September 2020 St. John's Newfoundland Abstract A clear understanding of small organic molecules (SOM) electrochemical oxidation opens a great opportunity for breakthrough in the development of fuel cell technology. SOM such as formic acid, methanol, and ethanol can produce electrical power through their oxidation in the fuel cell's anode. These molecules are also known as organic fuels and theoretically have the potential to produce close to 100% energy efficiency in a fuel cell. However, fast and complete oxidation of some organic fuels, such as ethanol, has not been achieved at this time, and has led to a dramatic decrease in the level of fuel cell efficiency. Therefore, a comprehensive study of the electrocatalytic oxidation mechanisms of organic fuels as well as a determination of the average number of transferred electrons (nav) are crucial for the enhancement of fuel cell efficiency. Hydrodynamic methods are highly effective approaches for these study purposes, and they have the ability to emulate the hydrodynamic conditions of a fuel cell anode. The main purpose of this project was establishing a simple and novel system for the assessment of various fuel cell catalysts performances in relation to formic acid, methanol and ethanol electrochemical oxidation. For this purpose, we applied two different approaches of hydrodynamic techniques, rotating disk voltammetry (RDV) and flow cell electrolysis.
    [Show full text]
  • High Speed Controlled Potential Coulometry
    c1CYCLIC CHELONO, DIFPU- c2SOLVE GENERATED EQUA- 903 FORMAT (5HRR =, F10.5, SION CONTROLL, PLANE TION BEGIN AT 96 READ 8HFRACT =, F10.5) ELECTRODE, READ IN K IN NOSIG FOR ACCURACY GO TO 920 NOSIG RR FRACT, TWO 96 IF(M- 1)300,100,102 300 PRINT905 SOLUBLE ElPECIES 100 Z=Y 905 FORRSAT (2X,5HEItROR) READ 900,K,NOSlG, RR, M=M+l 920 STOP FRACT 102 IF (Z) 98,200,99 EXD DIMENSION X (100),T (1 00) , 98 IF (Y) 71,200,73 END R(100) 99 IF (Y) 73,200,71 C GENERATION OF EQUA- 71 T(N) = T(N) + 10.0 **(-LA) LITERATURE CITED TIONS GO TO 10 (1) Alden, J. R., Chambers, J. Q., Adams, DO200N = 1,K 73 T(N) = T(K) - 10.0 **(-LA) R. N., J. Electroanal. Chem. 5, 152 T(N) = 0.0 LA=LA+I (1963). M=l 199 IF (NOSIG - LA) 300,200,71 (2) Bard, A. J., ANAL. CHEM. 33, 11 (1961). LA = 0 200 CONTIXUE (3) Churchill, R. V., “Operational Mathe- 10 DO 80 I = 1,N c3EQUATION SOLVED PRINT matics,” p. 39, McGraw-Hill, New York, SUM = 0.0 ANSWER 1958. DO 60 J = I,N DO201 J = 1,K,2 (4) Galus, Z., Lee, H. Y., Adams, R. N., = 201 R(J) = T(J)/T(J 1) J. Electroanal. Chem. 5, 17 (1963). 60 SUM SUM -- T(J) + (5) Murra,y, R. W., Reilley, C. N., Ibid., X(1) = SQRTF(SUM) PRINT 903, RR, FRACT 3, 182 (1962). 80 CONTIXUE PRINT 901 (6) Piette, L.
    [Show full text]