Computer-Aided Analytical Methods - a Review

Total Page:16

File Type:pdf, Size:1020Kb

Computer-Aided Analytical Methods - a Review COMPUTER-AIDED ANALYTICAL METHODS - A REVIEW Läszlö Kekedy-Nagy Chair of Analytical Chemistry Faculty of Chemistry and Chemical Engineering Babe§-Bolyai University 3400 Cluj-Napoca, Romania INTRODUCTION Digital computers have become integral components of modern methods of analysis, influencing both instrument design and analytical methods. To understand the role of a computer in a specific instrumental method, it is necessary to consider the interaction among instrument, computer and analyst. Computers are being increasingly used in analytical work, but a survey of the literature shows that their potential has not yet been fully utilized. They offer enormous flexibility and sophistication in the execution and control of experiments, and their influence will doubtless be more and more widely felt. The following should be mentioned as main concerns: 1) Determination of the optimum analytical conditions, selecting the values of different parameters (e.g., the input signal) such that the best response is possible. In this respect, in order to avoid excessive experimental work and calculations and simplify operations, the mathematical modeling of the relations investi- gated is necessary. 2) Control of the measurement of analytical signals, used, e.g., to control the timing of different phases of the experiment, to prevent or warn against operator errors. 3) Data acquisition and storage of the analytical information. 4) Processing of analytical data is perhaps the main benefit that computers offer for analytical chemists. The computer makes it possible to qualify and classify the hidden information, using various chemometric methods including application of analytical intelligence, such as pattern recognition or expert control of chemical analysis systems. These functions are widely utilized in instruments intended for routine analysis. In newer electroanalytical instruments, sophisticated routines for subtracting baselines, 413 Vol. 19. No. 6, 2000 Computer-Aided Analytical Methods comparing responses with those from standards, calculating unknown concentrations, identifying peaks, and plotting rescaled results are incor- porated as standard features III. Computer-based instrumentation is a general term used to describe a group of the measuring and control instruments managed by any kind of computer, e.g., by a laboratory computer or microcomputer. The philosophy for the application of computers in analytical chemistry is still under formation and consideration /2/: "If we think only of all that is done in teleanalytical work, e.g., the results of the Voyager, Mariner, or Venera missions, or even the Space Shuttle experiments, then we get an idea of the importance of what is going on". Bond and Svetska /3/ conclude that developments to data in the use of computer-based technology have been conservative relative to those in spectroscopic forms of instrumentation. A new generation of "more intelligent" instruments would be available immediately if the full power of presently available digital hardware and software were to be implemented as has been the case with some other forms of instrumentation, e.g., spectroscopy /3/. The present review summarizes literature data concerning the analytical methods aided by computers published in the period 1980-1998. The material is limited only to the presentation of the role of computers in obtaining the analytical signal, data acquisition, instrument control, and computer- optimized operating conditions in different analytical determinations (e.g., voltammetry, polarography, potentiometry, etc.). Some aspects of the hardware are presented too, namely the interfaces used. No other fields concerning the analytical uses of computers will be presented, such as processing the analytical results, optimization, simulation techniques, software, etc. Because these aspects of computer-based analytical chemistry in main publications do not appear distinctly separated, some overlappings would occur. Further information can be obtained from textbooks recently published /4-12/, or in reports on the second conference on "Computer-Based Analytical Chemistiy (COBAC) held in Munich, 1982 /2,13/. GENERAL ASPECTS OF COMPUTER APPLICATIONS IN ANALYTICAL CHEMISTRY Several publications discuss general aspects of computer applications in the analytical laboratory. Bos states /14/ that in chemical analysis com- 414 Läszlo Kekedy-Nagy Reviews in Analytical Chemistry puterization can provide higher precision, higher speed and lower costs. Applications of on-line computers in the laboratory include data acquisition, treatment and automation. The performance of a general-purpose electro- chemical instrument aided by a stand-alone microcomputer system is discussed by Fanelly et al. /15/. The system comprises a multibus IEEE-796 microcomputer with ASM-86, PLM-86 and Fortran language facilities. It was used to control and monitor the pulsed-flux Hg working electrode of a Polarographie cell. The most significant signal parameters were measured automatically. Smoothing, baseline drawing, subtraction and differentiation could be carried out as well. The application of computers to the solution of problems in the analytical laboratory and the underlying aims are discussed by Dessy /16/. The range of computers from personal to mainframe host-micro systems and their suitability are also considered. Belchamber et al. Ι\ΊI discuss the application of computers in analytical chemistry and chemometrics. A review on computer applications in analytical chemistry including instrumentation trends is discussed in /18/. Under the title "What is on the horizon?" the problem of computers and automation in analytical chemistry is presented by Borman /19/. A review on instrumentation and computers in analytical chemistry is published in /20/. Principles and problems of computer-based instruments and networks in analytical chemistry are reviewed by Smith /111. Some formalized concepts and quantitative estimation in computer-based chemical analysis are discussed by Gribov et al. 1221. The validation of analytical equipment using computers for instrument control, data acquisition and data evaluation, with definitions of some of the terminology used in computerized systems, is discussed by Huber 1221. The concept and implications of the use of microcomputers for multiple tasks (data acquisition, analysis, presentation) in the laboratory are also presented by Lam et al. /24/. A review with 58 references on the use of computers in analytical chemistry is published by Abramovic 1251. He states that computers are particularly useful in the simulation, optimization and automation of catalytic analysis. Li and Tong /26/ also summarize the appli- cations of computers in analytical chemistry. Implementation of automated systems, e.g., computers and robotics, in laboratory automation is discussed by Liscouski Ι2ΊΙ. Hierarchically structured computer systems for analytical chemistry are described by Ziegler /28/. All real-time tasks like data acquisition and 415 Vol. 19. No. 6. 2000 Computer-Aided Analytical Methods instrumental control are performed by local satellite computers. The satellites transfer data to a larger central (host) computer where the more complex tasks of data evaluation and archiving are performed. The dual VAX 11/80 system is described. Such systems are optimally suited for applications in analytical chemistry. The same principle of hierarchical control systems was described by Hoffmann and Eke /29/. A communication control was developed, whereby a microprocessor-controlled laboratory instrument could communicate with a central computer. The resulting hierarchical system greatly facilitated a distributed intelligence approach to instrumental control, data acquisition and data reduction. Several publications discuss the interface systems for connecting analytical instruments to personal computers. Instrument interfacing usually meant connecting an analog signal from the instrument to a computer system and digitizing it. Now that these processors are being sold as part of the package, much of what comes under the heading of instrument interfacing is really a problem of communications HII. Dehme /30/ introduces the non- expert in the field of personal computers to the various ways that PCs can be interfaced to laboratory equipment to control laboratory applications and data acquisition. A general overview is given of different interfacing methods as well as their advantages and drawbacks. Ewen and Adams /31/ interface an Apple II computer. The device permits serial transfer of data between computers or between a host computer and a laboratory instrument, e.g., an IR spectrophotometer. Kaplan et al. 132/ describe an interface between an analytical instrument and a PC. The system was used routinely in the ASV (anodic stripping voltammetry) analysis of waste-water and soils. Hä/.i et al. /33/ summarize the main trends expected in the application of computers in the field of analytical chemistry. An interface system built from two main parts has been developed. One of these consists of a fast and a slow 12 bit A/D converter, a 12 bit D/A converter, and a slow timer as well. The whole interface system has been developed as a plug-in card of the IBM PC. The application possibilities are demonstrated on examples taken from the fields of potentiometry and thermal analysis. An interface between the IBM PC and the PAR model 273 potentiostat-galvanostat was described by Carpenter et al. /35/. Buschman et al. developed a universal low-cost inter-
Recommended publications
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date:___________________ I, _________________________________________________________, hereby submit this work as part of the requirements for the degree of: in: It is entitled: This work and its defense approved by: Chair: _______________________________ _______________________________ _______________________________ _______________________________ _______________________________ AMPEROMETRIC CHARACTERIZATION OF A NANO INTERDIGITATED ARRAY (nIDA) ELECTRODE AS AN ELECTROCHEMICAL SENSOR A thesis submitted to The Division of Research and Advanced Studies of the University of Cincinnati In partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In the Department of Electrical and Computer Engineering and Computer Science of the College of Engineering August 1, 2006 By Ashwin Kumar Samarao B.E. (Hons.) Electrical and Electronics Birla Institute of Technology and Science, India, 2004 Committee chairman Dr.Chong H. Ahn ABSTRACT The main goal of this research is to amperometrically characterize a ring type nano interdigitated array (nIDA) electrode as an electrochemical sensor and to verify the enhancements in the sensitivity of such a sensor when compared to its micro counterparts. Each electrode was fabricated in gold with 275 fingers, each of width 100 nm and spacing 200 nm, using electron beam lithography and nano lift-off processes on a SiO2/Si wafer. The reference and counter electrodes were fabricated using electroplating. P – Aminophenol (PAP) was used as the redox species to be detected by the nano- IDA electrochemical sensor. Using Chronoamperometry, concentrations of PAP as low as 10 pM were successfully detected using the fabricated sensor. The current output by the sensor for such low concentrations was in the pico-ampere range and was measured using a very sensitive pico-ammeter.
    [Show full text]
  • Unit 1 Introduction to Electro- Analytical Methods
    Introduction to UNIT 1 INTRODUCTION TO ELECTRO- Electroanalytical ANALYTICAL METHODS Methods Structure 1.1 Introduction Objectives 1.2 Basic Concepts Electrical Units Basic Laws of Electrochemistry Electrode Potential Liquid-Junction Potentials Electrochemical Cells The Nernst Equation Cell Potential 1.3 Classification and an Overview of Electroanalytical Methods Potentiometry Voltammetry Polarography Amperometry Electrogravimetry and Coulometry Conductometry 1.4 Classification and Relationships of Electroanalytical Methods 1.5 Summary 1.6 Terminal Questions 1.7 Answers 1.1 INTRODUCTION This is the first unit of this course. This unit deals with the fundamentals of electrochemistry that are necessary for understanding the principles of electroanalytical methods discussed in this Unit 2 to 9. In this unit we have also classified of electroanalytical methods and briefly introduced of some important electroanalytical methods. More details of these elecroanalytical methods will be discussed in the consecutive units. Objectives After studying this unit, you will be able to: • name the different units of electrical quantities, • define the two basic laws of electrochemistry, • describe the single electrode potential and the potential of a galvanic cell, • derive the Nernst expression and give its applications, • calculate the electrode potentials and cell potentials using Nernst equation, • describe the basis for classification of the electroanalytical techniques, and • explain the basis principles and describe the essential conditions of the various electroanalytical techniques. 1.2 BASIC CONCEPTS Before going in detail of different electroanalytical techniques, let’s recapitulate some basic concepts which you have studied in your undergraduate classes. 7 Electroanalytical 1.2.1 Electrical Units Methods -I Ampere (A): Ampere is the unit of current.
    [Show full text]
  • Square-Wave Protein-Film Voltammetry: New Insights in the Enzymatic Electrode Processes Coupled with Chemical Reactions
    Journal of Solid State Electrochemistry https://doi.org/10.1007/s10008-019-04320-7 ORIGINAL PAPER Square-wave protein-film voltammetry: new insights in the enzymatic electrode processes coupled with chemical reactions Rubin Gulaboski1 & Valentin Mirceski2,3 & Milivoj Lovric4 Received: 4 April 2019 /Revised: 9 June 2019 /Accepted: 9 June 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Redox mechanisms in which the redox transformation is coupled to other chemical reactions are of significant interest since they are regarded as relevant models for many physiological systems. Protein-film voltammetry, based on surface confined electro- chemical processes, is a methodology of exceptional importance, which is designed to provide information on enzyme redox chemistry. In this work, we address some theoretical aspects of surface confined electrode mechanisms under conditions of square-wave voltammetry (SWV). Attention is paid to a collection of specific voltammetric features of a surface electrode reaction coupled with a follow-up (ECrev), preceding (CrevE) and regenerative (EC’) chemical reaction. While presenting a collection of numerically calculated square-wave voltammograms, several intriguing and simple features enabling kinetic char- acterization of studied mechanisms in time-independent experiments (i.e., voltammetric experiments at a constant scan rate) are addressed. The aim of the work is to help in designing a suitable experimental set-up for studying surface electrode processes, as well as to provide a means for determination of kinetic and/or thermodynamic parameters of both electrode and chemical steps. Keywords Kinetics of electrode reactions and chemical reactions . Surface EC′ catalytic mechanism . Surface ECrev mechanism . Surface CrevE mechanism . Square-wave voltammetry Introduction modulation applied, however, SWV is seldom explored as a technique for mechanistic evaluations.
    [Show full text]
  • Thesis-1961-B586i.Pdf
    INVESTIGATION OF SOME POSSIBILITIES FOR AMPEROMETRIC TITRATION OF CERTAIN METAL IONS WITH OXINE By Donald George Biechler I I Bachelor of Science University of Wisconsin Madison, Wisconsin 1956 Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1961 INVESTIGATION OF SOME POSSIBILITIES FOR AMPEROMEI'RIC TITRATION OF CERTAIN MEI'AL IONS WITH OXINE Thesis Approved: Thesis Adviser i i OKLAHOMA STATE UNIVERSITY llBRARY JAN 2 1962 PREFACE Oxine (8-hydroxyquinoline) is most generally used in analytical chemistry as a precipitant for metals and is known to form water- insoluble chelates with better than thirty metal ions (3). There exists in solutions of oxine a tautomeric equilibrium of the fol- lowing type: C C C C /~/'\ ,c/""/~ C C f ij 1 I II I C C C C C C ~/"'/C N ~/C "+/N r . _I I 0 H 0--------H Chelation of a metal ion involves replacement of the proton and for- mation of a coordinate bond with the nitrogen to form a stable 5 membered ring compound. Thus nickel, a bivalent cation, would form a compound with the following structure: 4810 90 iii iv The oxinates can be ignited and weighed as such or they may be further ignited to the metal oxides and then weighed. Alternately the oxinates may be dissolved in acid and quantitatively brominated (7)0 Considering the number of metal ions that are precipitated by oxine, it seemed that possibly more use could be made of the reagent in volumetric analysis.
    [Show full text]
  • Standard Methods for the Examination of Water and Wastewater
    Standard Methods for the Examination of Water and Wastewater Part 1000 INTRODUCTION 1010 INTRODUCTION 1010 A. Scope and Application of Methods The procedures described in these standards are intended for the examination of waters of a wide range of quality, including water suitable for domestic or industrial supplies, surface water, ground water, cooling or circulating water, boiler water, boiler feed water, treated and untreated municipal or industrial wastewater, and saline water. The unity of the fields of water supply, receiving water quality, and wastewater treatment and disposal is recognized by presenting methods of analysis for each constituent in a single section for all types of waters. An effort has been made to present methods that apply generally. Where alternative methods are necessary for samples of different composition, the basis for selecting the most appropriate method is presented as clearly as possible. However, samples with extreme concentrations or otherwise unusual compositions or characteristics may present difficulties that preclude the direct use of these methods. Hence, some modification of a procedure may be necessary in specific instances. Whenever a procedure is modified, the analyst should state plainly the nature of modification in the report of results. Certain procedures are intended for use with sludges and sediments. Here again, the effort has been to present methods of the widest possible application, but when chemical sludges or slurries or other samples of highly unusual composition are encountered, the methods of this manual may require modification or may be inappropriate. Most of the methods included here have been endorsed by regulatory agencies. Procedural modification without formal approval may be unacceptable to a regulatory body.
    [Show full text]
  • Fundamentals of Electrochemistry
    Yonsei University Fundamentals of Electrochemistry References Electrochemical Methods : Fundamentals and Applications, 2nd edition. by A. J. Bard and L.R. Faulkner • Makes use of electrochemistry for the purpose of analysis • A voltage (potentiometry) or current (voltammetry) signal originating from an electrochemical cell is related to the activity or concentration of a particular species in the cell. • Excellent detection limit (10-8 ~ 10-3 M): 1959, Nobel Prize (Polarography) • Inexpensive technique. • Easily miniaturized : implantable and/or portable (biosensor, biochip) Electrochemical cells Galvanic cell Digital High input impedance voltmeter A B e- Anode reaction Zn Zn2+ + 2e- : oxidation e- Cathode reaction Cu2+ + 2e- Cu (-)KCl (+) : reduction Zn Cu Salt bridge Zn + Cu2+ Zn2+ + Cu K+ - - 2e Cl 2e- Cell potential : a measure of difference in electron Zn2+ energy between the two electrodes 2- SO4 Zn Cu Open-circuit potential (zero-current potential) Zn2+ Cu2+ 2+ 2+ Zn 2- 2- Cu : can be calculated from thermodynamic data, ie. SO4 SO 4 standard cell potentials of the half-cell reactions. Anode Cathode Fig. 27.1 Electrochemical cell consisting of a zinc electrode in 0.1 M ZnSO4, a copper electrode in 0.1 M CuSO4, and a salt bridge. Galvanic cell. (From Heineman book) Standard Electrode Potential Table 22.1 Standard Electrode Potentials Reaction E0 at 25 ℃, V - - Cl2(g) + 2e 2Cl +1.359 + - O2(g) + 4H +4e 2H2O +1.229 - - Br2(aq) + 2e 2Br +1.087 - - Br2(l) + 2e 2Br +1.065 Ag+ + e- Ag(s) +-.799 Reduction 자발적 Fe3+ + e- Fe2+ +0.771 - - - I3 + 2e 3I +0.536 Cu2+ + 2e- Cu(s) +0.337 - - Hg2Cl2(s) + 2e 2Hg(l) + 2Cl +0.268 AgCl(s) + e- Ag(s) + Cl- +0.222 3- - 2- A quantitative description of the relative driving force Ag(S2O3)2 + e Ag(s) + 2S2O3 +0.010 for a half-cell reaction.
    [Show full text]
  • COULOMETRY for the DETERMINATION of URANIUM and PLUTONIUM: PAST and PRESENT by M.K
    BARC/2012/E/001 BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division 2012 BARC/2012/E/001 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2012 BARC/2012/E/001 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2012/E/001 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : Coulometry for the determination of uranium and plutonium: past and present 11 Collation : 34 p., 2 figs., 7 tabs. 13 Project No. : 20 Personal author(s) : M.K. Sharma; J.V. Kamat; A.S. Ambolikar; J.S. Pillai; S.K. Aggarwal 21 Affiliation of author(s) : Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s) : Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Fuel Chemistry Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type : Government Contd... BARC/2012/E/001 30 Date of submission : December 2011 31 Publication/Issue date : January 2012 40 Publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard copy 50 Language of text : English 51 Language of summary : English, Hindi 52 No.
    [Show full text]
  • The Application of Microelectrodes for Amperometric Titrations
    The application of microelectrodes for amperometric titrations H. HOFBAUEROVÁ, D. BUSTIN, Š. MESÁROŠ, and M. RIEVAJ Department of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, CS-81237 Bratislava Received 30 June 1989 The possibility of application of microelectrodes for the amperometric titrations with one or two indicating electrodes is described in this paper. Platinum and carbon microelectrodes with the radii 4 |im and 12.5 |im, respectively, have been used. The precision and accuracy of titrations of model samples are presented. Recently microelectrodes with characteristic radius of ca. 20|im are in­ troduced as a novel element of instrumentation for modern electrochemical measurements [1]. In comparison with the electrodes of conventional size these have a whole lot of advantages which were published e.g. by Dayton [2] and E wing [3]. From the viewpoint of electroanalytical chemistry the wave form of volt- ammograms following from the time independence of current also in nonstirred solutions may be considered to be the most advantageous property of microelec­ trodes. The time independence of current follows from the Cottrell equation corrected to the contribution of nonlinear diffusion , zFD]2Ac . z FDA с I = : \- к — = a + b 7г1/2/|/2 m1'2 where a is the contribution of linear and b is the contribution of nonlinear diffusion to the limiting current, z is the number of exchanged electrons per particle for the analytically used electrode reaction, F the Faraday constant (C mol-1), A electrode area (m2), с concentration of the determined component (mol m-3), D diffusion coefficient, r radius of disc electrode — of disc, sphere, cylinder, and к is the coefficient with the values я|/2 for spherical electrode [4, 5]; 0.5 for cylindrical electrode [6, 7].
    [Show full text]
  • Hydrodynamic Studies of the Electrochemical Oxidation of Organic Fuels
    Hydrodynamic Studies of the Electrochemical Oxidation of Organic Fuels by c Azam Sayadi A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Chemistry Memorial University of Newfoundland September 2020 St. John's Newfoundland Abstract A clear understanding of small organic molecules (SOM) electrochemical oxidation opens a great opportunity for breakthrough in the development of fuel cell technology. SOM such as formic acid, methanol, and ethanol can produce electrical power through their oxidation in the fuel cell's anode. These molecules are also known as organic fuels and theoretically have the potential to produce close to 100% energy efficiency in a fuel cell. However, fast and complete oxidation of some organic fuels, such as ethanol, has not been achieved at this time, and has led to a dramatic decrease in the level of fuel cell efficiency. Therefore, a comprehensive study of the electrocatalytic oxidation mechanisms of organic fuels as well as a determination of the average number of transferred electrons (nav) are crucial for the enhancement of fuel cell efficiency. Hydrodynamic methods are highly effective approaches for these study purposes, and they have the ability to emulate the hydrodynamic conditions of a fuel cell anode. The main purpose of this project was establishing a simple and novel system for the assessment of various fuel cell catalysts performances in relation to formic acid, methanol and ethanol electrochemical oxidation. For this purpose, we applied two different approaches of hydrodynamic techniques, rotating disk voltammetry (RDV) and flow cell electrolysis.
    [Show full text]
  • Application of Potentiometric Titration in Pharmaceutical Analysis
    Application Of Potentiometric Titration In Pharmaceutical Analysis Colbert confuting pell-mell if pinguid Raul mismated or cross-examine. Attenuant and twinning Jehu lurks some bibliographer so dry! Patchier Reed monographs indestructibly, he disaccustom his geegaws very orally. Committed to service excellence and application expertise. Reductant in response of in a strong interaction is dry out what being titirated and future! Potentiometric titrator market scenario, green tea polyphenols indicated by having access? 4 DIAZOTIZATION TITRATIONS PHARMACEUTICAL ANALYSIS BOOK. Background Electrolysis of water is the process by which water is decomposed into oxygen and hydrogen gas, when electric current is passed through it. The cell constant, specific conductance, and the molar conductance with dilution for some common electrolytes were measured. The reference electrode forms the other human cell. A convenient and useful method of determining the equivalence point nor a titration ie the point was which the stoichiometric analytical reaction is complete results. PRIME PubMed Application of amperometric titration of. Application information with our lab findings and making this accessible to you in a day KF. In beautiful mid-1960s automated potentiometric titration was developed and overcame. Potentiometric titrations and examples of applications of the pharmacopoeias. You have not visited any articles yet, Please visit some articles to see contents here. PHARMACEUTICAL ANALYSIS Method of Analysis and. Inga kommande evenemang just before carrying out carefully follow each ion. The students at its free single clinical factor for water content uniformity studies were measured by academic publishing activities. Assay by Potentiometric Titration in Pharmaceutical Production. Development of cpe and the pharmaceutical application analysis of in potentiometric titration types.
    [Show full text]
  • Electroanalytical Methods: Guide to Experiments and Applications, 2Nd
    Electroanalytical Methods Fritz Scholz Editor Electroanalytical Methods Guide to Experiments and Applications Second, Revised and Extended Edition With contributions by A.M. Bond, R.G. Compton, D.A. Fiedler, G. Inzelt, H. Kahlert, Š. Komorsky-Lovric,´ H. Lohse, M. Lovric,´ F. Marken, A. Neudeck, U. Retter, F. Scholz, Z. Stojek 123 Editor Prof. Dr. Fritz Scholz University of Greifswald Inst. of Biochemistry Felix-Hausdorff-Str. 4 17487 Greifswald Germany [email protected] ISBN 978-3-642-02914-1 e-ISBN 978-3-642-02915-8 DOI 10.1007/978-3-642-02915-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009935962 © Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Electroanalytical Methods Fritz Scholz dedicates this book to the memory of his late parents Anneliese and Herbert Scholz Preface to the Second Edition The authors are pleased to present here the second edition of the book “Electroanalytical Methods.
    [Show full text]
  • Electrochemical Methods of Analysis Thomas Wenzel Department of Chemistry Bates College, Lewiston ME 04240 [email protected]
    Electrochemical Methods of Analysis Thomas Wenzel Department of Chemistry Bates College, Lewiston ME 04240 [email protected] The following textual material is designed to accompany a series of in-class problem sets that develop many of the fundamental aspects of electrochemical analytical methods. TABLE OF CONTENTS 1. Basic Concepts in Electrochemistry 2 2. The Chemical Energy of a System 4 3. Relationship of Chemical Energy to Electrochemical Potential 10 4. Table of Standard State Electrochemical Potentials 12 5. Electrochemical Cells 14 6. Potential of an Electrochemical Cell 20 7. Electrochemical Analytical Methods 24 7.1. Ion-Selective Electrodes 25 7.1.1. pH Electrode 25 7.1.2. Other Glass Electrodes 27 7.1.3. Membrane Electrodes 27 7.1.4. Enzyme Electrodes 28 7.1.5. Solid-State Electrodes 28 7.1.6. Gas-Sensing Electrodes 28 7.2. Electrodeposition/Electrogravimetry 29 7.3. Coulometry 31 7.4. Titrimetric Methods of Analysis 33 7.4.1. “Classical” Redox Titration 33 7.4.2. Coulometric Titration (Controlled Current Coulometry) 33 7.4.3. Amperometric Titration 35 7.4.4. Potentiometric Titration 37 7.5. Voltammetric Methods 44 7.5.1. Anodic Stripping Voltammetry 46 7.5.2. Linear Sweep Voltammetry 49 7.5.3. Differential Pulse Linear Sweep Voltammetry 52 7.5.4. Cyclic Voltammetry 55 1 1. Basic Concepts in Electrochemistry Electrochemical processes are commonly used for analytical measurements. There are a variety of electrochemical methods with different degrees of utility for quantitative and qualitative analysis that are included in this unit. The coverage herein is not exhaustive and methods that are most important or demonstrate different aspects of electrochemical measurements are included.
    [Show full text]