CH Instruments Model 1100C Series User Manual

Total Page:16

File Type:pdf, Size:1020Kb

CH Instruments Model 1100C Series User Manual Model 1100C Series Electrochemical Analyzer User Manual CH Instruments CH Instruments Model 1100C Series User Manual © 2014 CH Instruments, Inc. All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher. Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks. While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document. Printed: August 2014 in Austin, Texas. Contents i Table of Contents Chapter 1 General Information 1 1.1 Introduction................................................................................................................................... 2 1.2 Electrochemical................................................................................................................................... Techniques 3 1.3 Software................................................................................................................................... Features 4 1.4 System................................................................................................................................... Requirements 7 1.5 Hardware................................................................................................................................... Specifications 8 Chapter 2 Getting Started 9 2.1 Installation................................................................................................................................... 10 2.2 USB Driver................................................................................................................................... Installation 14 2.3 Testing................................................................................................................................... 17 2.4 Some................................................................................................................................... Useful Tips 18 Chapter 3 File Menu 19 3.1 Open................................................................................................................................... command 20 3.2 Save ...................................................................................................................................As command 22 3.3 Delete................................................................................................................................... command 24 3.4 Retrieve................................................................................................................................... command 25 3.5 Update................................................................................................................................... Instrument Program command 26 3.6 List Data................................................................................................................................... File command 27 3.7 Convert................................................................................................................................... to Text command 28 3.8 Text File................................................................................................................................... Format command 29 3.9 Import................................................................................................................................... Text File command 32 3.10 Print ...................................................................................................................................command 33 3.11 Print ...................................................................................................................................Multiple Files command 34 3.12 Print ...................................................................................................................................Setup command 35 3.13 Exit command................................................................................................................................... 37 Chapter 4 Setup Menu 39 4.1 Technique................................................................................................................................... command 40 4.2 Parameters................................................................................................................................... command 42 4.2.1 Cyclic Voltammetry.......................................................................................................................................................... Parameters dialog box 43 4.2.2 Linear ..........................................................................................................................................................Sw eep Voltammetry Parameters dialog box 45 4.2.3 Staircase.......................................................................................................................................................... Voltammetry Parameters dialog box 47 4.2.4 Tafel Plot.......................................................................................................................................................... Parameters dialog box 48 4.2.5 Chronoamperometry.......................................................................................................................................................... Parameters dialog box 49 4.2.6 Chronocoulometry.......................................................................................................................................................... Parameters dialog box 51 4.2.7 Differential.......................................................................................................................................................... Pulse Voltammetry Parameters dialog box 53 4.2.8 Normal.......................................................................................................................................................... Pulse Voltammetry Parameters dialog box 54 4.2.9 Differential.......................................................................................................................................................... Normal Pulse Voltammetry dialog box 55 © 2014 CH Instruments, Inc. ii CH Instruments Model 1100C Series 4.2.10 Square.......................................................................................................................................................... Wave Voltammetry Parameters dialog box 56 4.2.11 AC Voltammetry.......................................................................................................................................................... Parameters dialog box 57 4.2.12 2nd Harmonic.......................................................................................................................................................... AC Voltammetry Parameters dialog box 58 4.2.13 Amperometric.......................................................................................................................................................... i-t Curve dialog box 59 4.2.14 Differential.......................................................................................................................................................... Pulse Amperometry dialog box 60 4.2.15 Double.......................................................................................................................................................... Differential Pulse Amperometry dialog box 61 4.2.16 Triple.......................................................................................................................................................... Pulse Amperometry Parameters dialog box 63 4.2.17 Bulk Electrolysis.......................................................................................................................................................... w ith Coulometry Parameters dialog box 65 4.2.18 Hydrodynamic.......................................................................................................................................................... Modulation Voltammetry Parameters dialog box 66 4.2.19 Sw eep.......................................................................................................................................................... Step Function Parameters dialog box 67 4.2.20 Multi-Potential.......................................................................................................................................................... Steps Parameters dialog box 68 4.2.21 A.C. Impedance.......................................................................................................................................................... Parameters dialog box 69 4.2.22 Impedance.........................................................................................................................................................
Recommended publications
  • Reaction Mechanism of Electrochemical Oxidation of Coo/Co(OH)2 William Prusinski Valparaiso University
    Valparaiso University ValpoScholar Chemistry Honors Papers Department of Chemistry Spring 2016 Solar Thermal Decoupled Electrolysis: Reaction Mechanism of Electrochemical Oxidation of CoO/Co(OH)2 William Prusinski Valparaiso University Follow this and additional works at: http://scholar.valpo.edu/chem_honors Part of the Physical Sciences and Mathematics Commons Recommended Citation Prusinski, William, "Solar Thermal Decoupled Electrolysis: Reaction Mechanism of Electrochemical Oxidation of CoO/Co(OH)2" (2016). Chemistry Honors Papers. 1. http://scholar.valpo.edu/chem_honors/1 This Departmental Honors Paper/Project is brought to you for free and open access by the Department of Chemistry at ValpoScholar. It has been accepted for inclusion in Chemistry Honors Papers by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. William Prusinski Honors Candidacy in Chemistry: Final Report CHEM 498 Advised by Dr. Jonathan Schoer Solar Thermal Decoupled Electrolysis: Reaction Mechanism of Electrochemical Oxidation of CoO/Co(OH)2 College of Arts and Sciences Valparaiso University Spring 2016 Prusinski 1 Abstract A modified water electrolysis process has been developed to produce H2. The electrolysis cell oxidizes CoO to CoOOH and Co3O4 at the anode to decrease the amount of electric work needed to reduce water to H2. The reaction mechanism through which CoO becomes oxidized was investigated, and it was observed that the electron transfer occurred through both a species present in solution and a species adsorbed to the electrode surface. A preliminary mathematical model was established based only on the electron transfer to species in solution, and several kinetic parameters of the reaction were calculated.
    [Show full text]
  • Electrochemical Studies of Metal-Ligand Interactions and of Metal Binding Proteins
    ELECTROCHEMICAL STUDIES OF METAL-LIGAND INTERACTIONS AND OF METAL BINDING PROTEINS A thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY of RHODES UNIVERSITY by JANICE LEIGH LIMSON October 1998 Dedicated to Elaine and the memory ofRalph and Joey ACKNOWLEDGEMENTS My sincerest thanks to Professor Tebello Nyokong, for the outstanding supervision of my PhD. My gratitude is also extended to her for fostering scientific principles and encouraging dynamic research at the highest level. Over the years, Prof Nyokong has often gone beyond the call of duty to listen, encourage and advise me in my professional and personal development. Professor Daya, who has co-supervised my PhD, I thank for initiating research that has been both exciting and stimulating. His infectious enthusiasm for research has propelled my research efforts into the fascinating realm of the neurosciences. I am immensely grateful to both supervisors for their collaborative efforts during the course ofmy PhD. I acknowledge the following organisations for bursaries and scholarships: The Foundation for Research and Development in South Africa. The German DAAD Institute The British Council Algorax (Pty) LTD Rhodes University My appreciation is extended to the following people: My mother, Elaine, whom I deeply respect and admire for her tenacity and many sacrifices in ensuring that I received the best education possible. Her joy and pleasure in furthering my education has without doubt been a driving force. Hildegard for teaching me the alphabet, Aunt Cynthia for patient match-stick arithmetic, Uncle Peter for heavy metals, and my brother, Jonathan, for always providing the spark.
    [Show full text]
  • Unit 1 Introduction to Electro- Analytical Methods
    Introduction to UNIT 1 INTRODUCTION TO ELECTRO- Electroanalytical ANALYTICAL METHODS Methods Structure 1.1 Introduction Objectives 1.2 Basic Concepts Electrical Units Basic Laws of Electrochemistry Electrode Potential Liquid-Junction Potentials Electrochemical Cells The Nernst Equation Cell Potential 1.3 Classification and an Overview of Electroanalytical Methods Potentiometry Voltammetry Polarography Amperometry Electrogravimetry and Coulometry Conductometry 1.4 Classification and Relationships of Electroanalytical Methods 1.5 Summary 1.6 Terminal Questions 1.7 Answers 1.1 INTRODUCTION This is the first unit of this course. This unit deals with the fundamentals of electrochemistry that are necessary for understanding the principles of electroanalytical methods discussed in this Unit 2 to 9. In this unit we have also classified of electroanalytical methods and briefly introduced of some important electroanalytical methods. More details of these elecroanalytical methods will be discussed in the consecutive units. Objectives After studying this unit, you will be able to: • name the different units of electrical quantities, • define the two basic laws of electrochemistry, • describe the single electrode potential and the potential of a galvanic cell, • derive the Nernst expression and give its applications, • calculate the electrode potentials and cell potentials using Nernst equation, • describe the basis for classification of the electroanalytical techniques, and • explain the basis principles and describe the essential conditions of the various electroanalytical techniques. 1.2 BASIC CONCEPTS Before going in detail of different electroanalytical techniques, let’s recapitulate some basic concepts which you have studied in your undergraduate classes. 7 Electroanalytical 1.2.1 Electrical Units Methods -I Ampere (A): Ampere is the unit of current.
    [Show full text]
  • Square-Wave Protein-Film Voltammetry: New Insights in the Enzymatic Electrode Processes Coupled with Chemical Reactions
    Journal of Solid State Electrochemistry https://doi.org/10.1007/s10008-019-04320-7 ORIGINAL PAPER Square-wave protein-film voltammetry: new insights in the enzymatic electrode processes coupled with chemical reactions Rubin Gulaboski1 & Valentin Mirceski2,3 & Milivoj Lovric4 Received: 4 April 2019 /Revised: 9 June 2019 /Accepted: 9 June 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Redox mechanisms in which the redox transformation is coupled to other chemical reactions are of significant interest since they are regarded as relevant models for many physiological systems. Protein-film voltammetry, based on surface confined electro- chemical processes, is a methodology of exceptional importance, which is designed to provide information on enzyme redox chemistry. In this work, we address some theoretical aspects of surface confined electrode mechanisms under conditions of square-wave voltammetry (SWV). Attention is paid to a collection of specific voltammetric features of a surface electrode reaction coupled with a follow-up (ECrev), preceding (CrevE) and regenerative (EC’) chemical reaction. While presenting a collection of numerically calculated square-wave voltammograms, several intriguing and simple features enabling kinetic char- acterization of studied mechanisms in time-independent experiments (i.e., voltammetric experiments at a constant scan rate) are addressed. The aim of the work is to help in designing a suitable experimental set-up for studying surface electrode processes, as well as to provide a means for determination of kinetic and/or thermodynamic parameters of both electrode and chemical steps. Keywords Kinetics of electrode reactions and chemical reactions . Surface EC′ catalytic mechanism . Surface ECrev mechanism . Surface CrevE mechanism . Square-wave voltammetry Introduction modulation applied, however, SWV is seldom explored as a technique for mechanistic evaluations.
    [Show full text]
  • Fall 2020 Electroanalytical Chemistry Instructor
    Chemistry 459/549 – Fall 2020 Electroanalytical Chemistry Instructor: Dr. Kate M. Waldie, [email protected] Office hours: By Appointment, via Webex Lectures: Tuesday & Thursday 9:15-10:35 AM, via Webex Course Website: via Canvas at https://canvas.rutgers.edu Textbooks: (Optional) 1. Electrochemical Methods: Fundamentals and Applications, 2nd Edition Allen J. Bard, Larry, R. Faulkner 2. Electrochemistry, 2nd Edition Carl H. Hamann, Andrew Hamnett, Wolf Vielstich 3. Laboratory Techniques in Electroanalytical Chemistry, 2nd Edition Peter T. Kissinger, William R. Heineman 4. Analytical Electrochemistry, 3rd Edition Joseph Wang Synopsis: This one-semester course serves as an introduction to the principles of electrochemistry and their application to studying redox systems. Topics will include potentiometry, chronoamperometry, voltammetry, hydrodynamic methods, bulk electrolysis, coupled chemical processes, and spectroelectrochemistry. Practical considerations for electrochemical experiments and specific examples of applications in the literature will also be covered. Course Format: The grading for this course will be broken down as follows: Assignments 50 % Term Paper 35 % Presentation 15 % Five problem sets will be throughout the course. Each problem set must be turned in at the start of lecture (9:15 AM) on its respective due date. You may collaborate with each other on the problems, but each student must independently write and turn in their own problem set. The term paper for this course should be a critical review of one or more research articles in the field of electrochemistry. The term paper should include an introduction to the topic, a discussion of the electrochemical techniques and data analysis, your perspective on the significance of the article(s), and your critical evaluation of the works.
    [Show full text]
  • Fundamentals of Electrochemistry
    Yonsei University Fundamentals of Electrochemistry References Electrochemical Methods : Fundamentals and Applications, 2nd edition. by A. J. Bard and L.R. Faulkner • Makes use of electrochemistry for the purpose of analysis • A voltage (potentiometry) or current (voltammetry) signal originating from an electrochemical cell is related to the activity or concentration of a particular species in the cell. • Excellent detection limit (10-8 ~ 10-3 M): 1959, Nobel Prize (Polarography) • Inexpensive technique. • Easily miniaturized : implantable and/or portable (biosensor, biochip) Electrochemical cells Galvanic cell Digital High input impedance voltmeter A B e- Anode reaction Zn Zn2+ + 2e- : oxidation e- Cathode reaction Cu2+ + 2e- Cu (-)KCl (+) : reduction Zn Cu Salt bridge Zn + Cu2+ Zn2+ + Cu K+ - - 2e Cl 2e- Cell potential : a measure of difference in electron Zn2+ energy between the two electrodes 2- SO4 Zn Cu Open-circuit potential (zero-current potential) Zn2+ Cu2+ 2+ 2+ Zn 2- 2- Cu : can be calculated from thermodynamic data, ie. SO4 SO 4 standard cell potentials of the half-cell reactions. Anode Cathode Fig. 27.1 Electrochemical cell consisting of a zinc electrode in 0.1 M ZnSO4, a copper electrode in 0.1 M CuSO4, and a salt bridge. Galvanic cell. (From Heineman book) Standard Electrode Potential Table 22.1 Standard Electrode Potentials Reaction E0 at 25 ℃, V - - Cl2(g) + 2e 2Cl +1.359 + - O2(g) + 4H +4e 2H2O +1.229 - - Br2(aq) + 2e 2Br +1.087 - - Br2(l) + 2e 2Br +1.065 Ag+ + e- Ag(s) +-.799 Reduction 자발적 Fe3+ + e- Fe2+ +0.771 - - - I3 + 2e 3I +0.536 Cu2+ + 2e- Cu(s) +0.337 - - Hg2Cl2(s) + 2e 2Hg(l) + 2Cl +0.268 AgCl(s) + e- Ag(s) + Cl- +0.222 3- - 2- A quantitative description of the relative driving force Ag(S2O3)2 + e Ag(s) + 2S2O3 +0.010 for a half-cell reaction.
    [Show full text]
  • COULOMETRY for the DETERMINATION of URANIUM and PLUTONIUM: PAST and PRESENT by M.K
    BARC/2012/E/001 BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division 2012 BARC/2012/E/001 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2012 BARC/2012/E/001 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2012/E/001 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : Coulometry for the determination of uranium and plutonium: past and present 11 Collation : 34 p., 2 figs., 7 tabs. 13 Project No. : 20 Personal author(s) : M.K. Sharma; J.V. Kamat; A.S. Ambolikar; J.S. Pillai; S.K. Aggarwal 21 Affiliation of author(s) : Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s) : Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Fuel Chemistry Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type : Government Contd... BARC/2012/E/001 30 Date of submission : December 2011 31 Publication/Issue date : January 2012 40 Publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard copy 50 Language of text : English 51 Language of summary : English, Hindi 52 No.
    [Show full text]
  • Computer-Aided Analytical Methods - a Review
    COMPUTER-AIDED ANALYTICAL METHODS - A REVIEW Läszlö Kekedy-Nagy Chair of Analytical Chemistry Faculty of Chemistry and Chemical Engineering Babe§-Bolyai University 3400 Cluj-Napoca, Romania INTRODUCTION Digital computers have become integral components of modern methods of analysis, influencing both instrument design and analytical methods. To understand the role of a computer in a specific instrumental method, it is necessary to consider the interaction among instrument, computer and analyst. Computers are being increasingly used in analytical work, but a survey of the literature shows that their potential has not yet been fully utilized. They offer enormous flexibility and sophistication in the execution and control of experiments, and their influence will doubtless be more and more widely felt. The following should be mentioned as main concerns: 1) Determination of the optimum analytical conditions, selecting the values of different parameters (e.g., the input signal) such that the best response is possible. In this respect, in order to avoid excessive experimental work and calculations and simplify operations, the mathematical modeling of the relations investi- gated is necessary. 2) Control of the measurement of analytical signals, used, e.g., to control the timing of different phases of the experiment, to prevent or warn against operator errors. 3) Data acquisition and storage of the analytical information. 4) Processing of analytical data is perhaps the main benefit that computers offer for analytical chemists. The computer makes it possible to qualify and classify the hidden information, using various chemometric methods including application of analytical intelligence, such as pattern recognition or expert control of chemical analysis systems.
    [Show full text]
  • ALS Product Catalog Information
    ALS Product Catalog Instrumentation Vol. 019A Working Electrodes Working Variety of products line up for research purposes Counter Electrodes RRDE-3A Reference ElectrodesReference Cells Voltammetry Flow Cells Model2325 SEC2020 Spectroelectrochemistry Others Electrochemistry General Catalog Information Technical notes and Movie library ALS technical notes and movie https://www.als-japan.com/technical-note.html frontpage --> Technical note ALS website has a "Technical note" and "Movie library" section, where you will find useful information and introduction movie of the products. For the instrument, set up and application movies will help you in the choose of the accessories. We will be always producing and releasing new movies, attending the demands of spectators. Inspection data sheet download service https://www.als-japan.com/dl/ Inspection data sheet link frontpage --> Support --> Electrode data ALS working and reference electrodes are tested and inspected before shipment, and the check data could be confirmed through the website. In the instruction manual, for the product which the check data is available, you will find the website direction. Product manual download service Instrumentation ALS Instruments instruction manual https://www.als-japan.com/support-instrument-manual.html Manual download link frontpage --> Support --> Instrument Manual Electrodes ALS support product manual https://www.als-japan.com/support-product-manual.html Manual download link frontpage --> Support --> Products Manual ALS product manual is available for download
    [Show full text]
  • Hydrodynamic Studies of the Electrochemical Oxidation of Organic Fuels
    Hydrodynamic Studies of the Electrochemical Oxidation of Organic Fuels by c Azam Sayadi A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Chemistry Memorial University of Newfoundland September 2020 St. John's Newfoundland Abstract A clear understanding of small organic molecules (SOM) electrochemical oxidation opens a great opportunity for breakthrough in the development of fuel cell technology. SOM such as formic acid, methanol, and ethanol can produce electrical power through their oxidation in the fuel cell's anode. These molecules are also known as organic fuels and theoretically have the potential to produce close to 100% energy efficiency in a fuel cell. However, fast and complete oxidation of some organic fuels, such as ethanol, has not been achieved at this time, and has led to a dramatic decrease in the level of fuel cell efficiency. Therefore, a comprehensive study of the electrocatalytic oxidation mechanisms of organic fuels as well as a determination of the average number of transferred electrons (nav) are crucial for the enhancement of fuel cell efficiency. Hydrodynamic methods are highly effective approaches for these study purposes, and they have the ability to emulate the hydrodynamic conditions of a fuel cell anode. The main purpose of this project was establishing a simple and novel system for the assessment of various fuel cell catalysts performances in relation to formic acid, methanol and ethanol electrochemical oxidation. For this purpose, we applied two different approaches of hydrodynamic techniques, rotating disk voltammetry (RDV) and flow cell electrolysis.
    [Show full text]
  • Classic Wavenow Potentiostat – Pine Research Instrumentation Store
    Home > Classic WaveNow Potentiostat The classic WaveNow® potentiostat has been replaced by the WaveNowxv potentiostat. New customers are encouraged to consider the WaveNowxv potentiostat instead. The classic WaveNow potentiostat is still supported by our powerful AfterMath® instrument control and data analysis software. Key features of the classic WaveNow instrument are listed below: Applied/Measured Current: ±100 nA to ±100 mA Applied/Measured Voltage: ±4 V Operation Modes: Potentiostat, Galvanostat, OCP, ZRA Techniques: All common DC sweep and step experiments plus specialty corrosion, rotating electrode, and spectroelectrochemistry techniques Pricing Port # Description List Price Classic WaveNow Potentiostat AFTP1 WaveNow USB Potentiostat/Galvanostat Software click here for AfterMath Software information WaveNow Potentiostat Accessories AKCABLE5 Standard WaveNowxv Cell Cable connects potentiostat to electrodes in the cell HD-15 male to five coaxial cables terminated at banana plugs with optional alligator clips for use only with WaveNowxv and non-wireless WaveNow/WaveNano potentiostats not for use with WaveNow Wireless potentiostats AKTP5V Rechargeable Lithium Battery Pack 5 VDC / 2A battery pack AKCABLE4 MSR Rotation Rate Control Cable links MSR control unit to potentiostat for AfterMath control of rotation rate This item includes only the cable. A Rotating Methods AfterMath license is also required and is sold separately. AKSPEKIT Compact Voltammetry Cell Starter Kit includes 4 vials, cap, grip mount, cable, and screen-printed electrodes as follows: 20 carbon, 1 gold, and 1 platinum RRTPE04 WaveNow Series USB-Style Cell Cable links cell cable to Compact Voltammetry Cell Kit grip RRTPE05 WaveNow Series USB-Style Cell Cable with Reference Breakout links cell cable to Compact Voltammetry Cell Kit grip or Honeycomb Spectroelectrochemical electrode, with reference lead separated from counter and working leads Description This WaveNow® potentiostat is a low-voltage version of our popular WaveNowxv instrument.
    [Show full text]
  • Development and Evaluation of a Calibration Free Exhaustive Coulometric Detection System for Remote Sensing
    University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2014 Development and evaluation of a calibration free exhaustive coulometric detection system for remote sensing. Thomas James Roussel University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Roussel, Thomas James, "Development and evaluation of a calibration free exhaustive coulometric detection system for remote sensing." (2014). Electronic Theses and Dissertations. Paper 1238. https://doi.org/10.18297/etd/1238 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. DEVELOPMENT AND EVALUATION OF A CALIBRATION FREE EXHAUSTIVE COULOMETRIC DETECTION SYSTEM FOR REMOTE SENSING by Thomas James Roussel, Jr. B.A., University of New Orleans, 1993 B.S., Louisiana Tech University, 1997 M.S., Louisiana Tech University, 2001 A Dissertation Submitted to the Faculty of the J. B. Speed School of Engineering of the University of Louisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Department of Mechanical Engineering University of Louisville Louisville, Kentucky May 2014 Copyright 2014 by Thomas James Roussel, Jr. All rights reserved DEVELOPMENT AND EVALUATION OF A CALIBRATION FREE EXHAUSTIVE COULOMETRIC DETECTION SYSTEM FOR REMOTE SENSING By Thomas James Roussel, Jr.
    [Show full text]