High Speed Controlled Potential Coulometry

Total Page:16

File Type:pdf, Size:1020Kb

High Speed Controlled Potential Coulometry c1CYCLIC CHELONO, DIFPU- c2SOLVE GENERATED EQUA- 903 FORMAT (5HRR =, F10.5, SION CONTROLL, PLANE TION BEGIN AT 96 READ 8HFRACT =, F10.5) ELECTRODE, READ IN K IN NOSIG FOR ACCURACY GO TO 920 NOSIG RR FRACT, TWO 96 IF(M- 1)300,100,102 300 PRINT905 SOLUBLE ElPECIES 100 Z=Y 905 FORRSAT (2X,5HEItROR) READ 900,K,NOSlG, RR, M=M+l 920 STOP FRACT 102 IF (Z) 98,200,99 EXD DIMENSION X (100),T (1 00) , 98 IF (Y) 71,200,73 END R(100) 99 IF (Y) 73,200,71 C GENERATION OF EQUA- 71 T(N) = T(N) + 10.0 **(-LA) LITERATURE CITED TIONS GO TO 10 (1) Alden, J. R., Chambers, J. Q., Adams, DO200N = 1,K 73 T(N) = T(K) - 10.0 **(-LA) R. N., J. Electroanal. Chem. 5, 152 T(N) = 0.0 LA=LA+I (1963). M=l 199 IF (NOSIG - LA) 300,200,71 (2) Bard, A. J., ANAL. CHEM. 33, 11 (1961). LA = 0 200 CONTIXUE (3) Churchill, R. V., “Operational Mathe- 10 DO 80 I = 1,N c3EQUATION SOLVED PRINT matics,” p. 39, McGraw-Hill, New York, SUM = 0.0 ANSWER 1958. DO 60 J = I,N DO201 J = 1,K,2 (4) Galus, Z., Lee, H. Y., Adams, R. N., = 201 R(J) = T(J)/T(J 1) J. Electroanal. Chem. 5, 17 (1963). 60 SUM SUM -- T(J) + (5) Murra,y, R. W., Reilley, C. N., Ibid., X(1) = SQRTF(SUM) PRINT 903, RR, FRACT 3, 182 (1962). 80 CONTIXUE PRINT 901 (6) Piette, L. H., Ludwig, P., Adams, Y = X(1) - 1.13 PRINT 902, [S,T(K),R(N), R. K., ANAL.CHEM. 34, 916 (1962). (7) Reinmuth, W. H., Ibid., 34, 1446 IF (1 - pu’) 81,96,300 K = 1.K1 (1962). 81 SIGN = 1.0 500 CONTIkUE (8) Testa, A. C., Reinmuth, W. H., Ibid., DO 95 L = 2,N 900 FORMAT (2110, 2F10.5) 33, 1324 (1961). = FORMAT [4(3X, lHN, 6X, SIGN -SIGN 901 RECEIVEDfor review March 27, 1963. 95 Y = Y + SIGN * RR *X(L) - 4II TAU, 5X, 5HRATIO)//] Accepted May 8, 1963. Work supported SIGN - SIaK * FRACT 902 FORMAT [4(1X, 113,2F10.6)/] by the Robert A. Welch Foundation. High Speed Controlled Potential Coulometry ALLEN J. BARD Department of Chemisfry, The University of Texas, Austin, Texas b An electrolysis cell for rapid con- reference to calibration curves, etc.-the and depends upon such experimental trolled potential coulometric determi- long electrolysis times usually required conditions as electrode shape, cell nations, employing a large electrode sometimes discourage potential users of geometry, and turbulence of flow. It is area-to-solution volume ratio and using this technique. The aim of this study probably better to write simply ultrasonic and nitrogen stirring, was was to consider the factors governing the designed. This cell allowed deter- speed of an electrolysis, and to design a minations to be performed with total cell capable of performing a controlled where m is a mass transfer constant. electrolysis times of less than 100 potential coulometric analysis in a short There is frequently no direct propor- seconds. The apparcitus was tested time. tionality between p and A; the dimen- by determining silver (I) and iodide by For a single electrode reaction carried sions of the electrode, rather than the electrodeposition of silver and silver out at potentials at which the rate of the area, are more important (3). Com- iodide, respectively. From 2.5 to reaction is limited by the rate of mass pletion of electrolysis is generally taken 25 pmoles of each was determined transfer of the electroactive species to at the time when the current has de- with an average error of 2 to 0.270. the electrode, the current decays ac- cayed to 0.1% of its initial value, that is The application of t7is cell to the cording to the equation (7) study of mechanisms of electrode t = 6.9/p (4) reactions was also considered. it = ;&-P’ (1) To decrease the electrolysis time, p must where it is the current at time t, 6 is the be made as large as possible. In this initial current, and p is a function of the study an electrolysis cell was designed ONTROLLED potential coulometry electrode dimensions, solution volume, with a large electrode area-to-solution C has been useful both as an ana- cell geometry, and rate of mass transfer. volume ratio, which employed ultra- lytical technique and for the investiga- For a simple Nernst diffusion layer sonic and nitrogen stirring. With this tion of mechanisms of electrode re- model of convection, p is given by the cell 811 “effective p” of about 0.1 actions. The time required to perform expression second-’ was obtained, so that elec- a controlled potential determination is trolysis times were only slightly longer p = DA/6V (2) usually hetween 20 miniites and 2 hours, than one minute. dqiriidiiig upou tlir c.qxrirnonta1 ap- wlitve z) is the diffusion coeflicient of I l:Lr:i t I IS f?mjIloyed. hltl~ough ContIolled the electroactive species, d is the elec- EXPERIMENTAL potential coulometric analysis has the trode area, V is the total solution vol- Apparatus. Kith a suitable po- advantage of being an rabsolute method ume, and 6 is the thickness of the diffu- tentiostat and coulometer, the design -Le., allowing the direct determination sion layer. The actual dependence of p of the electrolysis cell usually governs of the quantity of a substance without upon these variables is very complex, the electrolysis time. After experi- VOL 35, NO. 9, AUGUST 1963 1125 other contact of the transducer was pecially in the early stages of elec- connected by means of a small metal trolysis, that electromechanical po- piece, 3, leading around the Teflon tentiostats and coulometers cannot be gasket and connecting to the brass wall used. In this investigation an electronic of the piece. This, in turn, connected potentiostat, based on one commercially to the outside (ground) terminal of the available from Brinkmann Instruments, BNC connector. An inlet, 1, was used Great Neck, L. I., N. Y.,as a Wenking to direct a stream of compressed air or Potentiostat, with an output of other coolant against the transducer about 25 volts at 250 ma. and a to cool it. The glass cell was held response time in the order of micro- against the transducer by the upper seconds, was employed. The coulometer threaded brass piece, which screwed was based on a voltage-to-frequency onto the second brass piece and pressed converter and a digital counter (2). the lip of the cell down against the trans- A block diagram of the apparatus is ducer gasket. shown in Figure 3. A Sargent Model Another Teflon gasket between the SR recorder, measuring the voltage drop upper part of the cell lip and the upper over a standard resistor, Kas used to machined brass piece relieved the strain obtain current-time curves. Since the on the glass lip. This rather complex recorder could not follow the rapid mounting arrangement assured that current changes during the first few the transducer and cell would be seconds of electrolysis, the ball-and- rigidly held in place and could be disk integrator which is connected to easily disassembled for cleaning or for this recorder is not suitable for determin- making cell or transducer modifications. ing the total number of coulombs in- il simpler cell and transducer mounting volved in the electrolysis. A Model could probably be designed. 35 ultrasonic generator (McKenna Lab- The cell cover, which contained a tube oratories, Santa Monica, Calif.) , op- bil- closed at the bottom with a fine porosity erating at 1 Mc. per second at Figure l. Schematic diagram of elec- sintered glass disk, 9, for the auxiliary power levels up to 35 watts, was used electrode, 10, fitted to the cell body with a one-inch barium titanate trans- trolysis cell by means of a standard taper joint. ducer in these experiments. Additional standard taper joint con- Procedure. The electrolyses mere nections in the cell cover permitted performed by adding about 7 ml. of menting with several types of cells, the introduction of a reference elec- supporting electrolyte solution to the we found the one shown schematically trode, 7, nitrogen, 8, and sample cell, deaerating, and prc-electrolyzing in Figure 1 to be most useful. Details aliquots. With this arrangement, and the solution at the control potential of the cell construction are shown in because a stirrer did not have to be Figure 2 and are described below. positioned, the cell could be assembled The solution volume was about 7.5 very rapidly. I mi. when the cell was filled to slightly The requirements for the potentiostat above the bottom of the auxiliary and coulometer are somewhat more electrode chamber. A platinum gauze stringent for high speed electrolg& electrode, 6, wound in a tight spiral than for the usual slower methods. so as to fill the sample solution com- The current changes so rapidly, es- pletely, was used as a working electrode. With this electrode design, the usual types of stirring by rotating the working electrode or by employing a propeller or magnetic stirrer could not be used. Ultrasonic stirring eliminated the need for moving parts within the cell, and by making the base of the cell a barium titanate transducer driven by an ultra- sonic generator, effective stirring could be accomplished. A rapid flow of nitrogen through the solution also 6 aided in increasing the mass transfer rate. The base of the cell consisted of three 10 pieces of machined brass.
Recommended publications
  • 07 Chapter2.Pdf
    22 METHODOLOGY 2.1 INTRODUCTION TO ELECTROCHEMICAL TECHNIQUES Electrochemical techniques of analysis involve the measurement of voltage or current. Such methods are concerned with the interplay between solution/electrode interfaces. The methods involve the changes of current, potential and charge as a function of chemical reactions. One or more of the four parameters i.e. potential, current, charge and time can be measured in these techniques and by plotting the graphs of these different parameters in various ways, one can get the desired information. Sensitivity, short analysis time, wide range of temperature, simplicity, use of many solvents are some of the advantages of these methods over the others which makes them useful in kinetic and thermodynamic studies1-3. In general, three electrodes viz., working electrode, the reference electrode, and the counter or auxiliary electrode are used for the measurement in electrochemical techniques. Depending on the combinations of parameters and types of electrodes there are various electrochemical techniques. These include potentiometry, polarography, voltammetry, cyclic voltammetry, chronopotentiometry, linear sweep techniques, amperometry, pulsed techniques etc. These techniques are mainly classified into static and dynamic methods. Static methods are those in which no current passes through the electrode-solution interface and the concentration of analyte species remains constant as in potentiometry. In dynamic methods, a current flows across the electrode-solution interface and the concentration of species changes such as in voltammetry and coulometry4. 2.2 VOLTAMMETRY The field of voltammetry was developed from polarography, which was invented by the Czechoslovakian Chemist Jaroslav Heyrovsky in the early 1920s5. Voltammetry is an electrochemical technique of analysis which includes the measurement of current as a function of applied potential under the conditions that promote polarization of working electrode6.
    [Show full text]
  • Hydrodynamic Electrodes and Microelectrodes
    CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion and kinetics (i.e. charge transfer as described for instance by the different formulations of the Butler-Volmer equation). In most cases, diffusion is the most significant transport limitation. Diffusion limitations arise inevitably, since any reaction consumes reactant molecules. This consumption depletes reactant (the so-called electroactive species) in the vicinity of the electrode, which leads to a non-uniform distribution (see the previous notes). ______________________________________________________________________ Note: In principle, we would have to consider the accumulation of product species in the vicinity of the electrode as well. This would not change the basic phenomenology, i.e. the interplay between kinetics and transport would remain the same. But it would make the mathematical formalism considerably more complicated. In order to simplify things, we, thus, focus entirely on the reactant distribution, as the species being consumed. ______________________________________________________________________ In this part, we are considering a semiinfinite system: The planar electrode is assumed to have a huge surface area and the solution is considered to be an infinite reservoir of reactant. This simple system has only one characteristic length scale: the thickness of the diffusion layer (or mean free path) δδδ. Sometimes the diffusion layer is referred to as the “Nernst layer” . Now: let’s consider again the interplay of kinetics and diffusion limitations. Kinetic limitations are represented by the rate constant k 0 (or equivalently by the 0=== 0bα b 1 −−− α exchange current density j nFkcred c ox ).
    [Show full text]
  • Μstat 4000P Multi Potentiostat
    µStat 4000P Multi Potentiostat 01 Ref. STAT4000P Following the format of our multipotentiostats with a size of only 22x20x7 cm, includes 4 channels that can act at the same time as 4 independent potentiostats; it also includes one multichannel that can act as a poten- tiostat where up to 4 working electrodes share an auxiliary and a reference electrode. With µStat 4000P users can perform up to 4 different electrochemical techniques at the same time; or carry out the study of one technique’s parameter in just one step by applying the same electrochemical technique in several channels but selecting different values for the parameter under study. These are just exam- ples of the enormous capabilities that our new instrument offers. µStat 4000P can be applied for Voltammetric or Amperometric measurements, including 12 electroanalytical techniques. In addition, µStat 4000P owners can later upgrade their instrument to a µStat 4000P by just purchasing an extension. This self-upgrade does not require any hardware modification, but it is implemented by means of a Galvanostat software update kit. This Multi Potentiostat is Li-ion Battery powered (DC charger adaptor also compatible), and can be easily connected to a PC via USB or through Wireless connection. µStat 4000P is controlled by the powerful software “DropView 8400” which is included and that allows plotting of the measurements and performing the analysis of results. DropView software provides powerful functions such as experimental control, graphs or file handling, among others. Available
    [Show full text]
  • Lecture Content
    EMT 518: METHODS IN ENVIROMENTAL ANALYSIS III (2 UNITS) Lecturer: Professor O. Bamgbose SYNOPSIS Electro-analytical method: Potentiometry, Reference electrode – Calomel, Ag/Agcl, indicator electrodes – 1st, 2nd and 3rd order, Metal Electrodes, membrane electrodes – glass electrode, types of liquid junction potential, solid state electrode, potentiometric titration, end point location in potentiometric titration –visual, plot of E/V, plot of derivative curves 1st and 2nd electrogravimetry, fixed potential, constant current, constant cathode potential coulometry: constant current coulometry, coulometric titration. Voltammetry: classical polarography, Description of dropping mercury electrode, condition for polarographic determination, qualitative and quantitative analysis conductance methods: description of limiting ionic conductance, conductance cell, conductomertic titration. Thermal methods: Thermogravimetry, differential thermal analysis (DTA) LECTURE CONTENT POTENTIOMETRY Is a measurement of a given chemical species in an equilibrium system by the use of an electrode, while potentiometric titration is the technique that is used for following the changes in the concentration of chemical species as function of added titrant using an electrode. In both cases a cell is needed and a cell consists of the following: (1) Reference electrode (2) Liquid junction (3) Analyte solution (4) indicator electrode. It is also possible to have a cell without liquid junction. REFERENCE ELECTRODE. In carrying out a potentiometric determination the half cell potential of one electrode must be known which should be constant, reproducible and completely insensitive to the reference electrode and must be fully polarised throughout the duration of the measurement i.e the potential of the reference electrode does not change through the whole measurement. A classical example of reference electrode is the calomel electrode.
    [Show full text]
  • Physical Electrochemical Software Brochure
    Redefining Electrochemical Measurement Physical Electrochemistry Software The Physical Electrochemistry Software is used with a to the limit. You can define the potentials as absolute Gamry Potentiostat to perform in-depth studies of the voltages or by their relationship to the Open-Circuit structure of the electrode interface and the mechanisms Potential. of electrochemical reactions. The software brings Cyclic Voltammetry and other recognized electrochemical The scan rate (mV/s) is determined by the interval between research techniques to the Gamry user. The Physical data points (sample period) and the Step Size (mV): Electrochemistry Software is a useful tool for Step Size() mV fundamental studies, sensor development, small-scale Scan Rate() mV s = energy storage devices, electrophysiology, etc. Sample Period() s The minimum sample period may be as low as 3.3 µs. The This software incorporates the following electrochemical maximum Scan Rate is a function of Step Size. For techniques: example, the maximum Scan Rate with a 2 mV step is 600 V/s. Higher steps provide faster scan rates, but at the ••• Cyclic Voltammetry expense of resolution. Step Sizes greater than 10 mV are ••• Linear Sweep Voltammetry likely to result in unsatisfactory data. ••• Chronoamperometry ••• Repeating Chronoamperometry The Physical Electrochemistry Software can save, and ••• MMuullttiipplleeMultiple-Multiple---StepStep Chronoamperometry display, up to 262,143 data points! The number of CV ••• ChronopotentChronopotentiometryiioommeettrryyiometry cycles that can be displayed is dependent upon the scan ••• Repeating Chronopotentiometry parameters. ••• Chronocoulometry Step Size() mV No. of Cycles =262,143 × ••• Controlled Potential Coulometry Voltage Span of theCV() mV Like most Gamry software, the Physical Electrochemistry Software and a Gamry Potentiostat use the Framework for data acquisition and the Echem Analyst for data analysis.
    [Show full text]
  • Stationary Electrode Voltammetry and Chronoamperometry in an Alkali Metal Carbonate-Borate Melt
    AN ABSTRACT OF THE THESIS OF DARRELL GEORGE PETCOFF for the Doctor of Philosophy (Name of student) (Degree) in Analytical Chemistry presented onC (O,/97 (Major) (Date) Title: STATIONARY ELECTRODE VOLTAMMETRY AND CHRONOAMPEROMETRY IN AN ALKALI METAL CARBONATE - BORATE. MFT T Abstract approved: Redacted for Privacy- Drir. reund The electrochemistry of the lithium-potassium-sodium carbonate-borate melt was explored by voltammetry and chrono- amperometry. In support of this, a controlled-potential polarograph and associated hardware was constructed.Several different types of reference electrodes were tried before choosing a porcelain mem- brane electrode containing a silver wire immersed in a silver sulfate melt.The special porcelain compounded was used also to construct a planar gold disk electrode.The theory of stationary electrode polarography was summarized and denormalized to provide an over- all view. A new approach to the theory of the cyclic background current was also advanced. A computer program was written to facilitate data processing.In addition to providing peak potentials, currents, and n-values, the program also resolves overlapping peaks and furnishes plots of both processed and unprocessed data. Rapid-scan voltammetry was employed to explore the electro- chemical behavior of Zn, Co, Fe, Tl, Sb, As, Ni, Sn, Cd, Te, Bi, Cr, Pb, Cu, and U in the carbonate-borate melt. Most substances gave reasonably well-defined peaks with characteristic peak potentials and n-values.Metal deposition was commonly accompanied by adsorp- tion prepeaks indicative of strong adsorption, and there was also evi- dence of a preceding chemical reaction for several elements, sug- gesting decomplexation before reduction.
    [Show full text]
  • COULOMETRY for the DETERMINATION of URANIUM and PLUTONIUM: PAST and PRESENT by M.K
    BARC/2012/E/001 BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division 2012 BARC/2012/E/001 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2012 BARC/2012/E/001 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2012/E/001 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : Coulometry for the determination of uranium and plutonium: past and present 11 Collation : 34 p., 2 figs., 7 tabs. 13 Project No. : 20 Personal author(s) : M.K. Sharma; J.V. Kamat; A.S. Ambolikar; J.S. Pillai; S.K. Aggarwal 21 Affiliation of author(s) : Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s) : Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Fuel Chemistry Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type : Government Contd... BARC/2012/E/001 30 Date of submission : December 2011 31 Publication/Issue date : January 2012 40 Publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard copy 50 Language of text : English 51 Language of summary : English, Hindi 52 No.
    [Show full text]
  • Basics and Applications of a Quartz Crystal Microbalance Monitoring Surface Interactions Via Small-Scale Mass Changes
    Basics and Applications of a Quartz Crystal Microbalance CORROSION BATTERY TESTING Monitoring Surface Interactions via Small-scale Mass Changes COATINGS PHOTOVOLTAICS gamry.com Contents Basics of QCM ........................................................................................................................3 Calibration of a QCM ................................................................................................... 13 Investigation of a Thin Polymer Film ..........................................................................21 The eQCM 10M System ..................................................................................................... 26 The QCM-I System .............................................................................................................. 27 References .......................................................................................................................29 Additional Resources .................................................................................................... 30 2 gamry.com Basics of a Quartz Crystal Microbalance This section provides an introduction to the quartz crystal microbalance (QCM) which is an instrument that allows a user to monitor small mass changes on an electrode. The reader is directed to the numerous reviews 1 and book chapters1 & 2 for a more in-depth description concerning the theory and application of the QCM. A basic understanding of electrical components and concepts is assumed. The two major points of this section are:
    [Show full text]
  • Plutonium Analysis from Controlled-Potential Coulometry for the Certification of the MP3 Standard Material
    P5_14 Plutonium analysis from controlled-potential coulometry for the certification of the MP3 standard material. A. Ruas, V. Dalier, J. Pivato CEA-Marcoule BP 17171 30207 Bagnols-sur-Cèze Cedex, France [email protected] Abstract – For contributing to the certification of the new metal plutonium reference material (MP3), controlled-potential coulometry (CPC) has many advantages: it is a high accuracy absolute chemical analysis technique. Many studies are now conducted on plutonium solutions, to improve the operating conditions and the current apparatus, for mass determination with a precision of 0.1%. The different experimental preliminary results are discussed and the apparatus described. The coulometry cell assembly comprises a motor connected to a stirrer designed to prevent splashing, an inlet tube for inert gas, three electrodes, and a thermocouple for measuring the temperature. The measuring system includes a potentiostat, a CPU, a calibrated current generator, a temperature indicator and a voltmeter, all maintained at a constant temperature. Current integration is made by electronic components, introduced in the potentiostat and the CPU. + − + INTRODUCTION Pu 4 + e ↔ Pu 3 (1) Experimental electrolysis is performed using a Coulometry is an assay method in which the metal electrode with a large surface area quantity of the element analyzed is determined (working electrode) immersed in the test by measuring a quantity of electricity; under solution. The quantity of electricity used for the certain conditions it is capable of providing a conversion is related to the quantity matter in very accurate determination of the plutonium solution by Faraday’s law of electrolysis: mass concentration. The advantage of this M method is that it is absolute and uses only small m = ⋅Q (2) masses of material.
    [Show full text]
  • School of Engineering and Science to My Beloved Parents Abstract
    Hybrid Organic-Inorganic Polyoxometalates Functionalized by Diorganotin Groups by Firasat Hussain A thesis submitted in partial ful¯llment of the requirements for the degree of Doctor of Philosophy Approved, Thesis Committee: Prof. Ulrich Kortz (Mentor), IUB Prof. Ryan M Richards, IUB Dr. Michael H Dickman, IUB Prof. Michael T Pope Georgetown University, U.S.A. Prof. Emmanuel Cadot Universit¶ede Versailles, France Date of defense: 19 May 2006 School of Engineering and Science To my beloved parents Abstract Polyoxometalates (POMs) are a well-known class of inorganic metal-oxygen clusters with an unmatched structural variety combined with a multitude of properties. The search for novel POMs is predominantly driven by exciting catalytic, medicinal, material science and bioscience applications. However, the mechanism of action of most polyoxoanions is not selective towards a speci¯c target. In order to improve selectivity it appears highly desirable to attach organic functionalities covalently to the surface of polyoxoanions. The hydrolytic stability of the Sn-C bond enables the synthesis of a novel class of polyoxoanions via attachment of organometallic functionalities based on Sn(IV) to the surface of lacunary polyoxoanion precursors. III III By reacting (CH3)2SnCl2 with Na9(®-XW9O33) (X = As , Sb ) in aqueous acidic medium leads to the formation of 2-D solid-state structures with inorganic and organic surface, which are rare examples of discrete polyoxoanions. (CsNa4f(Sn(CH3)2)3O(H2O)4 (¯-AsW9O33)g¢5H2O)1 (CsNa-1) and the isostructural (CsNa4[(Sn(CH3)2)3O(H2O)4( ¯-SbW9O33)]¢5H2O)1 (CsNa-2)It has been synthesized and characterized by multinu- clear NMR spectroscopy, FTIR spectroscopy and elemental analysis.
    [Show full text]
  • A Practical Organic-Mediated Hybrid Electrolyser That Decouples
    Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018 Supplementary Information for: A Practical Organic-Mediated Hybrid Electrolyser that Decouples Hydrogen Production at High Current Densities Niall Kirkaldy,a Greig Chisholm,a Jia-Jia Chena and Leroy Cronin*a a WestCHEM, School of Chemistry, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK * Corresponding author, [email protected] 1 Contents SI-1. General Experimental Remarks .................................................................................................. 3 SI-2. Electrochemical Characterisation ............................................................................................... 4 SI-3. Gas Headspace Measurements................................................................................................... 6 SI-4. Hybrid PEME Construction and Operation ................................................................................. 7 SI-5. PEME Characterisation Methods ................................................................................................ 8 SI-6. PEME Efficiency Calculations .................................................................................................... 10 SI-7. Cost Calculations ....................................................................................................................... 11 2 SI-1. General Experimental Remarks 9,10-anthraquinone-2,7-disulfonic acid disodium salt was purchased from Santa Cruz Biotechnology
    [Show full text]
  • Pulse Voltammetry Software Brochure
    Data Analysis density. This feature is particularly useful for comparing data from electrodes of different areas. The analysis of the software data is performed in the Echem Analyst. Specific analysis routines have been created to Baseline Add: Baselines can be added to the data graph by either drawing a Freehand Line or by extrapolating a handle this software data files. The general features of the Echem Analyst are described in a separate brochure entitled part of the baseline with the Linear Fit feature. Redefining Electrochemical Measurement “Overview of Gamry Software.” Integrate: Integration of the current in Differential Pulse These specific routines include: Voltammetry and Square Wave Voltammetry is possible by defining a baseline and then selecting the portion of the Pulse Voltammetry Software Peak Find: Use the Region Selector button to select a curve you want to integrate. Then select Integrate from the portion of the curve that includes the region where the drop-down menu and the result is reported on the curve The Pulse Voltammetry Software adds Differential Pulse peak is located. Click on the Peak Find button to find the and also on a new tab. This software incorporates the following pulse techniques: peak position and the peak height. A perpendicular line is Voltammetry, Square Wave Voltammetry, and other drawn on the chart from the peak to the baseline. Background Subtract: A background file can be recognized pulse voltammetry techniques to the Gamry ● Square Wave subtracted from the current active data file by selecting software product family. For qualitative and mechanistic ● Square Wave Stripping Subtract from the menu and choosing the file.
    [Show full text]