Developmental Studies on Glyoxysomes in R I C I N U S Endosperm

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Studies on Glyoxysomes in R I C I N U S Endosperm DEVELOPMENTAL STUDIES ON GLYOXYSOMES IN R I C I N U S ENDOSPERM B. P. GERHARDT and HARRY BEEVERS From the Department of Biological Sciences, Purdue University, Lafayette, Indiana 47906 . Dr. Gerhardt's present address is the Botanisches Institut der Universitat Koln, 5 Koln-Lindenthal, Germany. Dr. Beevers' present address is the Division of Natural Sciences, University of California, Santa Cruz, California 95060 ABSTRACT The development of glyoxysomes and their associated enzymes, isocitrate lyase and malate synthetase, was studied in the endosperm of castor bean seeds during germination and early growth in darkness. The protein content of the glyoxysome fraction, separated by sucrose density centrifugation, increased linearly from day 2 to day 4 and declined subsequently, while maximum enzyme activities were reached at day 5. The specific activities of the enzymes in the glyoxysomes increased until day 5 and remained constant thereafter. At all stages of germination the only organelle with isocitrate lyase activity was the glyoxysome, but at the earlier stages a greater portion of the total activity was recovered in the soluble form. Malate synthetase was found primarily in the glyoxysomes after day 4, but at earlier stages part of the activity appeared at regions of lower density on the sucrose gradient . It was shown that this particulate malate synthetase activity was due to glyoxysomes broken during preparation, and that, as a result of this breakage, isocitrate lyase was solubilized . We conclude that both enzymes are housed in the glyoxysome in vivo throughout the germination period, and that the rise and fall in enzyme activities in phase with fat break- down correspond to the net production and destruction of this organelle . INTRODUCTION During the germination of fatty seeds such as those early in germination is now known to be due to a of castor bean, the stored fat is converted to de novo synthesis of the enzymes (6, 8, 11, 15) that carbohydrate (1) . One stage in the reaction are present in the plants only during the period sequence from fat to carbohydrate is the glyoxylate when fat is being utilized . cycle (9) which converts acetyl CoA, arising from In castor bean seeds, the fat is localized in the the breakdown of fatty acids, to succinate. During endosperm, and the carbohydrate produced, the germination period the key enzymes of the principally sucrose, is absorbed by the cotyledons glyoxylate cycle, isocitrate lyase and malate syn- of the growing embryo (10) . The rate of fat thetase, undergo striking changes in activity (4, conversion reaches its maximum at the 5th day of 18). From extremely low levels in the unger- germination. From the endosperm of 5-day-old minated seeds, the activities of both enzymes seedlings Breidenbach and Beevers (2, 3) isolated increase rapidly until the time when the rate of a new kind of organelle carrying the enzymes of conversion of fat to carbohydrate in the endosperm the glyoxylate cycle and therefore named the reaches its maximum at day 5 . Subsequently the glyoxysome . This finding raised the possibility that activities decline . The increase of these activities the striking changes observed in the activities of 94 isocitrate lyase and malate synthetase during Inc ., Lincoln, Nebraska) . All operations were carried germination could be related to the formation and out at 0-4 °C. disappearance of this organelle. Biochemical Assays MATERIALS AND METHODS All enzymes were assayed spectrophotometrically . Isocitrate lyase and malate synthetase were assayed Preparative Procedures essentially as described by Hock and Beevers (8) . Succinic dehydrogenase was assayed by the method of Seeds of castor bean, Ricinus communis L . var. Baker Hiatt (7) with the use of an extinction coefficient 296 or Hale, were soaked for 12-16 hr in tap water at 1 .56 X 10 7 cm2/mole for dichlorophenol indophenol room temperature and then placed in moist (16) . Catalase was assayed by a slight modification of vermiculite at 30 °C and constant humidity in the the method of Luck (12) with the use of an extinction dark (day 0) . Seedlings were harvested at daily in- coefficient 6 .7 X 10 4cm2/mole for H2O2 (13) . Protein tervals, the testa and the embryo (root, hypocotyl, was determined by a modification of the Lowry pro- and cotyledons) were removed, and only the endo- cedure (5) . Sucrose concentrations (w/v) were deter- sperm tissue was used as experimental material . This mined with a Bausch & Lomb Abbe Refractometer tissue was homogenized in a solution of 0 .4 M sucrose, (Bausch & Lomb, Inc., Rochester, N.Y.) . 0.167 M Tris buffer pH 7 .5 or 0 .167 M Tricine buffer (California Biochemical Corp ., Los Angeles, Calif.) Labeling Experiments pH 7.8, 0 .01 M dithiothreitol, 0.01 M KCl, 0.001 M MgCls, and 0.01 M ethylenediaminetetracetic acid 0.25 µc of leucine- 14C (8 .0 X 10-4 µ.moles in 5 µl) (EDTA), pH 7.5. Usually 2 ml of medium was used or 2 .5 µc of leucine-3H (6.25 X 10-5 moles in 5 µ1) for each gram of tissue . After the tissue was treated were applied directly to each of 10-20 endosperm in an onion chopper, it was carefully ground in a halves (17) . The tissue was incubated at 30 °C in mortar, and the resulting crude homogenate was moist atmosphere in Petri dishes for a definite time of filtered through two layers of cheesecloth. After treatment (2-6 hr) and then homogenized together centrifugation at 270 g for 10 min, the supernatant with unlabeled endosperm. Organelle fractions were solution (supernatant I) was centrifuged at 10,800 g isolated as described above . The incorporation of for 30 min . The resulting pellet (the crude particu- radioactivity into these fractions was determined by late fraction) was resuspended in a few ml of 32% the method of Mans and Novelli (14) and the pre- sucrose (w/v) and layered on the top of a sucrose cipitated protein samples were assayed on a Beckman density gradient . Discontinuous gradients were pre- DPM Scintillation counter (Beckman Instruments, pared by adding 5 ml of 60% sucrose, and 10 ml of Inc ., Fullerton, Calif.). For the double labeling exper- 57% sucrose, 15 ml of 51% sucrose, 15 ml of 44% iments, the window of the 3H-channel was adjusted sucrose, and 5 ml of 32% sucrose, in sequence in so that the overspill of 14C was about 15% (internal cellulose nitrate tubes . Usually, the crude particulate standard). No 3H was detected in the 14C-channel . fraction obtained from 40 g of tissue was applied to such gradients . Linear continuous gradients were pre- RESULTS pared from 19 .5 ml of 32% sucrose and 19.5 ml of 60% sucrose over a cushion of 11 ml of 60% sucrose, Protein and on these gradients the particulate fraction from During the first 3 days of germination of the not more than 10 g of tissue was applied . For the ex- castor bean seeds the protein content of the whole periments in which mitochondria were purified by flotation, the mitochondrial fraction from a discon- endosperm remains constant, but, as shown in Fig . tinuous gradient was concentrated from 43 to 57% 1, the protein content of the crude particulate sucrose by adding 70% sucrose . This suspension was fraction increases rapidly until the third day . used as the cushion for a linear continuous gradient After the third day, when the total protein of the grading from 57 to 35% sucrose . All sucrose solutions endosperm begins to decrease, the protein of the for gradients contained 0 .001 M EDTA pH 7.5. The crude particulate fraction accounts constantly for gradients were centrifuged at 64,300 g in a Spinco about 13 % of the total protein . Thus, early in rotor SW 25 .2 (Beckman Instruments Inc ., Spinco germination a portion of the protein of the seed is Div., Palo Alto, Calif.) for 5 hr ; flotation gradients transformed into newly synthesized organelles, were spun for 8 hr. The gradients were fractionated from the bottom of the tubes . From discontinuous and at later stages, when a net loss of protein gradients the bands and interphases were usually col- occurs, total protein and particulate protein are lected as whole fractions ; from continuous gradients 1 degraded at the same rate (Fig. 1) . Eventually the ml fractions were collected by an Isco density gradient products are completely absorbed by the growing fractionator (Instrumentation Specialties Company, embryo (17) . B . P. GERHARDT AND HARRY BEEVERs Glyoxysomes in Ricinus Endosperm 95 H Y) 800 8000 F Z Q 0U F F Q 120 a 600 6000 W 0 100 0U \ 400 4000 Z Z W LIA 80 F I- 0 0 M a R 2000 E D: 200 a. CD E CP 60 E 0 2 4 6 8 40 DAYS OF GERMINATION FIGURE 1 Changes in the protein content of the 20 endosperm (supernatant I and of the crude particulate fraction during the germination of castor bean seeds . The results are expressed as mg protein/100 g fresh I I weight of endosperm and as mg protein/crude par- 2 4 6 ticulate fraction from 100 g fresh weight of endo- DAYS OF GERMINATION sperm . FIGURE 2 Changes in the protein content (mg pro- tein/100 g fresh weight of endosperm) of the mito- Centrifugation of the crude particulate fraction chondrial, proplastid, and glyoxysome bands isolated on a sucrose density gradient results in three on discontinuous sucrose density gradients during the major protein bands-the mitochondria, the pro- germination of castor bean seeds . plastids and the glyoxysomes (2) . From the 5th day onward, the protein present in these bands accounted for about 60% of that added as crude incorporated into trichloroacetic acid-precipitable particulate protein .
Recommended publications
  • Cell & Molecular Biology
    BSC ZO- 102 B. Sc. I YEAR CELL & MOLECULAR BIOLOGY DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY BSCZO-102 Cell and Molecular Biology DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in Board of Studies and Programme Coordinator Board of Studies Prof. B.D.Joshi Prof. H.C.S.Bisht Retd.Prof. Department of Zoology Department of Zoology DSB Campus, Kumaun University, Gurukul Kangri, University Nainital Haridwar Prof. H.C.Tiwari Dr.N.N.Pandey Retd. Prof. & Principal Senior Scientist, Department of Zoology, Directorate of Coldwater Fisheries MB Govt.PG College (ICAR) Haldwani Nainital. Bhimtal (Nainital). Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Programme Coordinator Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Haldwani, Nainital Unit writing and Editing Editor Writer Dr.(Ms) Meenu Vats Dr.Mamtesh Kumari , Professor & Head Associate. Professor Department of Zoology, Department of Zoology DAV College,Sector-10 Govt. PG College Chandigarh-160011 Uttarkashi (Uttarakhand) Dr.Sunil Bhandari Asstt. Professor. Department of Zoology BGR Campus Pauri, HNB (Central University) Garhwal. Course Title and Code : Cell and Molecular Biology (BSCZO 102) ISBN : 978-93-85740-54-1 Copyright : Uttarakhand Open University Edition : 2017 Published By : Uttarakhand Open University, Haldwani, Nainital- 263139 Contents Course 1: Cell and Molecular Biology Course code: BSCZO102 Credit: 3 Unit Block and Unit title Page number Number Block 1 Cell Biology or Cytology 1-128 1 Cell Type : History and origin.
    [Show full text]
  • Aconitase: to Be Or Not to Be Inside Plant Glyoxysomes, That Is the Question
    biology Review Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question Luigi De Bellis 1,* , Andrea Luvisi 1 and Amedeo Alpi 2 1 Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Monteroni, I-73100 Lecce, Italy; [email protected] 2 Approaching Research Educational Activities (A.R.E.A.) Foundation, I-56126 Pisa, Italy; [email protected] * Correspondence: [email protected] Received: 10 June 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: After the discovery in 1967 of plant glyoxysomes, aconitase, one the five enzymes involved in the glyoxylate cycle, was thought to be present in the organelles, and although this was found not to be the case around 25 years ago, it is still suggested in some textbooks and recent scientific articles. Genetic research (including the study of mutants and transcriptomic analysis) is becoming increasingly important in plant biology, so metabolic pathways must be presented correctly to avoid misinterpretation and the dissemination of bad science. The focus of our study is therefore aconitase, from its first localization inside the glyoxysomes to its relocation. We also examine data concerning the role of the enzyme malate dehydrogenase in the glyoxylate cycle and data of the expression of aconitase genes in Arabidopsis and other selected higher plants. We then propose a new model concerning the interaction between glyoxysomes, mitochondria and cytosol in cotyledons or endosperm during the germination of oil-rich seeds. Keywords: aconitase; malate dehydrogenase; glyoxylate cycle; glyoxysomes; peroxisomes; β-oxidation; gluconeogenesis 1. Introduction Glyoxysomes are specialized types of plant peroxisomes containing glyoxylate cycle enzymes, which participate in the conversion of lipids to sugar during the early stages of germination in oilseeds.
    [Show full text]
  • Downloads/Cobratoolbox
    UC San Diego UC San Diego Electronic Theses and Dissertations Title A stoichiometric model of Escherichia coli 's macromolecular synthesis machinery and its integration with metabolism Permalink https://escholarship.org/uc/item/1z9752m7 Author Thiele, Ines Publication Date 2009 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO A stoichiometric model of Escherichia coli's macromolecular synthesis machinery and its integration with metabolism. A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics by Ines Thiele Committee in charge: Professor Bernhard Ø. Palsson, Chair Professor Steven P. Briggs, Co-Chair Professor Alexander Hoffmann Professor Milton H. Saier Professor Julian I. Schroeder 2009 Copyright Ines Thiele, 2009 All rights reserved. The dissertation of Ines Thiele is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2009 iii DEDICATION To Renate, Steffen, Dana, and Ronan. iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . viii List of Tables . x Acknowledgements . xi Vita and Publications . xiii Abstract of the Dissertation . xv Chapter 1 Introduction to molecular systems biology . 1 1.1 Constraint-based reconstruction and analysis . 2 1.2 Basic principles underlying the constraint-ba-sed reconstruction & analysis approach . 4 1.3 Reconstruction of metabolic networks in a nutshell . 6 1.4 Mathematical characterization of network capabilities . 8 1.5 Tools for analyzing network states. 9 1.6 Preview of the dissertation . 11 Chapter 2 Escherichia coli ..............................
    [Show full text]
  • Unit of Life ] Illustrated 1
    NEET II AIIMS [UNIT OF LIFE ] ILLUSTRATED 1 UNIT III CELL : STRUCTURE AND FUNCTIONS 123-172 Chapter 8 : Cell : The Unit of Life Topic: • 8.1 What is a Cell? • Cell is the fundamental structural and functional unit of all living organisms. • Anything less than a complete structure of a cell does not ensure independent living. Like – virus • Anton Von Leeuwenhoek first saw and described a live cell. • The cell was first discovered and named by Robert Hooke in 1665. [ It looked strangely similar to cellula or small rooms which monks inhabited, thus deriving the name] • Micrographia – book written by Robert Hooke • Robert Brown discovered the nucleus. • C. Benda discovers mitochondria • G.N. RAMACHANDRAN discover of the triple helical structure of collagen • 8.2 Cell Theory o Proposer- . Matthias Schleiden, a German Botanist . Theodore Schwann, a British Zoologist . Rudolf Virchow [modifier] o Theory – . all living organisms are composed of cells and products of cells. All individual cell can perform its activity alone but they doesn’t do so, rather acts as a tissue or organ . all cells arise from pre-existing cells. o Indirect meaning – . Cell is a structural & functional unit of organism • 8.3 An Overview of Cell o Mycoplasmas, the smallest cells [0.3 μm] o Other common bacteria [3 to 5 μm] o largest isolated single cell is the egg of an ostrich o human red blood cells are about 7.0 μm in diameter o Nerve cells are some of the longest cells • Concept of o Protoplasm – organized living part of the cell surrounded by the cell membrane • Protoplasm = Animal cell – [Cell membrane + non living substance (Metaplastic body / argastic substance] o Protoplast – Organized part of the cell excluding cell wall.
    [Show full text]
  • 93Fb2b03416a8e67e3657c54d1
    Investigation of the Glyoxysome-Peroxisome Transition in Germinating Cucumber Cotyledons Using Double-label Immunoelectron Microscopy DAVID E. TITUS and WAYNE M. BECKER Department of Botany, University of Wisconsin, Madison, Wisconsin 53706. Dr. Titus' present address is Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts 02115. Downloaded from ABSTRACT Microbodies in the cotyledons of cucumber seedlings perform two successive metabolic functions during early postgerminative development. During the first 4 or 5 d, glyoxylate cycle enzymes accumulate in microbodies called glyoxysomes. Beginning at about day 3, light-induced activities of enzymes involved in photorespiratory glycolate metabolism accumulate rapidly in microbodies. As the cotyledonary microbodies undergo a functional jcb.rupress.org transition from glyoxysomal to peroxisomal metabolism, both sets of enzymes are present at the same time, either within two distinct populations of microbodies with different functions or within a single population of microbodies with a dual function. We have used protein A-gold immunoelectron microscopy to detect two glyoxylate cycle enzymes, isocitrate lyase (ICL) and malate synthase, and two glycolate pathway enzymes, on August 16, 2017 serine:glyoxylate aminotransferase (SGAT) and hydroxypyruvate reductase, in microbodies of transition-stage (day 4) cotyledons. Double-label immunoelectron microscopy was used to demonstrate directly the co-existence of ICL and SGAT within individual microbodies, thereby
    [Show full text]
  • Structural and Functional Characterization of Rubisco
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig–Maximilians–Universität München Structural and functional characterization of Rubisco assembly chaperones Thomas Hauser aus Tübingen, Deutschland 2016 Erklärung Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. F. Ulrich Hartl betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, 03.02.2016 _______________________ Thomas Hauser Dissertation eingereicht am: 25.02.2016 1. Gutachter: Prof. Dr. F. Ulrich Hartl 2. Gutachter: Prof. Dr. Jörg Nickelsen Mündliche Prüfung am 28.04.2016 Acknowledgements Acknowledgements First of all, I am very thankful to Prof. Dr. F. Ulrich Hartl and Dr. Manajit Hayer-Hartl for giving me the opportunity to conduct my PhD in their department at the Max Planck Institute of Biochemistry. This work has benefited greatly from their scientific expertise and experience together with their intellectual ability to tackle fundamental scientific questions comprehensively. Their way of approaching complex projects has shaped my idea on how to perform science. I am very greatful to Dr. Andreas Bracher for giving crucial input and collaborating on many aspects on my work conducted in the department. His extensive crystallographic expertise was of great importance during my time as a PhD student. Furthermore, I want to thank Oliver Müller-Cajar for introducing me into the field of Rubisco and supporting me with help and suggestions in the beginning of my PhD. His enthusiasm about conducting science was of great importance to me and influenced my motivation to work and live science on a day- by-day lab basis enormously.
    [Show full text]
  • Sample Questions BSC1010C Chapters 5-7 1. Which Type of Lipid
    Sample Questions BSC1010C Chapters 5-7 1. Which type of lipid is most important in biological membranes? a. oils b. fats c. wax d. phospholipids e. triglycerides 2. Which type of interaction stabilizes the alpha helix structure of proteins? a. hydrogen bonds b. nonpolar covalent bonds c. hydrophobic interactions d. ionic interactions e. polar covalent bonds 3. Which of the following statements best summarizes structural differences between DNA and RNA? a. DNA has different bases from RNA. b. RNA is a protein, while DNA is a nucleic acid. c. RNA is a double helix, but DNA is not. d. DNA is not a polymer, but RNA is. e. DNA contains a different sugar from RNA. 4. Hydrolysis is involved in which of the following? a. the digestion of polysaccharides to glucose b. synthesis of starch c. peptide bonding in proteins d. hydrogen bond formation between nucleic acids e. the hydrophylic interactions of lipids 5. What maintains the secondary structure of a protein? a. electrostatic charges b. ionic bonds c. hydrogen bonds d. disulfide bridges e. peptide bonds Figure 5.5 6. The chemical reactions illustrated in Figure 5.5 result in the formation of a. peptide bonds. b. ionic bonds. c. glycosidic bonds. d. hydrogen bonds. e. an isotope. 7. Which of the following is TRUE concerning saturated fatty acids? a. All of the below are true. b. They are usually liquid at room temperature. c. They have double bonds between the carbon atoms of the fatty acids. d. They have a higher ratio of hydrogen to carbon than unsaturated fatty acids.
    [Show full text]
  • Uniqueness of the Mechanism of Protein Import Into the Peroxisome Matrix: Transport of Folded, Co-Factor-Bound and Oligomeric Pr
    Biochimica et Biophysica Acta 1763 (2006) 1552–1564 www.elsevier.com/locate/bbamcr Review Uniqueness of the mechanism of protein import into the peroxisome matrix: Transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors ⁎ Sébastien Léon a,1, Joel M. Goodman b, Suresh Subramani a, a Section of Molecular Biology, Division of Biological Sciences, University California, Room 3230 Bonner Hall, 9500 Gilman Drive, UC San Diego, La Jolla, CA 92093-0322, USA b Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA Received 19 May 2006; received in revised form 18 August 2006; accepted 23 August 2006 Available online 30 August 2006 Abstract Based on earlier suggestions that peroxisomes may have arisen from endosymbionts that later lost their DNA, it was expected that protein transport into this organelle would have parallels to systems found in other organelles of endosymbiont origin, such as mitochondria and chloroplasts. This review highlights three features of peroxisomal matrix protein import that make it unique in comparison with these other subcellular compartments - the ability of this organelle to transport folded, co-factor-bound and oligomeric proteins, the dynamics of the import receptors during the matrix protein import cycle and the existence of a peroxisomal quality-control pathway, which insures that the peroxisome membrane is cleared of cargo-free receptors. © 2006 Elsevier B.V. All rights reserved. Keywords: Peroxisomal matrix protein import; Import of folded and oligomeric protein; Shuttling receptor; Extended shuttle; Peroxisomal RADAR; Quality-control The transport of proteins across the membranes of many possible grouping focuses on whether the proteins being subcellular compartments in prokaryotes and eukaryotes has transported are in an unfolded or folded state.
    [Show full text]
  • Cell – Structure and Function MODULE - 1 Diversity and Evolution of Life
    Cell – Structure and Function MODULE - 1 Diversity and Evolution of Life 4 Notes CELL – STRUCTURE AND FUNCTION INTRODUCTION All organisms are composed of structural and functional units of life called ‘cells’. The body of some organisms like bacteria, protozoans and some algae is made up of a single cell whereas the body of higher fungi, plants and animals are composed of many cells. Human body is built of about one trillion cells. Cells vary in size and structure as they are specialized to perform different functions. But the basic components of the cell are common to all biological cells. This lesson deals with the structure common to all types of the cells. You will also learn about the kinds of cell division and the processes involved therein in this lesson. OBJECTIVES After completing this lesson, you will be able to : z justify that cell is the basic structural and functional unit of all organisms; z list the components of the cell and state cell theory; z differentiate between prokaryotic and eukaryotic cells; z differentiate between plant and animal cells; z illustrate the structure of plant and animal cells by drawing labelled diagrams; z describe the structure and functions of plasma membrane, cell wall, endoplasmic reticulum (ER), cilia, flagella, nucleus, ribosomes, mitochondria, chloroplasts, golgi body, peroxisome, glyoxysome and lysosome; z describe the general importance of the cell molecules-water, mineral ions, carbohydrates, lipids, amino acids, proteins, nucleotides, nucleic acids, enzymes, vitamins, hormones, steroids and alkaloids; z justify the need for cell division; z describe various phases of cell cycle; z explain the term karyotype and mention the karyotype analysis and its significance.
    [Show full text]
  • Requirement of the C3HC4 Zinc RING Finger of the Arabidopsis PEX10 for Photorespiration and Leaf Peroxisome Contact with Chloroplasts
    Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts Uwe Schumann*†, Jakob Prestele*, Henriette O’Geen‡, Robert Brueggeman§, Gerhard Wanner¶, and Christine Gietl*ʈ *Lehrstuhl fu¨r Botanik, Technische Universita¨t Mu¨ nchen, Am Hochanger 4, D-85350 Freising, Germany; ‡Genome Center, University of California, Davis, CA 95616; §Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164; and ¶Lehrstuhl fu¨r Botanik, Ludwig-Maximilian-Universita¨t, Menzinger Strasse 67, D-80638 Mu¨nchen, Germany Communicated by Diter von Wettstein, Washington State University, Pullman, WA, November 23, 2006 (received for review October 17, 2006) Plant peroxisomes perform multiple vital metabolic processes in- cluding lipid mobilization in oil-storing seeds, photorespiration, and hormone biosynthesis. Peroxisome biogenesis requires the function of peroxin (PEX) proteins, including PEX10, a C3HC4 Zn RING finger peroxisomal membrane protein. Loss of function of PEX10 causes embryo lethality at the heart stage. We investigated the function of PEX10 with conditional sublethal mutants. Four T-DNA insertion lines expressing pex10 with a dysfunctional RING finger were created in an Arabidopsis WT background (⌬Zn plants). They could be normalized by growth in an atmosphere of high CO2 partial pressure, indicating a defect in photorespiration. ␤- Oxidation in mutant glyoxysomes was not affected. However, an abnormal accumulation of the photorespiratory metabolite glyoxylate, a lowered content of carotenoids and chlorophyll a and PLANT BIOLOGY b, and a decreased quantum yield of photosystem II were detected under normal atmosphere, suggesting impaired leaf peroxisomes. Light and transmission electron microscopy demonstrated leaf Fig. 1.
    [Show full text]
  • Diphosphatase Related to Lipid Metabolism and Gluconeogenesis in Cucumber Cotyledons: Localization in Plasma Membrane and Etioplasts but Not in Glyoxysomes
    Diphosphatase Related to Lipid Metabolism and Gluconeogenesis in Cucumber Cotyledons: Localization in Plasma Membrane and Etioplasts but not in Glyoxysomes Thomas Kirsch. Barbara Rojahn, and Helmut Kindi Biochemie, FB Chemie. Philipps-Universität Marburg, D-3550 Marburg, Bundesrepublik Deutschland Z. Naturforsch. 44c, 937—945 (1989); received June 7/July 25, 1989 Plastid, Plasma Membrane, Glyoxysome, Diphosphatase (Pyrophosphatase), Cucumber Mobilization Diphosphatase (inorganic pyrophosphatase) activity was localized within compartments of cotyledons of germinating cucumber seeds during the stage of maximal conversion of fat into carbohydrates. At this stage, almost 2 mol pyrophosphate are produced during the formation of one mole sucrose from 0.28 mol triglyceride. When organelles of the 2000 xg pellet or 10,000 xg pellet were separated by density gradient centrifugation and gradient flotation, the diphosphatase activity paralleled the profiles of markers of the plastid stroma but was virtually absent from the glyoxysomes. Within the fraction of small vesicles and membranes, diphosphatase was attributed to the plasma membrane. The main portion of diphosphatase, contained in the plastids, was partially purified by chromatography on anion exchange resin and molecular sieving, leading to a 75-fold enrichment compared to the stroma fraction. Trace amounts of diphosphatase observed in the glyoxysomal fraction were analyzed in the same way. Comparison of the isoelectric points and the activity profile at different pH values and the inhibitory effect of the various cations indicated that the trace amounts of diphosphatase activity in the glyoxysome fraction represented contaminations originating from the plastids. The plasma membrane form of diphosphatase is an integral membrane protein which was solubilized with octylglucoside.
    [Show full text]
  • A Case Study of Cell Structure. 8P.; Paper Presented at the Regional Conf
    DOCUMENT RESUME ED 282 717 SE 048 140 AUTHOR Blystone, Robert V. TITLE The Value of Analysis of Standardized Placement Exams: A Case Study of Cell Structure. PUB DATE 14 Feb 87 NOTE 8p.; Paper presented at the Regional Conference on University Teaching (2nd, Las Cruces, NM, February 1987). PUB TYPE Reports - Research/Technical (143) -- Speeches/Conference Papers (150) EDRS PRICE MF01/PC01 Plus Postage. DESCRIPTORS Achievement Tests; *Advanced Placement Programs; *Biology; College Bound Students; High Schools; Science Education; *Science Tests; *Secondary School Science; *Test Interpretation; Textbook Content IDENTIFIERS *Cells (Biology); *Science Education Research ABSTRACT This study focused on potential pedagological uses of standardized placement exams. A sample of 250 exams of the May 1984 Biology Advanced Placement (AP) exam was obtained and student responses to the question on cell structure were analyzed. The frequency of particular responses to the question is listed and trends and patterns in the responses are discussed. Interviews were also conducted with AP biology instructors, high school science coordinators, readers of the 1985 AP Biology exam, college biology instructors, and professional research cell biologists for purposes of explaining the AP cell structure question results. Textbooks and resource materials were then examined for their impact on potential learnings of students and for the amount of information that they had on cell structures. Recommendations resulting from this study include: (1) provisions for additional uses of national standardized exam results other than the measurement of achievement; (2) development of hierarchically related science textbooks from high school to college; and (3) periodic replacement of learning resource materials to accompany test materials.
    [Show full text]