Immunocytochemical Labeling of Enzymes in Low Temperature

Total Page:16

File Type:pdf, Size:1020Kb

Immunocytochemical Labeling of Enzymes in Low Temperature Scanning Electron Microscopy Volume 4 Number 1 The Science of Biological Specimen Article 24 Preparation for Microscopy and Microanalysis 1985 Immunocytochemical Labeling of Enzymes in Low Temperature Embedded Plant Tissue: The Precursor of Glyoxysomal Malate Dehydrogenase is Located in the Cytosol of Watermelon Cotyledon Cells C. Sautter TU München, Weihenstephan Follow this and additional works at: https://digitalcommons.usu.edu/electron Part of the Biology Commons Recommended Citation Sautter, C. (1985) "Immunocytochemical Labeling of Enzymes in Low Temperature Embedded Plant Tissue: The Precursor of Glyoxysomal Malate Dehydrogenase is Located in the Cytosol of Watermelon Cotyledon Cells," Scanning Electron Microscopy: Vol. 4 : No. 1 , Article 24. Available at: https://digitalcommons.usu.edu/electron/vol4/iss1/24 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Electron Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Science of Biological Specimen Preparation (pp. 215-227) SEM Inc., AMF O'Hare (Chicago), IL 60666-0507, U.S.A. IMMUNOCYTOCHEMICALLABELING OF ENZYMES IN LOW TEMPERATUREEMBEDDED PLANT TISSUE: THE PRECURSOR OF GLYOXYSOMALMALATE DEHYDROGENASE IS LOCATEDIN THE CYTOSOLOF WATERMELONCOTYLEDON CELLS [.Sautter Lehrstuhl fur Botanik Fakultat fur Landwirtschaft und Gartenbau TU Munchen, Weihenstephan 8050 Freising, FRG Phone no.: 08161/71868 Abstract Introduction The Lowicryl-technique in combination with Immunocytochemical localization of enzymes is protein A gold was used in order to localize the well established in animal tissues. In plant precursor of glyoxysomal malate dehydrogenase in tissues immunocytochemistry was mainly restricted watermelon cotyledons. Preservation of the antigen to storage proteins (BAUMGARTNERet al. 1980; was evaluated by a preembedding technique in CRAIG and MILLERD1981; CRAIG and GOODCHILD1982; isolated organelles. The glyoxysomal malate CRAIG and GOODCHILD1984 a, 1984 b; GREENWOODet dehydrogenase was localized in tissue sections by al. 1984). Comparable few studies dealt with the a postembedding technique. Antigens of glyoxysomal localization of enzymes (DOMANand TRELEASE1985; malate dehydrogenase were found in the glyoxysomal SAUTTER 1984) regulatory proteins (VERBELENet al. matrix and in the cytosol, whereas the endoplasmic 1982), phytohormones (ZAVALAand BRANDON1983) or reticulum was completely free of labeling. inhibitors (HORISBERGERand TACCHINI-VONLANTHEN Controls are presented by preimmunserum, by a 1983 a, 1983 b). serum against various proteins of the glyoxysomal membr2ne and by application of cycloheximide in Plant tissues exibit special difficulties for order to inhibit translation at cytosolic immunocytochemistry. Most of these difficulties ribosomes. The results are compared with are due to the general differences between animal immunocytochemical localizations of other plant cells and plant cells. Cell walls usually do not microbody enzymes and of plant storage proteins. occur in animal tissues. They are a high diffusion barrier for macromolecules (KNOX1982), although for immunocytochemical localization of micro­ tubules preembedding techniques have been success­ fully used after cell wall digestion (WICK et al. 1981). Plants contain a variety of substances, which nonspecifically bind to immunoglobulins. Most important among these substances are lectins and certain glycoconjugates (KNOX 1982). These substances might cause considerable nonspecific labeling and thus severe problems in immuno­ cytochemistry. This difficulty can be completely avoided by preincubations with preimmunserum followed by incubation of protein A not coupled to gold particles (SAUTTER1984). Additionally problems are caused by fat storing tissue and heat labile enzymes. Immuno­ cytochemistry of cryosections of fat storing tissue is difficult, because during warming up of Key words: Immunocytochemistry, plant enzymes, the section, the unfixed lipid begins to flow over transmission electron microscopy, low temperature the section surface. This lipid covers antigenic embedding, glyoxysomes, malate dehydrogenase. determinants as well as the ultrastructure. Heat labile enzymes on the other hand prevent embedding in conventional epoxy resins, which need high temperatures for polymerization. The present study demonstrates localization of a plant enzyme in watermelon cotyledons. In this study the mentioned problems are combined: cell walls are present and do not allow for antibody diffusion (SAUTTER and HOCK 1982); 215 C. Sautter storage proteins are accumulated in protein bodies membrane was a gift from Dr. M. Conder (Univer­ and exhibit significant nonspecific binding sites sity of Warwick, England). for antibodies; watermelon cotyledons contain a high amount of storage lipid within their cells; Crude Homogenate glyoxysomal malate dehydrogenase (gMDH) the Although 1% glutaraldehyde for l hour led to enzyme to be localized - is heat labile (WALKand good immunolocalization of microbody marker HOCK1977b); furthermore, the interesting question enzymes (SAUTTER1984), this fixation protocol was was the localization of the precursor of this not useful for the preservation of gMDH-antigens. enzyme, which occurs only in low amounts within Therefore a preembedding technique was used in the cell. order to evaluate a fixation protocol, which preserves enough gMDH-antigens for immunocyto­ Conventional histochemistry is not useful in chemical detection. 120 cotyledons from 3 day old localizing gMDH and pre-gMDH because isoenzymes dark grown watermelon seedlings were homogenized exist and because enzyme precursors may be as described earlier (HOCK 1973). The enzymatically inactive. Thus immunocytochemistry homogenization medium contained 0.25M sucrose, is the technique of choice. Monospecific 50mM HEPES, 0.1?! (w/v) BSA, lOmM KCl, lmM antibodies against gMDH are available. They are MgCl2 , lmM Na2 -EDTA, lOmMDTE at pH 7.5 also able to recognize the pre-gMDH (GIETL and (WALKand HOCK1977 b). HOCK 1982). In order to avoid excessive heat damage of the heat labile gMDH(WALK and HOCK1977 For immunolabeling 80µ1 of a crude organelle b) Lowicryl was used as the embedding medium for fraction (10,000g pellet) was fixed for 15min at electron microscopy which is a successful room temperature. The fixative was added to the technique in immunolabeling of animal tissues organelle suspension. The fixed organelles were (ROTH et al. 1981). This technique has been used washed in homogenization buffer for 30min, with successfully for localization of microbody marker several changes; then 20µ1 anti-gMDH-serum was enzymes in watermelon cotyledons (SAUTTER1984). added. For controls, the anti-enzyme-serum was replaced by preimmunserum. The serum was allowed Materials and Methods to precipitate for l hour at room temperature and subsequently, for 4 hours at 50 C. Unbound Plant Material antibodies were washed out with homogenization Watermelon seeds (Citrullus vulgaris Schrad., buffer, which was changed several times at the var. Stone Mountain, harvest 1979) were obtained beginning. The last washing step was overnight at from Vaughan's Seed Company (Ovid, Michigan, USA). s0 c. A postfixation with 1% glutaraldehyde for After removing the seedcoat, the seedlings were l hour was followed by washing, dehydration and germinated at 30°C in the dark under sterile embedding as described for tissue. Antibodies were conditions on 0.8% agar as described by HOCK labeled at the surface of ultrathin sections with (1969). the following protocol: PBST ( see below) 5min; incubation of goat anti-rabbit ferritin coupled Preparation of Protein A Gold Complex (pAg) serum (Paesel, Frankfurt, FRG) diluted 1:20 with Colloidal gold particles (average diameter of PBST for 1 hour at room temperature; washing with 15nm) were prepared according to 8ENDAYANet al. PBST (15min, two changes) was followed by a wash (1980). An excess of protein A was applied for with water and counterstaining with uranyl acetate coupling. The uncoupled protein A was removed from for 7min. Lead counterstaining was omitted in this the conjugate by centrifugation. case. the same immunostaining was done with pAg diluted 1:20 instead of the secondary ferritin Sera coupled antibody. Monospecific anti-gMDH-serum was produced according to the methods of WALKand HOCK(1977 Under these conditions, fixation in 2.0% a). Monospecificity was tested by diffusion tests, formaldehyde and 0.2% glutaraldehyde preserved immunoelectrophoresis and by precipitation from enough gMDH-antigens for immunocytochemistry. The radiolabeled homogenates followed by SDS-gel result is shown on figs. 1-4 and on table 1. electrophoresis and fluorography. Polyspecific serum against various proteins of the glyoxysomal Table 1: Labeling of gMDH in isolated glyoxysomes. Sera anti-gMDH -serum preimmunserum difference _1) s.e.m. 2) -1) s.e.m. 6x 3 ) s .e .rn. s4l Markers xl 1 x2 2 Ferri tin 187.2 ± 16.8 36.5 ± 3.2 150.7 ± 17.1 0. 001 pAg 19.9 ± 3.9 1.6 ± 0.2 18.3 + 3.9 0.001 2 1) mean from at least 20 organelle profiles in markers per JJ-m section area 2) standard error of the mean 3) ti.~=xl-.x2 4) significance of Ax 216 Plant Enzymes .9 ,~·· .. f' I > g ~ - (?.Sµm 0.5µ \ ' A -,;. Figures 1-4: Crude organelle fraction. Fig.l: Preembedding labeling by anti-gMDH-serum, Fig.3: Preembedding labeling by anti-gMDH-serum, visualization by postembedding ferritin coupled
Recommended publications
  • Characterization of the Gene for the Microbody (Glycosomal) Triosephosphate Isomerase of Trypanosoma Brucei
    The EMBO Journal vol.5 no.6 pp. 1291 -1298, 1986 Characterization of the gene for the microbody (glycosomal) triosephosphate isomerase of Trypanosoma brucei Bart W.Swinkels1, Wendy C.Gibson1, Klaas A.Osinga13, isomerase, EC 5.3.1.1) is particularly suitable for such com- Roel Kramer1, Gerrit H.Veeneman2, parative studies. The enzyme is well characterized (see Straus Jacques H.van Boom2 and Piet Borst1 et al., 1985); the amino acid sequence of TIMs from both 'Division of Molecular Biology, The Netherlands Cancer Institute, eukaryotic (Kolb et al., 1974; Corran and Waley, 1975; Alber Plesmanlaan 121, 1066 CX Amsterdam, and 20rganic Chemistry and Kawasaki, 1982; Maquat et al., 1985; Straus and Gilbert, Laboratory, State University Leiden, Gorlaeus Laboratory, PO Box 9502, 1985a) and prokaryotic (Artavanis-Tsakonas and Harris, 1980; 2300 RA Leiden, The Netherlands Pichersky et al., 1984) sources has been determined and high 3Present address: Research and Development, Gist-brocades NV, Postbus 1, resolution structures for the chicken (Banner et al., 1975) and 2600 MA Delft, The Netherlands yeast (Alber et al., 1981) proteins are available. This makes TIM Communicated by P.Borst suitable for deducing long-range evolutionary relationships. To determine how microbody enzymes enter microbodies, we TIM has previously been purified from Trypanosoma brucei are studying the genes for glycosomal (microbody) enzymes (Misset and Opperdoes, 1984) and crystals for X-ray diffraction in Trypanosoma brucei. Here we present our results for triose- have been obtained (Weirenga et al., 1984), allowing the elucida- phosphate isomerase (TIM), which is found exclusively in the tion of the 3-D structure of the enzyme.
    [Show full text]
  • Cell & Molecular Biology
    BSC ZO- 102 B. Sc. I YEAR CELL & MOLECULAR BIOLOGY DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY BSCZO-102 Cell and Molecular Biology DEPARTMENT OF ZOOLOGY SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY Phone No. 05946-261122, 261123 Toll free No. 18001804025 Fax No. 05946-264232, E. mail [email protected] htpp://uou.ac.in Board of Studies and Programme Coordinator Board of Studies Prof. B.D.Joshi Prof. H.C.S.Bisht Retd.Prof. Department of Zoology Department of Zoology DSB Campus, Kumaun University, Gurukul Kangri, University Nainital Haridwar Prof. H.C.Tiwari Dr.N.N.Pandey Retd. Prof. & Principal Senior Scientist, Department of Zoology, Directorate of Coldwater Fisheries MB Govt.PG College (ICAR) Haldwani Nainital. Bhimtal (Nainital). Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Programme Coordinator Dr. Shyam S.Kunjwal Department of Zoology School of Sciences, Uttarakhand Open University Haldwani, Nainital Unit writing and Editing Editor Writer Dr.(Ms) Meenu Vats Dr.Mamtesh Kumari , Professor & Head Associate. Professor Department of Zoology, Department of Zoology DAV College,Sector-10 Govt. PG College Chandigarh-160011 Uttarkashi (Uttarakhand) Dr.Sunil Bhandari Asstt. Professor. Department of Zoology BGR Campus Pauri, HNB (Central University) Garhwal. Course Title and Code : Cell and Molecular Biology (BSCZO 102) ISBN : 978-93-85740-54-1 Copyright : Uttarakhand Open University Edition : 2017 Published By : Uttarakhand Open University, Haldwani, Nainital- 263139 Contents Course 1: Cell and Molecular Biology Course code: BSCZO102 Credit: 3 Unit Block and Unit title Page number Number Block 1 Cell Biology or Cytology 1-128 1 Cell Type : History and origin.
    [Show full text]
  • Aconitase: to Be Or Not to Be Inside Plant Glyoxysomes, That Is the Question
    biology Review Aconitase: To Be or not to Be Inside Plant Glyoxysomes, That Is the Question Luigi De Bellis 1,* , Andrea Luvisi 1 and Amedeo Alpi 2 1 Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov. le Monteroni, I-73100 Lecce, Italy; [email protected] 2 Approaching Research Educational Activities (A.R.E.A.) Foundation, I-56126 Pisa, Italy; [email protected] * Correspondence: [email protected] Received: 10 June 2020; Accepted: 10 July 2020; Published: 12 July 2020 Abstract: After the discovery in 1967 of plant glyoxysomes, aconitase, one the five enzymes involved in the glyoxylate cycle, was thought to be present in the organelles, and although this was found not to be the case around 25 years ago, it is still suggested in some textbooks and recent scientific articles. Genetic research (including the study of mutants and transcriptomic analysis) is becoming increasingly important in plant biology, so metabolic pathways must be presented correctly to avoid misinterpretation and the dissemination of bad science. The focus of our study is therefore aconitase, from its first localization inside the glyoxysomes to its relocation. We also examine data concerning the role of the enzyme malate dehydrogenase in the glyoxylate cycle and data of the expression of aconitase genes in Arabidopsis and other selected higher plants. We then propose a new model concerning the interaction between glyoxysomes, mitochondria and cytosol in cotyledons or endosperm during the germination of oil-rich seeds. Keywords: aconitase; malate dehydrogenase; glyoxylate cycle; glyoxysomes; peroxisomes; β-oxidation; gluconeogenesis 1. Introduction Glyoxysomes are specialized types of plant peroxisomes containing glyoxylate cycle enzymes, which participate in the conversion of lipids to sugar during the early stages of germination in oilseeds.
    [Show full text]
  • Biol 1020: a Tour of the Cell
    Chapter 6: A Tour of the Cell Cell theory Cell organization and homeostasis Studying cells – microscopy and fractionation Eukaryotic vs. prokaryotic cells Compartments in eukaryotic cells (cell regions, organelles) Cytoskeleton Outside the cell . Chapter 6: A Tour of the Cell Cell theory Cell organization and homeostasis Studying cells – microscopy and fractionation Eukaryotic vs. prokaryotic cells Compartments in eukaryotic cells (cell regions, organelles) Cytoskeleton Outside the cell . • What are the main tenets of cell theory? • What are the major lines of evidence that all presently living cells have a common origin? . Cell theory All living organisms are composed of cells smallest “building blocks” of all multicellular organisms all cells are enclosed by a surface membrane that separates them from other cells and from their environment specialized structures with the cell are called organelles; many are membrane-bound . Cell theory Today, all new cells arise from existing cells All presently living cells have a common origin all cells have basic structural and molecular similarities all cells share similar energy conversion reactions all cells maintain and transfer genetic information in DNA the genetic code is essentially universal . • What are the main tenets of cell theory? • What are the major lines of evidence that all presently living cells have a common origin? . Chapter 6: A Tour of the Cell Cell theory Cell organization and homeostasis Studying cells – microscopy and fractionation Eukaryotic vs. prokaryotic cells Compartments in eukaryotic cells (cell regions, organelles) Cytoskeleton Outside the cell . • What is surface area to volume ratio, and why is it an important consideration for cells? • What (usually) happens to surface area to volume ratio as cells grow larger? .
    [Show full text]
  • Structure, Composition, Physical Properties, and Turnover of Proliferated Peroxisomes
    STRUCTURE, COMPOSITION, PHYSICAL PROPERTIES, AND TURNOVER OF PROLIFERATED PEROXISOMES A Study of the Trophic Effects of Su-13437 on Rat Liver FEDERICO LEIGHTON, LUCY COLOMA, and CECILIA KOENIG From the Departmento de Biologia Celular, Universidad Catblica de Chile, Santiago, Chile. Dr. Leighton's present address is the International Institute of Cellular and Molecular Pathology, B-1200 Brussels, Belgium. ABSTRACT Peroxisome proliferation has been induced with 2-methyl-2-(p-[l,2,3,4-tetrahy- dro- l-naphthyl]-phenoxy)-propionic acid (Su-13437). DNA, protein, cytochrome oxidase, glucose-6-phosphatase, and acid phosphatase concentrations remain al- most constant. Peroxisomal enzyme activities change to approximately 165%, 50% 30% and 0% of the controls for catalase, urate oxidase, L-a-hydroxy acid oxidase, and D-amino acid oxidase, respectively. For catalase the change results from a decrease in particle-bound activity and a fivefold increase in soluble activ- ity. The average diameter of peroxisome sections is 0.58 • 0.15 tzm in controls and 0.73 • 0.25 ~tm after treatment. Therefore, the measured peroxisomal en- zymes are highly diluted in proliferated particles. After tissue fractionation, approximately one-half of the normal peroxisomes and all proliferated peroxisomes show matric extraction with ghost formation, but no change in size. In homogenates submitted to mechanical stress, proliferated peroxisomes do not reveal increased fragility; unexpectedly, Su-13437 stabilizes lysosomes. Our results suggest that matrix extraction and increased soluble en- zyme activities result from transmembrane passage of peroxisomal proteins. The changes in concentration of peroxisomal oxidases and soluble catalase after Su-13437 allow the calculation of their half-lives.
    [Show full text]
  • Downloads/Cobratoolbox
    UC San Diego UC San Diego Electronic Theses and Dissertations Title A stoichiometric model of Escherichia coli 's macromolecular synthesis machinery and its integration with metabolism Permalink https://escholarship.org/uc/item/1z9752m7 Author Thiele, Ines Publication Date 2009 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO A stoichiometric model of Escherichia coli's macromolecular synthesis machinery and its integration with metabolism. A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics by Ines Thiele Committee in charge: Professor Bernhard Ø. Palsson, Chair Professor Steven P. Briggs, Co-Chair Professor Alexander Hoffmann Professor Milton H. Saier Professor Julian I. Schroeder 2009 Copyright Ines Thiele, 2009 All rights reserved. The dissertation of Ines Thiele is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2009 iii DEDICATION To Renate, Steffen, Dana, and Ronan. iv TABLE OF CONTENTS Signature Page . iii Dedication . iv Table of Contents . v List of Figures . viii List of Tables . x Acknowledgements . xi Vita and Publications . xiii Abstract of the Dissertation . xv Chapter 1 Introduction to molecular systems biology . 1 1.1 Constraint-based reconstruction and analysis . 2 1.2 Basic principles underlying the constraint-ba-sed reconstruction & analysis approach . 4 1.3 Reconstruction of metabolic networks in a nutshell . 6 1.4 Mathematical characterization of network capabilities . 8 1.5 Tools for analyzing network states. 9 1.6 Preview of the dissertation . 11 Chapter 2 Escherichia coli ..............................
    [Show full text]
  • Unit of Life ] Illustrated 1
    NEET II AIIMS [UNIT OF LIFE ] ILLUSTRATED 1 UNIT III CELL : STRUCTURE AND FUNCTIONS 123-172 Chapter 8 : Cell : The Unit of Life Topic: • 8.1 What is a Cell? • Cell is the fundamental structural and functional unit of all living organisms. • Anything less than a complete structure of a cell does not ensure independent living. Like – virus • Anton Von Leeuwenhoek first saw and described a live cell. • The cell was first discovered and named by Robert Hooke in 1665. [ It looked strangely similar to cellula or small rooms which monks inhabited, thus deriving the name] • Micrographia – book written by Robert Hooke • Robert Brown discovered the nucleus. • C. Benda discovers mitochondria • G.N. RAMACHANDRAN discover of the triple helical structure of collagen • 8.2 Cell Theory o Proposer- . Matthias Schleiden, a German Botanist . Theodore Schwann, a British Zoologist . Rudolf Virchow [modifier] o Theory – . all living organisms are composed of cells and products of cells. All individual cell can perform its activity alone but they doesn’t do so, rather acts as a tissue or organ . all cells arise from pre-existing cells. o Indirect meaning – . Cell is a structural & functional unit of organism • 8.3 An Overview of Cell o Mycoplasmas, the smallest cells [0.3 μm] o Other common bacteria [3 to 5 μm] o largest isolated single cell is the egg of an ostrich o human red blood cells are about 7.0 μm in diameter o Nerve cells are some of the longest cells • Concept of o Protoplasm – organized living part of the cell surrounded by the cell membrane • Protoplasm = Animal cell – [Cell membrane + non living substance (Metaplastic body / argastic substance] o Protoplast – Organized part of the cell excluding cell wall.
    [Show full text]
  • 93Fb2b03416a8e67e3657c54d1
    Investigation of the Glyoxysome-Peroxisome Transition in Germinating Cucumber Cotyledons Using Double-label Immunoelectron Microscopy DAVID E. TITUS and WAYNE M. BECKER Department of Botany, University of Wisconsin, Madison, Wisconsin 53706. Dr. Titus' present address is Department of Tropical Public Health, Harvard School of Public Health, Boston, Massachusetts 02115. Downloaded from ABSTRACT Microbodies in the cotyledons of cucumber seedlings perform two successive metabolic functions during early postgerminative development. During the first 4 or 5 d, glyoxylate cycle enzymes accumulate in microbodies called glyoxysomes. Beginning at about day 3, light-induced activities of enzymes involved in photorespiratory glycolate metabolism accumulate rapidly in microbodies. As the cotyledonary microbodies undergo a functional jcb.rupress.org transition from glyoxysomal to peroxisomal metabolism, both sets of enzymes are present at the same time, either within two distinct populations of microbodies with different functions or within a single population of microbodies with a dual function. We have used protein A-gold immunoelectron microscopy to detect two glyoxylate cycle enzymes, isocitrate lyase (ICL) and malate synthase, and two glycolate pathway enzymes, on August 16, 2017 serine:glyoxylate aminotransferase (SGAT) and hydroxypyruvate reductase, in microbodies of transition-stage (day 4) cotyledons. Double-label immunoelectron microscopy was used to demonstrate directly the co-existence of ICL and SGAT within individual microbodies, thereby
    [Show full text]
  • Peroxisome Diversity and Evolution
    Downloaded from rstb.royalsocietypublishing.org on January 3, 2011 Peroxisome diversity and evolution Toni Gabaldón Phil. Trans. R. Soc. B 2010 365, 765-773 doi: 10.1098/rstb.2009.0240 References This article cites 63 articles, 20 of which can be accessed free http://rstb.royalsocietypublishing.org/content/365/1541/765.full.html#ref-list-1 Rapid response Respond to this article http://rstb.royalsocietypublishing.org/letters/submit/royptb;365/1541/765 Subject collections Articles on similar topics can be found in the following collections cellular biology (98 articles) evolution (2302 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Phil. Trans. R. Soc. B go to: http://rstb.royalsocietypublishing.org/subscriptions This journal is © 2010 The Royal Society Downloaded from rstb.royalsocietypublishing.org on January 3, 2011 Phil. Trans. R. Soc. B (2010) 365, 765–773 doi:10.1098/rstb.2009.0240 Review Peroxisome diversity and evolution Toni Gabaldo´n* Centre for Genomic Regulation (CRG), Dr Aiguader, 88 08003 Barcelona, Spain Peroxisomes are organelles bounded by a single membrane that can be found in all major groups of eukaryotes. A single evolutionary origin of this cellular compartment is supported by the presence, in diverse organisms, of a common set of proteins implicated in peroxisome biogenesis and maintenance. Their enzymatic content, however, can vary substantially across species, indicating a high level of evol- utionary plasticity. Proteomic analyses have greatly expanded our knowledge on peroxisomes in some model organisms, including plants, mammals and yeasts.
    [Show full text]
  • Structural and Functional Characterization of Rubisco
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig–Maximilians–Universität München Structural and functional characterization of Rubisco assembly chaperones Thomas Hauser aus Tübingen, Deutschland 2016 Erklärung Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. F. Ulrich Hartl betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, 03.02.2016 _______________________ Thomas Hauser Dissertation eingereicht am: 25.02.2016 1. Gutachter: Prof. Dr. F. Ulrich Hartl 2. Gutachter: Prof. Dr. Jörg Nickelsen Mündliche Prüfung am 28.04.2016 Acknowledgements Acknowledgements First of all, I am very thankful to Prof. Dr. F. Ulrich Hartl and Dr. Manajit Hayer-Hartl for giving me the opportunity to conduct my PhD in their department at the Max Planck Institute of Biochemistry. This work has benefited greatly from their scientific expertise and experience together with their intellectual ability to tackle fundamental scientific questions comprehensively. Their way of approaching complex projects has shaped my idea on how to perform science. I am very greatful to Dr. Andreas Bracher for giving crucial input and collaborating on many aspects on my work conducted in the department. His extensive crystallographic expertise was of great importance during my time as a PhD student. Furthermore, I want to thank Oliver Müller-Cajar for introducing me into the field of Rubisco and supporting me with help and suggestions in the beginning of my PhD. His enthusiasm about conducting science was of great importance to me and influenced my motivation to work and live science on a day- by-day lab basis enormously.
    [Show full text]
  • Sample Questions BSC1010C Chapters 5-7 1. Which Type of Lipid
    Sample Questions BSC1010C Chapters 5-7 1. Which type of lipid is most important in biological membranes? a. oils b. fats c. wax d. phospholipids e. triglycerides 2. Which type of interaction stabilizes the alpha helix structure of proteins? a. hydrogen bonds b. nonpolar covalent bonds c. hydrophobic interactions d. ionic interactions e. polar covalent bonds 3. Which of the following statements best summarizes structural differences between DNA and RNA? a. DNA has different bases from RNA. b. RNA is a protein, while DNA is a nucleic acid. c. RNA is a double helix, but DNA is not. d. DNA is not a polymer, but RNA is. e. DNA contains a different sugar from RNA. 4. Hydrolysis is involved in which of the following? a. the digestion of polysaccharides to glucose b. synthesis of starch c. peptide bonding in proteins d. hydrogen bond formation between nucleic acids e. the hydrophylic interactions of lipids 5. What maintains the secondary structure of a protein? a. electrostatic charges b. ionic bonds c. hydrogen bonds d. disulfide bridges e. peptide bonds Figure 5.5 6. The chemical reactions illustrated in Figure 5.5 result in the formation of a. peptide bonds. b. ionic bonds. c. glycosidic bonds. d. hydrogen bonds. e. an isotope. 7. Which of the following is TRUE concerning saturated fatty acids? a. All of the below are true. b. They are usually liquid at room temperature. c. They have double bonds between the carbon atoms of the fatty acids. d. They have a higher ratio of hydrogen to carbon than unsaturated fatty acids.
    [Show full text]
  • Establishment of a Fungal Model System for the Study of Ciliation
    ESTABLISHMENT OF A FUNGAL MODEL SYSTEM FOR THE STUDY OF CILIATION Linnea Tracy June 2015 ESTABLISHMENT OF A FUNGAL MODEL SYSTEM FOR THE STUDY OF CILIATION An Honors Thesis Submitted to the Department of Biology in partial fulfillment of the Honors Program STANFORD UNIVERSITY by Linnea Tracy June 2015 2 Acknowledgements A simple thank-you seems inadequate for all those who have offered their time, expertise, support, and supplies towards my project and education that is culminating in this thesis. Nevertheless, thank you to Tim Stearns, whose kindness, brilliance, and natural knack for teaching was an inspiration to me as a student, was motivation to me as a researcher, and was a great honor to get to know and work closely with over the last two years. Thank you for your time and dedication devoted to my, my peers’, and the world’s education. A special thank you to Erin Turk, who took me under her wing, learning about chytrids in order to teach and assist me, all the while completing her own graduate dissertation. You are one of the most motivated, prepared, and lovely people I have met at Stanford. Thank you for your guidance, mentorship, and always responding to my text messages. Thank you to the members of the Stearns lab, who guided me from learning the basics of the laboratory through experimental design and science writing. It has been, and continues to be, a great pleasure to have a lab family that is so intelligent and kind. I would be remiss to not also thank my parents and friends, who have loyally allowed me to discuss cilia and worry over my experiments with them, sometimes at the expense of our social life.
    [Show full text]