Direct Cyanation, Hydrocyanation, Dicyanation And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanistic Insights Into the Hydrocyanation Reaction
Mechanistic insights into the hydrocyanation reaction Citation for published version (APA): Bini, L. (2009). Mechanistic insights into the hydrocyanation reaction. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR644067 DOI: 10.6100/IR644067 Document status and date: Published: 01/01/2009 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
Synthesis of 1,2,4 Oxadiazol-5-Imine, 1,2,4-Triazol-3-Imine and Derivatives: a Substituted Cyanamide-Based Strategy for Heterocycle Synthesis
Synthesis of 1,2,4 oxadiazol-5-imine, 1,2,4-triazol-3-imine and derivatives: A Substituted Cyanamide-based Strategy for Heterocycle Synthesis Shreesha V. Bhat A thesis submitted in partial fulfilment of the requirements of the University of Lincoln for the degree of Doctor of Philosophy June 2017 Statement of Originality “I, Shreesha V. Bhat, hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been published or accepted for the award of any other degree or diploma at University of Lincoln or any other educational institution, except where references have been made in the thesis. Any contribution made to the research by others, with whom I have worked at the University of Lincoln or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.” (Shreesha V. Bhat) ii | P a g e Abstract Considering the importance of nitrogen-rich heterocycles in drug discovery, a novel strategy towards heterocycle synthesis was envisioned using cyanamide chemistry. Synthesis which involve mild conditions, avoids multi-step sequence and non-toxic reagents are desirable for generation of large combinatorial libraries of drug molecules. We envisaged that the NCN linkage of the cyanamide as well as the concomitant use of the nucleo-and electrophilic centres of the cyanamide could provide a novel synthetic route towards nitrogen heterocycles. -
CO2-Enabled Cyanohydrin Synthesis and Facile Homologation Reactions Martin Juhl†, Allan R
CO2-Enabled Cyanohydrin Synthesis and Facile Homologation Reactions Martin Juhl†, Allan R. Petersen†, Ji-Woong Lee*,† †Department of Chemistry, Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100, Denmark KEYWORDS: Carbon Dioxide, Cyanohydrin, Xanthate, Homologation ABSTRACT: Thermodynamic and kinetic control of a chemical process is the key to access desired products and states. Changes are made when desired product is not accessible; one may manipulate the reaction with additional reagents, catalysts and/or protect- ing groups. Here we report the use of carbon dioxide to direct reaction pathways in order to selectively afford desired products in high reaction rates while avoiding the formation of byproducts. The utility of CO2-mediated selective cyanohydrin synthesis was further showcased by broadening Kiliani-Fischer synthesis to offer an easy access to variety of polyols, cyanohydrins, linear al- kylnitriles, by simply starting from alkyl- and arylaldehydes, KCN and atmospheric pressure of CO2. 9 A chemical reaction is governed by kinetics and ther- investigated the role of CO2 in a cyanation reaction, where CO2 modynamics, and a simultaneous control of both parameters is can be used in catalytic amounts to facilitate the stereoselective a common practice in designing and optimizing chemical reac- transformation of activated electrophiles via 1,4-conjugate ad- tions. The manipulation of thermodynamic stability of reactants dition reactions. Cyanohydrin synthesis - 1,2-cyanide addition and products -
Uva-DARE (Digital Academic Repository)
UvA-DARE (Digital Academic Repository) Stereoge Phosphorus Containing Phosphine-Phosphite Ligands in Asymmetric Catalysis. Deerenberg, S. Publication date 2000 Link to publication Citation for published version (APA): Deerenberg, S. (2000). Stereoge Phosphorus Containing Phosphine-Phosphite Ligands in Asymmetric Catalysis. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 Chapterr 5 Nickell Phosphine-Phosphite Complexes as Catalysts in the Hydrocyanationn of Styrene Sinkk Deerenberg, Alison C. Hewat, Dieter Vogt, Paul C. J. Kamer, Piett W. N. M. van Leeuwen Abstract t Thee asymmetric hydrocyanation of styrene, catalyzed by chiral nickel phosphine- phosphitee complexes, gives the branched product nitrile in up to 34 % enantiomeric excess. Intermediatess in the catalytic cycle have been detected by 3,P{IH} NMR, including Ni(Pi- P2)(cod)) (A) and Ni(Pi-P2)(styrene) (B) (P1-P2 = ligands 1-5; cod = 1,5-cyclooctadiene). -
Transition Metal Complexes of a Novel Tetradentate Phosphine and of a New Diphosphine Ether Mark R
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1991 Transition metal complexes of a novel tetradentate phosphine and of a new diphosphine ether Mark R. Mason Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Mason, Mark R., "Transition metal complexes of a novel tetradentate phosphine and of a new diphosphine ether " (1991). Retrospective Theses and Dissertations. 9554. https://lib.dr.iastate.edu/rtd/9554 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfîlm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from ary type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Downloaded 9/24/2021 4:45:01 AM
ORGANIC CHEMISTRY FRONTIERS View Article Online REVIEW View Journal | View Issue Recent developments in dehydration of primary amides to nitriles Cite this: Org. Chem. Front., 2020, 7, 3792 Muthupandian Ganesan *a and Paramathevar Nagaraaj *b Dehydration of amides is an efficient, clean and fundamental route for the syntheses of nitriles in organic chemistry. The two imperative functional groups viz., amide and nitrile groups have been extensively dis- cussed in the literature. However the recent development in the century-old dehydration method for the conversion of amides to nitriles has hardly been reported in one place, except a lone review article which dealt with only metal catalysed conversions. The present review provides broad and rapid information on the different methods available for the nitrile synthesis through dehydration of amides. The review article Received 15th July 2020, has major focus on (i) non-catalyzed dehydrations using chemical reagents, and (ii) catalyzed dehy- Accepted 19th September 2020 drations of amides using transition metal, non-transition metal, organo- and photo-catalysts to form the DOI: 10.1039/d0qo00843e corresponding nitriles. Also, catalyzed dehydrations in the presence of acetonitrile and silyl compounds as rsc.li/frontiers-organic dehydrating agents are highlighted. 1. Introduction polymers, materials, etc.1 Examples of pharmaceuticals contain- ing nitrile groups include vildagliptin, an anti-diabetic drug2 Nitriles are naturally found in various bacteria, fungi, plants and anastrazole, a drug -
Dual Electrocatalysis Enables Enantioselective Hydrocyanation of Conjugated Alkenes Lu Song1, Niankai Fu1, Brian G
Dual Electrocatalysis Enables Enantioselective Hydrocyanation of Conjugated Alkenes Lu Song1, Niankai Fu1, Brian G. Ernst1, Wai Hang Lee1, Michael O. Frederick2, Robert A. DiStasio Jr.1*, Song Lin1* 1Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA 2Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN 46285, USA *Correspondence to: [email protected], [email protected] Abstract: Chiral nitriles and their derivatives are prevalent in pharmaceuticals and bioactive compounds. Enantioselective alkene hydrocyanation represents a convenient and efficient approach for synthesizing these molecules. However, a generally applicable method featuring a broad substrate scope and high functional group tolerance remains elusive. Here, We address this long-standing synthetic problem using an electrocatalytic strategy. Electrochemistry allows for the seamless combination of tWo classic radical reactions—cobalt-mediated hydrogen-atom transfer and copper-promoted radical cyanation—to accomplish highly enantioselective hydrocyanation Without the need for stoichiometric oxidant. We harness electrochemistry’s unique feature of precise potential control to optimize the chemoselectivity of challenging substrates. Computational analysis sheds light on the origin of enantioinduction, for Which the chiral catalyst imparts a combination of attractive and repulsive non-covalent interactions that direct the enantio- determining C–CN bond formation. This discovery demonstrates the power of electrochemistry -
The Nickel-Catalyzed Hydrocyanation of Vinylarenes and Dienes : Mechanism and Appplication
The nickel-catalyzed hydrocyanation of vinylarenes and dienes : mechanism and appplication Citation for published version (APA): Wilting, J. B. M. (2006). The nickel-catalyzed hydrocyanation of vinylarenes and dienes : mechanism and appplication. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR615078 DOI: 10.6100/IR615078 Document status and date: Published: 01/01/2006 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
Stereoselective Synthesis 1 : Stereoselective Reactions of Carbon—Carbon Double Bonds
XXI Stereoselective Synthesis 1 : Stereoselective Reactions of Carbon—Carbon Double Bonds Preface V Volume Editors' Preface VII Abstracts XI Table of Contents XXIII Introduction J.G.deVries 1 1.1 Dihydroxylation, Aminohydroxylation, Diamination, and Dibromination of Carbon—Carbon Double Bonds K. Muniz 5 1.2 Epoxidation of Carbon—Carbon Double Bonds K. Matsumoto, T. Katsuki, and I. W. C. E. Arends 69 1.3 Epoxidation of Enones by Nucleophilic Oxidation S. Colonna and D. Perdicchia 123 1.4 Aziridination H. Muchalski and J. N. Johnston 155 1.5 Hydrogénation of Carbon—Carbon Double Bonds D. Ager 185 1.6 Hydrogénation of Arènes and Hetarenes S.-M. Lu and Y.-G. Zhou • 257 1.7 Stereoselective Hydroboration and Diboration of Carbon—Carbon Double Bonds J. M. Brown and B. N. Nguyen 295 1.8 Carbometalation of Carbon—Carbon Double Bonds I. Marek and A. Basheer 325 1.9 Hydroformylation, Hydrocarbonylation, Hydrocyanation, and Hydroacylation of Carbon—Carbon Double Bonds P. W. N. M. van Leeuwen 409 1.10 Hydrovinylation and Hydroarylation of Carbon—Carbon Double Bonds G. Franciô, W. Leitner. and P. L. Alsters 477 Bibliografische Informationen digitalisiert durch http://d-nb.info/1012350487 XXII Overview 1.11 Reductive Coupling and Cyclization of Carbon—Carbon Multiple Bonds K. D. Schleicher and T. F. Jamison 521 1.12 Conjugate Addition Reactions B. N. Nguyen, K. K. Hii, W. Szymanski, and D. B. Janssen 571 1.13 Hydroamination, Hydrophosphination, Hydrophosphinylation, and Hydrophosphonylation of Carbon—Carbon Double Bonds A. L. Reznichenko and K. C. Hultzsch 689 1.14 Cyclopropanation Reactions M.-N. Roy, V. N. -
Asymmetric Hydrocyanation of Olefins Catalyzed by Chiral Diphosphite
http://www.paper.edu.cn Tetrahedron: Asymmetry 11 (2000) 845–849 Asymmetric hydrocyanation of olefins catalyzed by chiral diphosphite–nickel complexes Ming Yan, Qian-Yong Xu and Albert S. C. Chan ∗ Open Laboratory of Chirotechnology and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China Received 25 October 1999; accepted 5 January 2000 Abstract Chiral aryl diphosphite ligands derived from binaphthol were found to be effective in the nickel-catalyzed hydrocyanation of a variety of olefins. Enantioselective hydrocyanations of styrene, 4-substituted styrenes and norbornene were achieved with excellent regioselectivity and moderate enantioselectivity. The hydrocyanation of vinyl acetate gave 72.9% ee. The catalytic activity and the enantioselectivity of the Ni(0)–diphosphite complexes were found to be highly dependent on the structures of the ligands. © 2000 Published by Elsevier Science Ltd. All rights reserved. 1. Introduction Catalytic asymmetric carbon–carbon bond formation is of fundamental importance in organic synthe- sis. The asymmetric hydrocyanation of olefins catalyzed by transition metal complexes containing chiral phosphorus ligands provides a useful method for the preparation of optically active nitriles which can be easily converted to other useful compounds.1 In spite of DuPont’s successful industrial hydrocyanation process for the preparation of adiponitrile, research on asymmetric hydrocyanation is surprisingly rare.2 Ni(0) and Pd(0) complexes of chiral diphosphite -
1 Phosphines and Related Tervalent Phosphorus Systems
1 1 Phosphines and Related Tervalent Phosphorus Systems Organophosphorus Compounds as Ligands in Organometallic Catalysis Piet W. N. M. van Leeuwen LPCNO, INSA-Toulouse, 135 Av. de Rangueil, 31077 Toulouse, France 1.1 Introduction 1.1.1 History Phosphines and related phosphorus-containing molecules play a major role in homogeneous catalysis. The history of homogeneous metal complex catalysis, as we know it today, started in the 1960s, although there had been even industrial applications long before that. In the 1920s, a catalytic process was used for the addition of water to acetylene. The metal mercury was used in a sulfuric acid solu- tion. The reaction was very slow and large volumes were needed; thus, this was far from attractive. A related process still in operation is the zinc-salt-catalyzed addi- tion of carboxylic acids to acetylene. With the introduction of petrochemistry, the feedstock for acetaldehyde production changed to ethene. The reaction used until today is a stoichiometric oxidation of ethene by palladium, the so-called Wacker process, in which palladium is reoxidized with oxygen and a copper catalyst. Car- bonylation catalysis came on stream in the 1930s and 1940s, although its appli- cation was retarded by World War II (WWII). Initially, the metals of choice were nickel, e.g. work by Reppe, and cobalt, especially hydroformylation by Roelen, and methanol carbonylation. Probably, Reppe (1948) was the first to use triph- enylphosphine as a modifying ligand in a catalytic reaction, which concerned the addition of nickel-cyanide-catalyzed carbonylative alcohol addition to alkynes, leading to acrylates [1]. He used nickel cyanide also in the synthesis of polyketone from carbon monoxide and ethene in those early years. -
United States Patent Office Patented Nov
3,773,809 United States Patent Office Patented Nov. 20, 1973 2 mononitrile to organic dinitrile contained therein is less 3,773,809 than about 0.65 and preferably about 0.3 in order that SEPARATION OF ORGANIC PHOSPHORUS COM there is formed with the hydrocarbon solvent a multi POUNDS AND THER META, COMPLEXES FROM ORGANC NTRLES IN THE HYDRO phase mixture on which this method of separation de CYANATON OF OLEFNS pends. One method for effecting this is to control the Jack William Walter, Wilmington, Del, assignor to E. level of hydrocyanation of the mononitrile. For instance, du Pont de Nemours and Company, Wilmington, Del. to achieve a mole ratio of mononitrile to dinitrile less No Drawing. Continuation-in-part of abandoned applica than about 0.65, a degree of conversion of at least about tion Ser. No. 86,587, Nov. 3, 1970. This application 60 percent would be maintained. In some instances it may June 28, 1972, Ser. No. 267,106 be desirable to conduct the hydrocyanation at a lower level int. C. C07c 121/04 O of conversion of the organic mononitrile in which case U.S. C. 260-465.8 R 13 Claims the required mole ratio of mononitrile to dinitrile in the product fluid can be effected by removing mononitrile, for example, by flash distillation. Another approach for ABSTRACT OF THE DISCLOSURE achieving the required mononitrile/dinitrile ratio is to A process for separating an organic phosphorus com 5 introduce added quantities of the dinitrile until the re pound such as a phosphite or phosphonite or a zerovalent quired ratio is reached.