CO2-Enabled Cyanohydrin Synthesis and Facile Homologation Reactions Martin Juhl†, Allan R

Total Page:16

File Type:pdf, Size:1020Kb

CO2-Enabled Cyanohydrin Synthesis and Facile Homologation Reactions Martin Juhl†, Allan R CO2-Enabled Cyanohydrin Synthesis and Facile Homologation Reactions Martin Juhl†, Allan R. Petersen†, Ji-Woong Lee*,† †Department of Chemistry, Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, 2100, Denmark KEYWORDS: Carbon Dioxide, Cyanohydrin, Xanthate, Homologation ABSTRACT: Thermodynamic and kinetic control of a chemical process is the key to access desired products and states. Changes are made when desired product is not accessible; one may manipulate the reaction with additional reagents, catalysts and/or protect- ing groups. Here we report the use of carbon dioxide to direct reaction pathways in order to selectively afford desired products in high reaction rates while avoiding the formation of byproducts. The utility of CO2-mediated selective cyanohydrin synthesis was further showcased by broadening Kiliani-Fischer synthesis to offer an easy access to variety of polyols, cyanohydrins, linear al- kylnitriles, by simply starting from alkyl- and arylaldehydes, KCN and atmospheric pressure of CO2. 9 A chemical reaction is governed by kinetics and ther- investigated the role of CO2 in a cyanation reaction, where CO2 modynamics, and a simultaneous control of both parameters is can be used in catalytic amounts to facilitate the stereoselective a common practice in designing and optimizing chemical reac- transformation of activated electrophiles via 1,4-conjugate ad- tions. The manipulation of thermodynamic stability of reactants dition reactions. Cyanohydrin synthesis - 1,2-cyanide addition and products will decide the outcome of a chemical process, reactions to carbonyls - is one of the oldest C-C bond-forming while various reaction pathways can lead to undesired products reactions, reported in 1832 by Winkler using HCN as a cyanide thus reducing overall efficiency of the process.1 To circumvent source.10 Despite the high utility of cyanohydrins in organic unwanted reaction pathways, chemists have developed selec- synthesis11-14 the use of HCN may reduce its application poten- tive catalysis, protecting groups (P in Figure 1), trapping rea- tial due to its volatile nature and health risks. Recent activities gents and reactivity-altered reactants (A’ and B’), which in turn in cyanohydrin synthesis are mainly performed by using can limit the scope and generality of the original reaction. In our TMSCN15 and cyanoformate16 as an HCN surrogate.11,12,17 ongoing pursuit to implement CO2 in the core of organic syn- These reagents suffer from poor atom economy when un-pro- thesis, we sought out ways in which equilibria can be controlled tected cyanohydrins are desired. Furthermore, the cyanation re- by the presence and the absence of CO2 – a mild Lewis and po- actions with in-situ generated HCN (from mixture of TMSCN tentially Brønsted acid. Here we demonstrate our strategy by and an alcohol) are limited by the instability of the cyanide accelerating an organic reaction; nucleophilic 1,2-addition of a sources thereby limiting the solvent compatibility. 11,18 carbon nucleophile to carbonyl compounds, namely cyanohy- drin formation reaction promoted by CO2. Facile homologation It has been a common knowledge that cyanohydrin formation of aldehydes with cyanide was realized expanding the scope be- can not be “catalyzed” due to the high nucleophilicity of cya- yond Killiani-Fischer synthesis, under practical reaction condi- nides although the reaction undergoes strong backward reaction -8 -1 -1 -10 -1 tions, accessing variety of compounds in a modular fashion. (kforward = 1.96 x 10 sec M , kbackward = = 0.87 x 10 sec , in RCHO +HCN ó RC(OH)CN).19 Whilst Brønsted acids can generate volatile yet nucleophilic HCN from solid cyanide sources (NaCN or KCN), general and specific acid catalysis can only be operative at exceedingly low concentration of an acid catalyst.20 This has been manifested in total synthesis, which O RCHO R O OK OH R KCN OK Figure 1. A comparison of traditional reaction optimization and our R H R CN R CN O CO CO2-approach. (P = catalysts, protecting groups or trapping reagents) CO2 2 + R CO H then H3O OH HO R 2 2-3 OH R' Carbon dioxide is intrinsically stable molecule, however, it H O O2 O 2,4 R' can readily and reversibility react with various nucleophiles. R CN R OH Recent applications of carbon dioxide in organic synthesis no HCN generation potential by products from benzoin reaction 5 carboxylation, oxidation, aldol reaction and condensation showed fruitful success particularly in CO2-incorporation, CO2 higher reaction rate 6 as a temporal protecting group for C-H activation, CO2 for Scheme 1. Cyanohydrin synthesis enabled by CO2/KCN and side reac- asymmetric catalysis7 and oxidation reactions8. We recently tion pathways. requires sophisticated cyanide sources and reagents. For exam- ple, high selectivity towards cyanohydrin formation was real- ized assisted by an activating reagent, i.e. Al-based cyanide 21,22 sources (AlEt2CN, Nagata’s reagent). Entry Deviation from standard reaction conditions Yieldb At this juncture, the lack of a general and practical method for cyanohydrin formation reaction under neutral conditions led us 1 None 99% (97%)c to investigate the potential utility of CO2 in cyanohydrin syn- 2 No CO2 (under N2) 7% thesis with alkaline metal cyanides. Under mild conditions, CO2 can generate slightly acidic medium thus enabling catalysis, 3 HCN (2 equiv) instead of KCN 21% while exhibiting Lewis acidic character at the central carbon for trapping and stabilizing anionic species. However, another 4 30 min of reaction time 91% challenge lays on the side reactions: benzoin- and self-aldol re- actions from KCN and aldehydes, generating numerous byprod- 5 H2O as a solvent 95% ucts (Scheme 1). Based on our previous work, we sought that 6 n-heptane as a solvent 87% the use of CO2 in principle provide a practical method by min- imzing side products, while overcoming the limit of Kiliani- 7 toluene as a solvent 9% Fischer synthesis beyond carbohydrate modification via selec- tive cyanohydrin synthesis.23 8 DCM as a solvent 22% We have recently shown the applicability cyanohydrins as a nu- 9 DCM as a solvent + DBU (1 eq) 97% cleophile via an umpolung strategy (Scheme 1, a-keto acid syn- 11 NaCN, 30 min 57% thesis).24 In the absence of Ti(IV) and DBU, we observed facile formation of cyanohydrin in pseudo first order of the aldehyde 12 NEt4CN, 30 min 97% with KCN under CO2 atmosphere (1 atm) in ethanol (k = 2.50 x 10-3). This is approximately 105-folds rate acceleration com- 13 NEt4CN, 30 min, under N2 33% pared to the reported values,19 which is surprising considering 14 aq. 5M HCl (4 eq.) instead of CO2 24% that the reaction requires the solubilization of KCN in the or- ganic solvent. We verified that the solubility of KCN was in- 15 AcOH (4 eq.) instead of CO2 95% creased in the presence of CO2 (Figure S6), which can be as- cribed to the formation of cyanoformate in solution liberating a4-fluorobenzaldehyde (1 mmol) and KCN (2 mmol) were mixed solubilized cyanide nucleophiles.25 Therefore, we performed in EtOH (2 mL). The reaction mixture was stirred under CO2 (1 various control experiments as summarized in Table 1. Under atm) for 18 h. bYield was determined by 19F nuclear magnetic res- onance spectroscopy (NMR) (D1; relaxation time = 2 s) of the CO2 atmosphere (1 atm), full conversion of the starting material c (1a) was observed to the desired cyanohydrin affording quanti- crude mixture. Isolated yield. tative isolated yield (99% conversion, 97% yield). When per- forming the cyanation under a N2 atmosphere, low conversion to cyanohydrin (7%) was detected within 10 min with no in- crease in yield of the product after prolonged reaction time (up to 18 h), indicating the reaction reached fast equilibrium in fa- vor of starting materials. More importantly, in situ generated HCN gave inferior result, (entry 3, 21% yield), while quantita- tive yield was obtained with KCN/CO2 combination within 30 minutes (entry 4, 91%). Variety of solvents were found to be compatible to induce desired product (i.e. ethanol, heptane, ac- etonitrile and water, see supporting information for full optimi- zation, Table S1-13) showing the generality of the use of CO2 to accelerate cyanohydrin synthesis. The solubility of cyanide is important – a soluble cyanide source, ammonium cyanide, showed good conversion to the product however, the reaction was not efficient under inert N2 atmosphere (entries 12 and 13). Therefore, we concluded that CO2 is not innocent in this reac- tion, and it was evident that the reaction can be promoted by Figure 2. Cyanohydrin formation using stoichiometric amounts of carbon dioxide whereas a strong acid (e.g. HCl) afforded only CO . After 10 min was added CO (20 mol%) every 20 min. Cross low yield of the product since HCN (a “slower” nucleophile) 2 2 (X) marks the addition of catalytic amounts of CO2 (20 mol%). generation is favored (entry 14). The use of acetic acid26 showed compatible result (entry 15) confirming that weak acid can in- The role of CO2 in the cyanohydrin synthesis was further veri- deed catalyze the reaction, by prohibiting the complete proto- fied by adding catalytic amounts of CO2 (20 mol%) to a reaction nation of KCN. mixture repeatedly (Figure 2). A sharp increase of product for- mation was immediately observed followed by the addition of Table 1. Optimizing CO2 Mediated Cyanation CO2. A near stoichiometric relationship between product for- mation and the amounts of added CO2 indicates the added CO2 was quantitatively consumed as a stoichiometric reagent. Having demonstrated the feasibility of the CO2 promoted cya- nohydrin formation, we explored the scope of the reaction with respect to both aryl and alkyl aldehydes and ketones (Scheme 2). A variety of aryl aldehydes was tested and provided the cor- responding cyanohydrin in excellent yields regardless their sub- stitution in terms of electron donating and withdrawing proper- ties.
Recommended publications
  • Mechanistic Insights Into the Hydrocyanation Reaction
    Mechanistic insights into the hydrocyanation reaction Citation for published version (APA): Bini, L. (2009). Mechanistic insights into the hydrocyanation reaction. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR644067 DOI: 10.6100/IR644067 Document status and date: Published: 01/01/2009 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Cyanovinylation of Aldehydes: Organocatalytic Multicomponent Synthesis of Conjugated Cyanomethyl Vinyl Ethers
    molecules Article Cyanovinylation of Aldehydes: Organocatalytic Multicomponent Synthesis of Conjugated Cyanomethyl Vinyl Ethers Samuel Delgado-Hernández 1,2 , Fernando García-Tellado 1,* and David Tejedor 1,* 1 Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Astrofísico Francisco Sánchez 3, 38206 La Laguna, Spain; [email protected] 2 Doctoral and Postgraduate School, Universidad de La Laguna, Apartado Postal 456, 38200 La Laguna, Spain * Correspondence: [email protected] (F.G.-T.); [email protected] (D.T.) Abstract: A novel organocatalytic multicomponent cyanovinylation of aldehydes was designed for the synthesis of conjugated cyanomethyl vinyl ethers. The reaction was implemented for the synthesis of a 3-substituted 3-(cyanomethoxy)acrylates, using aldehydes as substrates, acetone cyanohydrin as the cyanide anion source, and methyl propiolate as the source of the vinyl com- ponent. The multicomponent reaction is catalyzed by N-methyl morpholine (2.5 mol%) to deliver the 3-(cyanomethoxy)acrylates in excellent yields and with preponderance of the E-isomer. The multicomponent reaction manifold is highly tolerant to the structure and composition of the aldehyde (aliphatic, aromatic, heteroaromatics), and it is instrumentally simple (one batch, open atmospheres), economic (2.5 mol% catalyst, stoichiometric reagents), environmentally friendly (no toxic waste), and Citation: Delgado-Hernández, S.; sustainable (easy scalability). García-Tellado, F.; Tejedor, D. Cyanovinylation of
    [Show full text]
  • Investigation of Cyano·Methylation Reaction by Cyano·Hydrine and Its Determination in Tobacco-Smoke. ( Strecker·Reactions )
    PERIODICA POLYTECHNICA SER. CHEM. ENG. VOL. 36, NO. 3, PP. 209-2113 {I992} INVESTIGATION OF CYANO·METHYLATION REACTION BY CYANO·HYDRINE AND ITS DETERMINATION IN TOBACCO-SMOKE. ( STRECKER·REACTIONS ) 3 Vikt6ria HORVATH,l Lajos TREZLl, Tibor SZARVAS2, Janos PIPEK , Csaba VIDA 1 and Krisztina BAUER4 1 Department of Organic Chemical Technology, 3Department of Physics Technical University of Budapest, 2 Institute of Isotopes of the Hungarian Academy of Sciences 4 Plant Protection Institute,Hungarian Academy of Sciences. Received: September 9, 1992 Abstract The results of our research work [1-7) of several years aimed at the binding of the unhealthy components of tobacco smoke directed our attention to the analysis and identification of the unknown peak observed during the high sensitivity radiochromatographic analysis of tobacco smoke condensates.It was a fruitless effort to remove the formaldehyde, the ac­ etaldehyde and hydrogen cyanide present in tobacco smoke, or even to try to eliminate them separately, during the analysis the new, unknown peak appeared again and again on the radiochromatogram. During our research work we stated, that we were facing the Strecker reaction [8-9), known since 1850, that is,with the formation of cyanohydrine of the aldehydes and hydrogen cyanide present in tobacco smoke, corresponding to the new peak. Cyanohydrines to react quickly and energetically with basic aminoacids, during which reaction cyanomethyl derivatives are being formed. This reaction is proceeding also under physiological circumstances with the basic amino groups of proteins, contributing to the development of respiratory and cardiovascular insufficiencies. By means of model reactions and using solutions of tobacco smoke gases the process of the reaction was proved in a primary way, also its circumstances having been cleared.
    [Show full text]
  • Cyanohydrin - Wikipedia, the Free Encyclopedia
    Cyanohydrin - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyanohydrin Cyanohydrin From Wikipedia, the free encyclopedia A cyanohydrin is a functional group found in organic compounds. Cyanohydrins have the formula R2C(OH)CN, where R is H, alkyl, or aryl. Cyanohydrins are industrially important precursors to carboxylic acids and some amino acids. Cyanohydrins can be formed by the cyanohydrin reaction, which involves treating a ketone or an aldehyde with hydrogen cyanide (HCN) in the presence of excess amounts of sodium cyanide (NaCN) as a catalyst: The structure of a general RR’C=O + HCN → RR’C(OH)CN cyanohydrin. In this reaction, the nucleophilic CN− ion attacks the electrophilic carbonyl carbon in the ketone, followed by protonation by HCN, thereby regenerating the cyanide anion. Cyanohydrins are also prepared by displacement of sulfite by cyanide salts:[1] Cyanohydrins are intermediates in the Strecker amino acid synthesis. Contents 1 Acetone cyanohydrins 2 Other cyanohydrins 3 References 4 External links Acetone cyanohydrins Acetone cyanohydrin, (CH3)2C(OH)CN is the cyanohydrin of acetone. It is generated as an intermediate in the industrial production of methyl methacrylate.[2] In the laboratory, this liquid serves as a source of HCN, which is inconveniently volatile.[3] Thus, acetone cyanohydrin can be used for the preparation other cyanohydrins, for of HCN to Michael acceptors, and for the formylation of arenes. Treatment of this cyanohydrin with lithium hydride affords anhydrous lithium cyanide: 1 of 3 6/3/10 6:07 PM Cyanohydrin - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Cyanohydrin Other cyanohydrins Mandelonitrile, with the formula C6H5CH(OH)CN, occurs in small amounts in the pits of some fruits.[1] Related cyanogenic glycosides are known, such as amygdalin.
    [Show full text]
  • Bowman Chem 345 Lecture Notes by Topic Cyanohydrin
    Bowman Chem 345 Lecture Notes by Topic Cyanohydrin: Important approximate pKa’s to know for this section: pKa ~ 10 pKa ~ -5 pKa ~ 0 pKa ~ 5 pKa ~ 15 + H H O HCl H3O O 2 H SO 2 4 N R ROH R H OH R R=H or sp3 C O H C N Cyanide is a moderate base (pKa of HCN ~ 10). It is also a good nucleophile. Like Grignards and organolithiums, it can add to carbonyls. Standard conditions for cyanohydrin formation is a cyanide salt and a weak acid like acetic acid.1 KCN CN O cyanohydrin AcOH racemic OH O AcOH=acetic acid= OH Mechanism: The first step is cyanide attacking the carbonyl. Though this is not a favorable reaction pKa wise, it is still possible as an alcohol and HCN have very close pKa’s (the difference is ≤ 6). The second step is favorable as acetate is a weaker base than an alkoxide (negative O). This step you can write as reversible or not (though it is on the boundary reversible/irreversible boundary (>6 but ≤ 10). [Technically, cyanohydrins are slightly more acidic (pKa~13) than normal alcohols due to the inductive effect of the nitrile. One of the most common mistakes in this mechanism is to protonate the carbonyl. Though technically, acetic acid can barely protonate the carbonyl, the cyanide being a stronger base than acetate would rather irreversibly deprotonate a protonated carbonyl than add to the carbonyl carbon. 1 Brunner, A.; Hintermann, L. Chem. Euro. J. 2016, 22, 2787-2792 Bowman Chem 345 Lecture Notes by Topic Unlike Grignard and organolithium reactions, the cyanohydrin formation can be reversed.
    [Show full text]
  • Provisional Peer-Reviewed Toxicity Values for Acetone Cyanohydrin (Casrn 75-86-5)
    EPA/690/R-12/001F l Final 10-01-2012 Provisional Peer-Reviewed Toxicity Values for Acetone Cyanohydrin (CASRN 75-86-5) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER Scott C. Wesselkamper, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY ICF International 9300 Lee Highway Fairfax, VA 22031 PRIMARY INTERNAL REVIEWERS Zheng (Jenny) Li, PhD, DABT National Center for Environmental Assessment, Washington, DC Anuradha Mudipalli, MSc, PhD National Center for Environmental Assessment, Research Triangle Park, NC This document was externally peer reviewed under contract to Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this document may be directed to the U.S. EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). ii Acetone cyanohydrin TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS ................................................................................... iv BACKGROUND .............................................................................................................................1 DISCLAIMERS ...............................................................................................................................1 QUESTIONS REGARDING
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Stereoge Phosphorus Containing Phosphine-Phosphite Ligands in Asymmetric Catalysis. Deerenberg, S. Publication date 2000 Link to publication Citation for published version (APA): Deerenberg, S. (2000). Stereoge Phosphorus Containing Phosphine-Phosphite Ligands in Asymmetric Catalysis. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 Chapterr 5 Nickell Phosphine-Phosphite Complexes as Catalysts in the Hydrocyanationn of Styrene Sinkk Deerenberg, Alison C. Hewat, Dieter Vogt, Paul C. J. Kamer, Piett W. N. M. van Leeuwen Abstract t Thee asymmetric hydrocyanation of styrene, catalyzed by chiral nickel phosphine- phosphitee complexes, gives the branched product nitrile in up to 34 % enantiomeric excess. Intermediatess in the catalytic cycle have been detected by 3,P{IH} NMR, including Ni(Pi- P2)(cod)) (A) and Ni(Pi-P2)(styrene) (B) (P1-P2 = ligands 1-5; cod = 1,5-cyclooctadiene).
    [Show full text]
  • Processes for Producing Alpha-Cyanohydrin Esters and Alpha-Hydroxy Acids
    Patentamt Europaisches |||| ||| 1 1|| ||| ||| || || ||| ||| || ||| || || || (19) J European Patent Office Office europeen des brevets (11) EP 0 926 1 34 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication:ation: (51) Int. CI.6: C07C 253/08 30.06.1999 Bulletin 1999/26 (21) Application number: 98123461.0 (22) Dateof filing: 11.12.1998 (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU • Ishii, Yasutaka MC NL PT SE Takatsuki.shi, Osaka 569-1 1 1 2 (JP) Designated Extension States: • Nakano, Tatsuya AL LT LV MK RO SI Himeji-shi, Hyogo 670-0094 (JP) (30) Priority: 22.12.1997 JP 35339597 (74) Representative: Grunecker, Kinkeldey, (71) Applicant: Stockmair & Schwanhausser Daicel Chemical Industries, Ltd. Anwaltssozietat Osaka 590-8501 (JP) Maximilianstrasse 58 80538 Munchen (DE) (54) Processes for producing alpha-cyanohydrin esters and alpha-hydroxy acids (57) The present invention relates to a process for the preparation of compounds of formula (4) wherein a carbonyl compound of the formula (3) is reacted in the presence of a cyanogenation agent with an enol ester of the formula (1) or with an oxime ester of the formula (2): s CO 1 ^s r1— c-o-c-cC. (2) O CN O 7 F K , R7—C-R8 (3) R C— O-C— R (4) wherein R1 through R8 have meanings given in the application. The compound of formula (4) can be hydrolysed to obtain the corresponding compound of formula (5): fl7— C-OH (5) CM < CO CO CM <7> O Q_ LU Printed by Xerox (UK) Business Services 2.16.7/3.6 EP 0 926 134 A2 Description FIELD OF THE INVENTION 5 [0001] The present invention relates to processes for producing an a-cyanohydrin ester and an a-hydroxy acid, or salts thereof using an enol ester compound or an oxime ester compound, a carbonyl compound and a cyanogenation agent.
    [Show full text]
  • Transition Metal Complexes of a Novel Tetradentate Phosphine and of a New Diphosphine Ether Mark R
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1991 Transition metal complexes of a novel tetradentate phosphine and of a new diphosphine ether Mark R. Mason Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Mason, Mark R., "Transition metal complexes of a novel tetradentate phosphine and of a new diphosphine ether " (1991). Retrospective Theses and Dissertations. 9554. https://lib.dr.iastate.edu/rtd/9554 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfîlm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from ary type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Stereoselective Synthesis of Spirooxindole Amides and Cyanohydrin Alkyl Ethers by Chunliang Lu B.S., China University of Mining
    Stereoselective Synthesis of Spirooxindole Amides and Cyanohydrin Alkyl Ethers by Chunliang Lu B.S., China University of Mining and Technology, Xuzhou, China, 2004 M.S., Dalian University of Technology, Dalian, China, 2007 Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2013 UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Chunliang Lu It was defended on October 1, 2013 and approved by Dr. Kay M. Brummond, Professor, Department of Chemistry Dr. Theodore Cohen, Professor, Department of Chemistry Dr. Xiang-Qun Xie, Professor, Department of Pharmaceutical Sciences Dissertation Advisor: Dr. Paul E. Floreancig, Professor, Department of Chemistry ii Copyright © by Chunliang Lu 2013 iii Stereoselective Synthesis of Spirooxindole Amides and Cyanohydrin Alkyl Ethers Chunliang Lu, PhD University of Pittsburgh, 2013 A new family of spirooxindole amides were synthesized by a sequence of hydrozirconation, acylation, and intramolecular cyclization reactions. Three of the four possible diastereomers can be obtained as the major isomers through this process. The spirooxindole structure has many points for diversification, and a 37-membered library was synthesized through this approach by collaborators. A comparison with known compound collections showed that this new spirooxindole library possessed good chemical diversity. Cyanohydrin alkyl ethers, the key intermediate in the above multi-component hydrozironation reaction, were effectively synthesized through a Brønsted acid-mediated hydrocyanation of vinyl ethers. The enantiomerically enriched product can be obtained by asymmetric hydrocyanation of vinyl ethers catalyzed by a chiral Brønsted acid, and the catalyst can be regenerated by PhOH.
    [Show full text]
  • Syntheses of Morphine and Codeine (1992 – 2002): Templates for Exploration of Synthetic Tools
    Current Organic Synthesis, 2006, 3, 99-120 99 Syntheses of Morphine and Codeine (1992 – 2002): Templates for Exploration of Synthetic Tools L. M. Mascavage#, M. L. Wilson and D. R. Dalton* Department of Chemistry (016-00), Beury Hall, 13th and Norris Streets, Temple University, Philadelphia, PA 19122, USA and Department of Chemistry, Arcadia University, Glenside, PA, 19038, USA Abstract: Morphine (1) and its O-methylated analogue codeine (2), analgesic alkaloids of the opium poppy (Papaver Somniferium), have been targets of organic chemists engaged in synthetic activities for at least half a century. The “first” (Gates) and “most efficient” (Rice) syntheses of morphine (1) and codeine (2) are well known and have been reviewed and analyzed extensively numerous times. However, syntheses of the same two alkaloids that have been reported since 1992 and which have been used as devices to advance the art of organic synthesis are not as widely recognized and they have not been as thoroughly reviewed. Here they are analyzed in the spirit of the use of these two compounds as templates. Further, since both racemic and enantiospecific syntheses are important and since all eight (8) approaches (since 1992) are sufficiently different so as to warrant more tha n superficial examination, they are all considered. H HO 7 H 8 15 6 H H 6 14 N 5 CH3 H 13 NCH3 HO 14 13 9 16 9 O 16 12 15 10 O 10 4 4 11 1, R = H 2, R = CH 1 1 3 RO 3 RO 3 2 2 It is nearly two hundred years since the initial report the ubiquitous standard opium poppy or with cultivars that (1806) of the isolation of morphine (1, R = H) from the might be subsequently generated through genetic unripe seed pods of the opium poppy, Papever somniferum, manipulations so as to maximize production of these or by Friedrich Wihelm Adam Setürner [1], seventy five years related bases.
    [Show full text]
  • Aldehydes, Ketones and Carboxylic Acids
    1212Unit Objectives AldehydesAldehydesAldehydesAldehydes,,,,,, KKKKKKeeeeeetonestonestonestonestonestones After studying this Unit, you will be able to andandandandandand CarboxylicCarboxylicCarboxylicCarboxylicCarboxylicCarboxylic • write the common and IUPAC names of aldehydes, ketones and carboxylic acids; AAAAAAcidscidscidscidscidscids • write the structures of the compounds containing functional groups namely carbonyl and carboxyl groups; Carbonyl compounds are of utmost importance to organic chemistry. They are constituents of fabrics, flavourings, plastics • describe the important methods and drugs. of preparation and reactions of these classes of compounds; In the previous Unit, you have studied organic • correlate physical properties and compounds with functional groups containing carbon- chemical reactions of aldehydes, oxygen single bond. In this Unit, we will study about the ketones and carboxylic acids, organic compounds containing carbon-oxygen double with their structures; bond (>C=O) called carbonyl group, which is one of the • explain the mechanism of a few most important functional groups in organic chemistry. selected reactions of aldehydes and ketones; In aldehydes, the carbonyl group is bonded to a carbon and hydrogen while in the ketones, it is bonded • understand various factors to two carbon atoms. The carbonyl compounds in which affecting the acidity of carboxylic carbon of carbonyl group is bonded to carbon or acids and their reactions; hydrogen and oxygen of hydroxyl moiety (-OH) are • describe the uses of aldehydes, known as carboxylic acids, while in compounds where ketones and carboxylic acids. carbon is attached to carbon or hydrogen and nitrogen of -NH2 moiety or to halogens are called amides and acyl halides respectively. Esters and anhydrides are derivatives of carboxylic acids. The general formulas of these classes of compounds are given below: 2021–22 Aldehydes, ketones and carboxylic acids are widespread in plants and animal kingdom.
    [Show full text]