An Upwelling System

Total Page:16

File Type:pdf, Size:1020Kb

An Upwelling System II. Nutrients and primary production Rapp. P.-v. Réun. Cons. int. Explor. Mer, 180: 148-183. 1982. Nutrients and primary production in the upwelling region off Northwest Africa H. J. Minas1, L. A. Codispoti2, and R. C. Dugdale3 By relying heavily on the information that has resulted from the CINECA pro­ gramme, we have been able to compare the different nutrient and primary produc­ tion regimes that exist within the Northwest African (Canary Current) upwelling system. Our study indicates that the differences are considerable, and they can be summarized as follows: 1. The Northwest African upwelling region is divided into two major zones by the existence of a front between North Atlantic Central Water (NACW) and South Atlantic Central Water (SACW) near Cape Blanc. These waters are the primary components of the upwelling off Northwest Africa, and because SACW is richer in nutrients than NACW, there is a meridional nutrient gradient in the ascending waters. 2. The situation described suggests that the highest production rates should be in the south, where, indeed, the maximum instantaneous rates may be found. How­ ever, the highest annual rates probably occur in the Cape Barbas-Cape Blanc region. Upwelling is a year-round process here, and the region is far enough south to benefit from the northerly transport of SACW by an undercurrent that “hugs” the continental slope. 3. South of Cape Blanc, upwelling takes place mostly in winter and spring. During active upwelling, very high nutrient and primary productivity rates may be obser­ ved close to the coast. Offshore of Nouakchott, there is a widespread area with relatively high nutrient concentrations in the surface layer that is probably rela­ ted to a mesoscale “dome”. This region is anomalous because the productivity and chlorophyll concentrations are low in relation to the nutrient concentrations. 4. To the north of Cape Bojador, upwelling is strongest in summer. Despite the predominance of NACW in the upwelling source waters, the few available obser­ vations indicate that maximum productivity rates may be similar to those found to the south. In certain regions, nutrient regeneration seems to be particularly efficient. For example, off Cape Dra, there is a “cold cushion” over the continen­ tal shelf that is enriched considerably by nutrient regeneration. Additional results of our study include the following: 1. Silica limitation may be more a function of geomorphology and dynamics than of the initial Si/N ratios in the ascending waters. 2. The average annual productivity in the nearshore region between Cape Bojador and Cape Blanc may be more than 2 gC/m 2/d, four times higher than one might infer from some previous studies. Sur la base de l'ensemble du matériel d’information résultant du programme CINE­ CA, il nous a été possible de comparer les caractéristiques du régime des sels nutritifs et les rapports avec la production primaire dans le système des résurgences côtières NW africaines. Des différences considérables peuvent exister entre les di­ verses régions; elles peuvent être résumées de la façon suivante: 1. L’existence de deux types d’eau, l’Eau Centrale Nord Atlantique (ECNA) et l’Eau Centrale Sud Atlantique (ECSA), partage la zone en deux secteurs dont la limite se situe aux environs du Cap Blanc. La plus grande richesse en sels nutritifs de l’ECSA conditionne un gradient nord-sud dans les eaux des flux ascendants. 1 Station Marine d’Endoume, Laboratoire d’Océanographie, Centre Universitaire de Luminy, 13288 Marseille Cedex 9, France. 2 Bigelow Laboratory for Ocean Sciences, McKown Point, West Boothbay Harbor, Maine 04575, USA. 3 Department of Biological Sciences, Allen Hancock Foun­ dation, University of Southern California, Los Angeles, Ca­ lifornia 90007, USA. 148 2. Compte tenu de la situation précédente, les productions devraient être les plus fortes dans le sud, ce qui est effectivement le cas. Toutefois, les taux annuels de production les plus élevés existent probablement dans la région Cap Barbas-Cap Blanc. En effet, les remontées d’eau y sont observées tout au long de l’année et la région est suffisamment au sud pour pouvoir bénéficier de l'apport de l'ECSA, assuré par le sous-courant orienté vers le nord et longeant le talus continental. 3. Dans toute la région méridionale au sud du Cap Blanc, les résurgences ont lieu surtout en hiver et au printemps. A proximité immédiate de la côte, les concen­ trations en sels nutritifs et les taux de production sont très élevés. Au large de Nouakchott existe une vaste zone avec des teneurs superficielles relativement élevées de sels nutritifs, dues probablement à une divergence provoquée par une circulation cyclonique. Cette zone présente une anomalie car les biomasses et la productivité sont basses par rapport à l’abondance relative de sels nutritifs. 4. Dans toutes les régions au nord du Cap Bojador, les résurgences présentent leur plus grande intensité en été. Malgré une prédominance de l’ECNA dans les eaux- sources, les quelques observations dont on dispose semblent indiquer une activité photosynthétique aussi importante que dans le sud. A certains endroits, une régénération de sels nutritifs semble particulièrement efficace; par exemple près du Cap Dra, un «bourrelet» d’eau froide sur le plateau continental est le siège d'un recyclage important d’éléments nutritifs. Par ailleurs, notre étude montre que le caractère limitant ou non du silicium dépend plus de la géomorphologie et de processus de dynamique biochimique que du rapport Si/N initial dans les eaux-sources de l’upwelling. Elle suggère aussi que la production moyenne annuelle dans la région littorale entre le Cap Bojador et le Cap Blanc est supérieure à 2 gC/m 2/j, quatre fois plus élevée que celle que l’on pouvait déduire d’études préliminaires. Introduction will be concerned with the portion of the Atlantic adja­ cent to the region between Gibraltar and Cape Verde As expected from classical studies, generalized global (Fig. 119). This area corresponds to the CINECA and large-scale charts of marine productivity (e.g. study region. Sournia, 1969; Koblentz-Mishke et al., 1970) support the view that primary productivity in temperate and tropical regions is high when the nutrient supply is high. The coastal upwelling areas that are found in the eastern boundary regions of the temperate and tropical ocean are prime examples of such locales, and recently much effort has been expended on unraveling the rela­ tionships between nutrients and productivity in these areas. While the application of recently developed methods for the routine estimation of carbon, nitrogen, and sili­ con uptake (e.g. Steemann Nielsen, 1952; Dugdale, 1967; Nelson and Goering, 1977; Slawyk et al., 1977) supports the general view, many questions have arisen because the new techniques permit a better apprecia­ tion of the complexity of the interactions between phy­ CABO PENA GRANDEfc toplankton and the nutrient fields in which they are immersed. Recent studies also show that coastal up­ welling dynamics are primarily a mesoscale phenome­ non (e.g. Barton et al., 1977) and that the response of CAP SLAVIC the phytoplankton and higher trophic levels strongly depends on local and mesoscale factors (e.g. Ryther et al., 1971; Beers et al., 1971; Parsons, 1976; Huntsman and Barber, 1977). The purpose of this report is to demonstrate the existence and, insofar as possible, the significance of important mesoscale and local differences in nutrients and primary production within the Northwest African upwelling system. Since the definition of this system Figure 119. Location chart of the main CINECA area off can vary, we wish to make it clear that our discussion Northwest Africa. 149 25 2 5 ° - + 4 + + garnet -+ B d GORREI C BLANC 20 20 ' NOUAKCHOTT VERT C.ROXO +- 10° SPACE-TEMPORAL dislocation o f t h e NORTH-W EST AFRICAN UPWELLING REGION I II III IV V 1 VI 1 VII ' VIII ' IX 1 X ' XI ' XII 2 0 ' 16° W Figure 120. Seasonal variation of upwelling along the Northwest African coast (from Schemainda and Nehring, 1975). The plus signs indicate the presence of upwelling, and the minus signs indicate the absence of upwelling. Nutrients and hydrology while nutrient concentrations tend to increase (e.g. The Canary Current carries cool surface water south­ Weichart, 1970 and 1974; Codispoti and Friederich, ward along the Northwest African coast. In the near­ 1978). However, this situation is not necessarily indica­ shore region, this large-scale flow is enhanced by the tive of more intense upwelling in the south (e.g. Mittel- action of the winds, and these winds also cause a staedt, 1972). Instead it arises largely from differences further reduction in sea surface temperatures because in the ambient water masses. In the north, the upper they are generally favorable for upwelling. This latter layer of the ocean is dominated by relatively warm, influence of the trade winds (blowing mainly from salty, and low-nutrient North Atlantic Central Water north-northeast) has been recognized for many years. (NACW) while in the south, relatively cool, fresh, and Thermal anomaly charts from Böhnecke (1936) nutrient-rich South Atlantic Central Water (SACW) clearly show the cooling of the coastal waters. With dominates (Fig. 121). Low salinity, tropical surface these and other data, Wooster and Reid (1963) and waters also influence the southern region (e.g. Tom- Wooster et al. (1976) have described the seasonal czak, 1978a,b), but not to any great extent during upwelling cycles off Northwest Africa. They show that upwelling periods. there are considerable differences in the annual upwell­ Mittelstaedt (1972) presents a T-S diagram (Fig. ing cycle from place to place. In the Moroccan region 122) that suggests that salinity is a good indicator of the upwelling takes place predominantly during the sum­ relative proportions of NACW and SACW.
Recommended publications
  • Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
    letters to nature 3. Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12, 61± water is created at high latitudes12. It has thus been suggested that 93 (1993). much of the mixing required to maintain the abyssal strati®cation, 4. Fukai, J. et al. Wetting effects on the spreading of a liquid droplet colliding with a ¯at surface: experiment and modeling. Phys. Fluids 7, 236±247 (1995). and hence the large-scale meridional overturning, occurs at 5. Bennett, T. & Poulikakos, D. Splat±quench solidi®cation: estimating the maximum spreading of a localized `hotspots' near areas of rough topography4,16,17. Numerical droplet impacting a solid surface. J. Mater. Sci. 28, 963±970 (1993). modelling studies further suggest that the ocean circulation is 6. Scheller, B. L. & Bous®eld, D. W. Newtonian drop impact with a solid surface. Am. Inst. Chem. Eng. J. 18 41, 1357±1367 (1995). sensitive to the spatial distribution of vertical mixing . Thus, 7. Mao, T., Kuhn, D. & Tran, H. Spread and rebound of liquid droplets upon impact on ¯at surfaces. Am. clarifying the physical mechanisms responsible for this mixing is Inst. Chem. Eng. J. 43, 2169±2179, (1997). important, both for numerical ocean modelling and for general 8. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827±863 (1985). understanding of how the ocean works. One signi®cant energy 9. Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429±438 (1993). source for mixing may be barotropic tidal currents.
    [Show full text]
  • 2007 MTS Overview of Manned Underwater Vehicle Activity
    P A P E R 2007 MTS Overview of Manned Underwater Vehicle Activity AUTHOR ABSTRACT William Kohnen There are approximately 100 active manned submersibles in operation around the world; Chair, MTS Manned Underwater in this overview we refer to all non-military manned underwater vehicles that are used for Vehicles Committee scientific, research, tourism, and commercial diving applications, as well as personal leisure SEAmagine Hydrospace Corporation craft. The Marine Technology Society committee on Manned Underwater Vehicles (MUV) maintains the only comprehensive database of active submersibles operating around the world and endeavors to continually bring together the international community of manned Introduction submersible operators, manufacturers and industry professionals. The database is maintained he year 2007 did not herald a great through contact with manufacturers, operators and owners through the Manned Submersible number of new manned submersible de- program held yearly at the Underwater Intervention conference. Tployments, although the industry has expe- The most comprehensive and detailed overview of this industry is given during the UI rienced significant momentum. Submersi- conference, and this article cannot cover all developments within the allocated space; there- bles continue to find new applications in fore our focus is on a compendium of activity provided from the most dynamic submersible tourism, science and research, commercial builders, operators and research organizations that contribute to the industry and who share and recreational work; the biggest progress their latest information through the MTS committee. This article presents a short overview coming from the least likely source, namely of submersible activity in 2007, including new submersible construction, operation and the leisure markets.
    [Show full text]
  • The Oriental Institute News & Notes No
    oi.uchicago.edu THE ORIENTAL INSTITUTE NEWS & NOTES NO. 165 SPRING 2000 © THE ORIENTAL INSTITUTE OF THE UNIVERSITY OF CHICAGO AS THE SCROLLS ARRIVE IN CHICAGO... NormaN Golb, ludwig rosenberger Professor in Jewish History and Civilization During the past several years, some strange events have befallen the logic as well as rhetoric by which basic scholarly positions the storied Dead Sea Scrolls — events that could hardly have on the question of the scrolls’ nature and origin had been and been foreseen by the public even a decade ago (and how much were continuing to be constructed. During the 1970s and 1980s, the more so by historians, who, of all people, should never at- I had made many fruitless efforts in encouragement of a dialogue tempt to predict the future). Against all odds, the monopoly of this kind, but only in the 1990s, perhaps for reasons we will on the scrolls’ publication, held for over forty years by a small never fully understand, was such discourse finally initiated. And coterie of scholars, was broken in 1991. Beginning with such it had important consequences, leading to significant turning pioneering text publications as those of Ben-Zion Wacholder in points in the search for the truth about the scrolls’ origins. Cincinnati and Michael Wise in Chicago, and continuing with One of the most enlightening of these came in 1996, when the resumption of the Discoveries in the Judaean Desert series England’s Manchester University hosted an international confer- of Oxford University Press, researchers everywhere discovered ence on a single manuscript discovered in Cave III — a role of how rich these remnants of ancient Hebraic literature of intert- simple bookkeeping entries known as the Copper Scroll.
    [Show full text]
  • Response to Thum Et Al
    Response to Thum et al. David M. Patrick, … , Eva van Rooij, Eric N. Olson J Clin Invest. 2011;121(2):462-463. https://doi.org/10.1172/JCI46108. Letter Thum et al. conclude that microRNA-21 (miR-21) is essential for cardiac hypertrophy and fibrosis in response to pressure overload (1). They also claim that our failure to observe a blockade to these processes in mice treated with an 8-mer locked nucleic acid–modified oligonucleot​ ide against miR-21 (called Anti-21) (2) is due to the ineffectiveness of such inhibitors. We wish to point out several caveats to their study regarding the role of miR-21 in cardiac hypertrophy and their conclusions regarding the efficacy of the Anti-21 oligonucleotide. First, we find that Anti-21 inhibits miR-21 with a half-maximal inhibitory concentration of 0.9 nM, indicating the efficacy of Anti-21. Second, Thum et al. do not state the method they used to measure miR-21 inhibition, though we assume it to be quantitative PCR (qPCR). In our hands, qPCR alone is unreliable for measuring miRNA inhibition, especially for 8-mer inhibitors, since they may be displaced during qPCR and thereby give an underrepresentation of miRNA inhibition. To demonstrate functional inhibition of a miRNA, it is important to show data from multiple assays, such as small RNA Northern blots, luciferase reporter assays, and target derepression, as shown in our study (2). Such data are lacking in the Thum et al. rebuttal, which makes comparison of the different chemistries impossible. Thum et al. also state that we measured miR-21 inhibition […] Find the latest version: https://jci.me/46108/pdf letters contrast and consistent with the findings Acknowledgments Address correspondence to: Thomas Thum, reported by Patrick et al., application of We kindly acknowledge the support of the Hannover Medical School, Institute for short 8-mer oligonucleotides against miR- Deutsche Forschungsgemeinschaft (DFG Molecular and Translational Therapeutic 21 did not affect pressure overload-induced TH903/10-1), the BMBF (01EO0802 and Strategies, Carl-Neuberg-Str.
    [Show full text]
  • Capitol Hill, That Is....): My Experiences As a Connecticut Sea Grant Knauss Marine Policy Fellow Laura Rear
    University of Connecticut OpenCommons@UConn Wrack Lines University of Connecticut Sea Grant July 2004 A Year on the Hill (Capitol Hill, that is....): My experiences as a Connecticut Sea Grant Knauss Marine Policy Fellow Laura Rear Follow this and additional works at: https://opencommons.uconn.edu/wracklines Recommended Citation Rear, Laura, "A Year on the Hill (Capitol Hill, that is....): My experiences as a Connecticut Sea Grant Knauss Marine Policy Fellow" (2004). Wrack Lines. 10. https://opencommons.uconn.edu/wracklines/10 A Year on the Hill (Capitol Hill, that is....) My experiences as a Connecticut Sea Grant Knauss Marine Policy Fellow Archaeological Program Assistant, I was fortunate enough to head out to by Laura Rear sea to the site of the RMS Titanic in June 2003 with several marine When I was accepted as a Knauss Sea Auster, Science Director for the archaeologists. The Titanic remains were Grant Marine Policy Fellow in June Connecticut National Undersea Research first found by Dr. Robert Ballard in 2002, I was exhilarated. I was going to Center (NURC), who would head out to 1985, using towed side scan sonar and get the chance to spend a year of my sea with me later in the year to explore cameras. In 1986 Ballard returned to the career working for the federal govern- seamounts in the mid-Atlantic. That con- site with Alvin to document the state of ment in Washington, DC. It was not until ference was the first of many that I the wrecked ocean liner. As per the five months later in November that I would attend on behalf of Ocean Guidelines for Research, Exploration and would come to DC for a week to inter- Exploration.
    [Show full text]
  • The Development of Autonomous Underwater Vehicles (AUV); a Brief Summary
    The Development of Autonomous Underwater Vehicles (AUV); A Brief Summary D. Richard Blidberg, (blidberg@ausi,org) Autonomous Undersea Systems Institute, Lee New Hampshire, USA Introduction The concept of a submersible vehicle is not a new idea. The first American submarine was called “Turtle.” It was built at Saybrook, Connecticut in 1775 by David Bushnell and his brother, Ezra. The Turtle was a little egg-shaped wooden submarine held together by iron straps. Turtle bobbed like a cork in rough surface winds and seas even though she was lead weighted at the bottom. In this hand and foot-operated contraption, one person could descend by operating a valve to admit water into the ballast tank and ascend with the use of pumps to eject the water. Two flap-type air vents at the top opened when the hatch was clear of water and closed when it was as not. The air supply lasted only 30 minutes. The Turtle's first engagement, which took place in New York Harbor in 1776, was also the first naval battle in history involving a submarine. [Pararas] In November of 1879, the Reverend George W. Garrett designed, what was considered by some to be the world's first practical powered submarine, the “Resurgam.” It was built at the Brittannia Engine Works and Foundry of J. B. Cochran in Birkenhead, England and was powered by a Lamm 'fireless' steam engine, and could travel for some ten hours on power stored in an insulated tank. After these historic underwater vehicles, there have been many more submersibles developed and used operationally for a number of different tasks.
    [Show full text]
  • Effects of Tourism on Herbivore Community Composition in Coral Reefs in the Gulf of Thailand Diplomarbeit
    Effects of Tourism on herbivore community composition in Coral Reefs in the Gulf of Thailand Diplomarbeit vorgelegt von Susanne Pusch Erstgutachter: Prof. Dr. Wilfried Gabriel Zweitgutachter: Prof. Dr. Christian Wild Fakultät für Biologie, Department Biologie II Ludwig-Maximilians-Universität München München, den 16.09.2011 Für meinen Vater, meine Mutter und Lukas 1 Erklärung Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ort, Datum:____________________ Unterschrift:____________________ Kontaktdaten der Betreuer: Prof. Dr. Wilfried Gabriel Ludwig-Maximilians-Universität München / Institute of Ecology / Großhaderner Str. 2 / D-82152 Munich / Email: [email protected] Prof. Dr. Christian Wild Universität Bremen / Leibniz Center for Tropical Marine Ecology / Fahrenheitstr.6 / D-28359 Bremen / Email: [email protected] 2 Danksagung Zunächst möchte ich mich bei Prof. Dr. Christian Wild bedanken, ohne den diese für mich sehr interessante Diplomarbeit nicht zustande gekommen wäre. Vor allem die anfängliche Betreuung bei der Datenaufnahme in Thailand hat mir bei der Erstellung meiner Arbeit sehr geholfen. Auch für die spontane Hilfe von Dr. Anna Fricke, sowie für die Hilfe der Mitarbeiter im Labor des ZMT Bremen möchte ich mich herzlich bedanken. Eine große Hilfe war für mich die Zusammenarbeit mit Hauke Schwieder, Swaantje Bennecke und Kristina Börder bei der Datenaufnahme in Thailand. Durch das freundschaftliche Verhältnis und ihre Hilfsbereitschaft wurde die Arbeit sehr erleichtert, und auch unvorhergesehene Probleme konnten wir gemeinsam bewältigen. Auch durch diese besondere Zusammenarbeit wurde der Aufenthalt für mich zu einem unvergesslichen Erlebnis, wofür ich mich herzlich bedanken will. Mein besonderer Dank gilt Hauke, der nicht nur in Thailand, sondern auch bei der weiteren Arbeit in Bremen eine große Hilfe war.
    [Show full text]
  • Developing Submergence Science for the Next Decade (DESCEND–2016)
    Developing Submergence Science for the Next Decade (DESCEND–2016) Workshop Proceedings January 14-15, 2016 ii Table of Contents ACKNOWLEDGMENTS ............................................................................................................ iv EXECUTIVE SUMMARY ............................................................................................................ 1 BENTHIC ECOSYSTEMS ........................................................................................................... 11 COASTAL ECOSYSTEMS .......................................................................................................... 24 PELAGIC ECOSYSTEMS ........................................................................................................... 28 POLAR SYSTEMS .................................................................................................................... 31 BIOGEOCHEMISTRY ............................................................................................................... 41 ECOLOGY AND MOLECULAR BIOLOGY ................................................................................... 48 GEOLOGY .............................................................................................................................. 53 PHYSICAL OCEANOGRAPHY ................................................................................................... 59 APPENDICES .......................................................................................................................... 65 Appendix
    [Show full text]
  • Classification Performances of Mine Hunting Sonar
    Classification performances of Mine Hunting Sonar : Theory, practical results and operational applications Franck Florin, François van Zeebroeck, Isabelle Quidu, Naig Le Bouffant To cite this version: Franck Florin, François van Zeebroeck, Isabelle Quidu, Naig Le Bouffant. Classification performances of Mine Hunting Sonar : Theory, practical results and operational applications. Undersea Defence Technology (UDT) Europe 2003, Jun 2003, Malmö, Sweden. hal-00504857 HAL Id: hal-00504857 https://hal.archives-ouvertes.fr/hal-00504857 Submitted on 21 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Classification performances of Mine Hunting Sonar : theory, practical results and operational applications F. Florin F. Van Zeebroeck I. Quidu N. Le Bouffant Thales Underwater Systems Route de Sainte Anne du Portzic, 29601 Brest cedex, France Tel: (33) 2 98 31 37 00 E_mail: [email protected] Abstract As low target strength objects can be detected by the new generation of mine hunting sonar systems, more and more non mine like objects are passed on to the classification process. In the past, the mine hunting performance was mainly driven by the performance of the mine detector. With this improved detection capability, the mine hunting system performance is now driven by classification.
    [Show full text]
  • Fishing Gear Used for Its Capture
    Conservation of cetaceans and sea turtles in the Adriatic Sea: status of species and potential conservation measures WP 7 0 NOTE FROM THE EDITORS The overall editorial work for this volume has been carried out by Caterina Maria Fortuna (ISPRA), Drasko Holcer (BWI) & Peter Mackelworth (BWI). Where single chapters or paragraphs were edited by different authors, their authorship is acknowledged accordingly. This report contains data and information collected within the IPA Adriatic Cross-border Cooperation Programme, NETCET project. Some information and data presented in this report is unpublished and was presented here thanks to the courtesy of the relevant project coordinators. Particularly, for the use of the data related to the 2010 Adriatic aerial survey, interested parties should contact Fortuna (ISPRA) & Holcer (BWI), whereas for data on the Italian monitoring programme on bycatch under Regulation (EC) n. 812/2004 requests should be addressed to Fortuna (ISPRA). Preferred citation for this report: Fortuna, C.M., Holcer, D., Mackelworth, P. (eds.) 2015. Conservation of cetaceans and sea turtles in the Adriatic Sea: status of species and potential conservation measures. 135 pages. Report produced under WP7 of the NETCET project, IPA Adriatic Cross-border Cooperation Programme. DISCLAIMER: This report has been produced with the financial assistance of the IPA Adriatic Cross-Border Cooperation Programme. The contents of this report are the sole responsibility of the NETCET project and can under no circumstances be regarded as reflecting the position of the IPA Adriatic Cross-Border Cooperation Programme Authorities. 1 FIRST SECTION: STATE OF THE ART Editors: Caterina Fortuna (ISPRA) & Drasko Holcer (BWI) Chapter 1 – Overview on basic features of the Adriatic Sea 1.1.
    [Show full text]
  • Mir100 User Guide.Book
    October 2017 v.1.02017 v.1.2 with MiR Robot Interface 2.0 User Guide en 11/2017 v.1.0 Copyright and disclaimer All rights reserved. No parts of this manual may be reproduced in any form without the express written permission of Mobile Industrial Robots ApS (MiR). MiR makes no warranties, express or implied, in respect of this document or its contents. In addition, the contents of the document is subject to change without prior notice. Every precaution has been taken in the preparation of this manual. Nevertheless, MiR assumes no responsibility for errors or omissions or any damages resulting from the use of the information contained. Copyright © 2016 - 2017 by Mobile Industrial Robots Contact the manufacturer: Mobile Industrial Robots Emil Neckelmanns Vej 15F DK-5220 Odense SØ www.mir-robots.com Phone: +45 20 377 577 E-mail: [email protected] CVR: 35251235 For more material, go to our website Table of contents 1 About this manual .............................................................................................................3 1.1 Overview......................................................................................................................3 1.2 Document history ........................................................................................................3 1.3 Further information.....................................................................................................3 2 Safety.................................................................................................................................4
    [Show full text]
  • GUERREIRO FACULTY of SCIENCES of the UNIVERSITY of LISBON/FCIENCIAS ID MARE - MARINE and ENVIRONMENTAL SCIENCES CENTRE Brazil, Universidade Federal De Pernambuco Feb
    Why do we need MSP and what triggered MSP initiatives? An historical and evolutionary perspective JOSÉ GUERREIRO FACULTY OF SCIENCES OF THE UNIVERSITY OF LISBON/FCIENCIAS ID MARE - MARINE AND ENVIRONMENTAL SCIENCES CENTRE Brazil, Universidade Federal de Pernambuco Feb. 4-5, 2019 THE VERY FIRST USES OF THE SEA: FISHERIES AND COMMERCE! Brazil Workshop – Feb. 4-5, 2019 2 The first attempts to Govern the Sea From 30 BC to 117 AD the Roman Empire surrounded the Mediterranean, controlling much of its coasts. The Romans then began to refer to this sea as the Mare Nostrum. The period between November and March was considered the most dangerous for navigation, so it was declared Mare Clausum (closed sea), although navigation was probably never effectively banned. In classical law, the sea was not territorialized. However, since the Middle Ages, the maritime republics like the Republic of Genova and the Republic of Venice claimed the "Mare Clausum" in the Mediterranean. Also the Nordic kingdoms and England imposed fees of passage, fishing monopolies and even blockades to foreign ships in the seas neighboring their territories. Brazil Workshop – Feb. 4-5, 2019 3 The Maritime Discoveries and the Mare Clausum With the advent of the Age of Maritime Discovery, between the XV and XVII centuries, maritime and coastal navigation became Oceanic. Thus, concern about the waters focused on maritime routes. The Iberian countries were pioneers in this process, seeking to obtain for themselves, exclusively, the rights on the lands discovered and to discover, within a policy of mercantilism protecting maritime routes. The celebration of the treaty of Alcáçovas in 1479 between the Kingdoms of Portugal and Castile constituted the first formalization of the concept of "Mare Clausum" and was the first of the sort, that regulated the possession of lands not yet discovered.
    [Show full text]