Gap-Filling Technology

Total Page:16

File Type:pdf, Size:1020Kb

Gap-Filling Technology Gap-Filling Technology MA-X Complements Side Scan Sonar Imagery By Dean Fleury t has been some time Isince something truly unique has come out in sonar imaging technolo- gy. That changed this year when Klein Marine Systems introduced MA-X at the Ocean Business Technolo- gy Exhibition in Southamp- ton, U.K., in April. Typical side scan image. MA-X stands for Multi-Angle X-pattern, which describes the approach used to generate images tegrate with an overall system. Thus, there is a need for a with side scan-like characteristics that fills the gap seen system that collects data in the nadir area and creates im- on the screen when using traditional side scan sonars. ages like a side scan sonar system. This means equivalent In a typical side scan image, one can see the black shadows, resolution and tonal quality. To achieve this, stripe down the middle that represents the lack of cov- the system has to ensonify the sea bottom with a grazing erage in the area below the towfish. The lack of cover- angle to create shadows. The frequency and sample rate age under the towfish occurs because the beam patterns of the system have to be carefully chosen to achieve the of the two side scan transducers are oriented in such a needed range and resolution. Finally, the image process- way as to optimize range performance without creating ing has to result in an image similar to and aligned with interference from one to the other. This stripe has been the side scan image. referred to in the industry as the nadir region, water col- umn and even skunk stripe. What it represents is lost Method time and money as the surveying vehicle has to double The simplest description of MA-X is that it is a recon- back and image that area, which is only a fraction of figured side scan sonar, an angle-look sonar, if you will. the system’s imaging swath—leading to the collection of Think of an angle-look sonar embedded in the nose of redundant data. a typical AUV. There are two transducers, port and star- Alternative technologies such as multibeam echo- board, each mounted at an angle relative to the sensor sounders cover the nadir, but their downward-looking platform in such a way that each narrow fan beam is aspect angle results in images that contain no shadows— oriented to look down and forward at an angle from the and it is the shadows in the side scan images that pro- platform. vide the visual cues to both humans and interpretation The starboard transducer puts out a beam that enson- software, such as automated target recognition, to assess ifies the sea bottom starting on the starboard side of the the size of objects and the topography of the terrain. Ad- platform extending diagonally forward to the port side of ditionally, alternative technologies have shortcomings the platform track. The port transducer performs the mir- such as range limitations and differing data formats that ror image. The two fan beams overlap, resulting in an “X” make automated target recognition more difficult to in- pattern on the seafloor. The port and starboard image are Reprinted from Sea Technology magazine. For more information about the magazine, visit www.sea-technology.com System The MA-X technology is now part of Klein’s MA-X View 600 towfish. The desired functionality of the over- all product—high-resolution images from both the side scan sonar and gap-filler sonar—led to the selection of complementary frequencies for the two sensors. The side scan sonar utilizes a focused 600-kHz transmit array to provide excellent imagery out to 50 m. The typical flight altitude of 15 percent of range coupled with the geometry of the MA-X array results in an imaging range of 20 to 40 m, which is a perfect match for Klein’s wideband 850-kHz technology. Note that the side scan image is displayed in slant range, which clearly shows the nadir region, and the MA-X image is in ground range. The imaging is the result of improvements Klein has made throughout the hardware and processing of its product lines, referred to as Klein Blue Technology. Klein Blue represents innovations in acoustics, signal condi- tioning and processing design that produces unmatched image quality and range performance. These innovations include transducers with beam patterns that are nearly indistin- guishable from the theoretical; techniques such as variable trans- mit power for improved short- range performance; and motion tolerance for consistent imaging in high sea states that impact towfish stability. MA-X transducers can be mounted anywhere that supports the correct mounting angle for the transducers where they have a clear view of the sea bottom ahead. The prototype MA-X View 600 towfish had the trans- ducers mounted to tail fins below the tow body. (Top) MA-X View 600 images. (Middle) The difference in The MA-X View 600 product moved to spring-loaded survey planning for a typical area survey with and without retractable transducers located on the sides of the tow MA-X. (Bottom) Post-processed combined image. The area body, where the MA-X transducers can quickly be moved where the “stitching” occurred is around the 10-m range. into position prior to towfish deployment and snap closed However, this view cuts off a portion of the image from should they impact an undersea object or the side of the each sonar that provides a multi-aspect view of objects in towing vessel during recovery. the area where the two sonars overlap. The combination of the side scan image and the MA-X image provides uninterrupted coverage of the sea bot- tom, with a varying amount of overlap depending on al- then combined to generate an image of the area normally titude, as a survey vessel passes over a target area. This seen as the gap. reduces the required overlap between survey lines to just The shadows associated with objects on the seafloor the variation associated with ship navigation and results are different than a typical side scan image, where the in a dramatic increase in area coverage rate relative to shadows are perpendicular to the path of the platform. using a side scan sonar alone, conservatively estimated In the MA-X system, the shadows are forward and at an at 40 percent. With traditional side scan sonar alone, the angle to the path of the platform. second swath must overlap the first to cover the nadir gap in the first pass, plus an overlap to account for naviga- littered with a variety of targets. Both the side scan sonar tion variation. The third pass needs overlap for navigation and the gap-filler sonar generated crisp images of targets variation. The process then repeats. ranging from mine-like objects to large sunken structures. When MA-X supplements the side scan sonar, the sec- ond pass, and subsequent passes, need only overlap the Conclusion preceding pass by the navigation variation. The MA-X technology is of great interest to users There is no application hungrier for improved efficien- such as the mine countermeasures community, since cy than missions performed by AUVs. AUV customers the imagery has the same interpretation characteristics are clamoring for longer mission times. AUV vendors are as side scan images—grazing angle and high-contrast scrambling to fit larger and larger battery configurations shadowing. Because of this, the data lend themselves into their vehicles. to be processed by automatic target recognition and What if the mission could simply be performed 40 computer-aided detection/computer-aided classification percent faster? software as just another set of “side scan” channels. The In a towed configuration, the increased efficiency increase in area coverage rate makes the technology an with MA-X results in shorter survey times and financial attractive upgrade to the professional survey market. savings associated with fewer labor hours, fuel costs, and The excitement instilled in the sonar community is wear and tear on the towing vehicle. palpable. Initial feedback has ranged from a competitor The options for mounting MA-X in various places on saying, “Why didn’t I think of that?” to a potential cus- the AUV—nose, retractable arrays, tail fins—provides tomer standing up in the middle of a 50-person briefing AUV vendors with options for meeting the increased de- and stating quite loudly, “That is [expletive] amazing!” sire for modularity and rapid reconfiguration of the vehi- Even Marty Klein, “the father of side scan sonar,” was cles for various mission types. awestruck when first exposed to the MA-X images. With its small size, low power consumption and sim- The future looks bright for this new patent-pending ple integration, MA-X can be used in a standalone con- technology. MA-X is a simple and elegant solution that figuration, or it can be combined with a side scan sonar fills the gap without compromising image quality. It does to cover a much larger area in a single swath. The retract- so with a small, low-power system that creates unprece- able-array configuration even provides for the possibility dented imagery capable of being used by a vast array of of using a MA-X system as a high-frequency side scan so- end-users, with no training required. ST nar when the transducers are in their retracted position. Retrofit options allow for deployment of MA-X with side scan sonars or even synthetic aperture sonars from other manufacturers. The first AUV MA-X systems will ship in early 2020.
Recommended publications
  • Significant Dissipation of Tidal Energy in the Deep Ocean Inferred from Satellite Altimeter Data
    letters to nature 3. Rein, M. Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dynamics Res. 12, 61± water is created at high latitudes12. It has thus been suggested that 93 (1993). much of the mixing required to maintain the abyssal strati®cation, 4. Fukai, J. et al. Wetting effects on the spreading of a liquid droplet colliding with a ¯at surface: experiment and modeling. Phys. Fluids 7, 236±247 (1995). and hence the large-scale meridional overturning, occurs at 5. Bennett, T. & Poulikakos, D. Splat±quench solidi®cation: estimating the maximum spreading of a localized `hotspots' near areas of rough topography4,16,17. Numerical droplet impacting a solid surface. J. Mater. Sci. 28, 963±970 (1993). modelling studies further suggest that the ocean circulation is 6. Scheller, B. L. & Bous®eld, D. W. Newtonian drop impact with a solid surface. Am. Inst. Chem. Eng. J. 18 41, 1357±1367 (1995). sensitive to the spatial distribution of vertical mixing . Thus, 7. Mao, T., Kuhn, D. & Tran, H. Spread and rebound of liquid droplets upon impact on ¯at surfaces. Am. clarifying the physical mechanisms responsible for this mixing is Inst. Chem. Eng. J. 43, 2169±2179, (1997). important, both for numerical ocean modelling and for general 8. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827±863 (1985). understanding of how the ocean works. One signi®cant energy 9. Hayes, R. A. & Ralston, J. Forced liquid movement on low energy surfaces. J. Colloid Interface Sci. 159, 429±438 (1993). source for mixing may be barotropic tidal currents.
    [Show full text]
  • 2007 MTS Overview of Manned Underwater Vehicle Activity
    P A P E R 2007 MTS Overview of Manned Underwater Vehicle Activity AUTHOR ABSTRACT William Kohnen There are approximately 100 active manned submersibles in operation around the world; Chair, MTS Manned Underwater in this overview we refer to all non-military manned underwater vehicles that are used for Vehicles Committee scientific, research, tourism, and commercial diving applications, as well as personal leisure SEAmagine Hydrospace Corporation craft. The Marine Technology Society committee on Manned Underwater Vehicles (MUV) maintains the only comprehensive database of active submersibles operating around the world and endeavors to continually bring together the international community of manned Introduction submersible operators, manufacturers and industry professionals. The database is maintained he year 2007 did not herald a great through contact with manufacturers, operators and owners through the Manned Submersible number of new manned submersible de- program held yearly at the Underwater Intervention conference. Tployments, although the industry has expe- The most comprehensive and detailed overview of this industry is given during the UI rienced significant momentum. Submersi- conference, and this article cannot cover all developments within the allocated space; there- bles continue to find new applications in fore our focus is on a compendium of activity provided from the most dynamic submersible tourism, science and research, commercial builders, operators and research organizations that contribute to the industry and who share and recreational work; the biggest progress their latest information through the MTS committee. This article presents a short overview coming from the least likely source, namely of submersible activity in 2007, including new submersible construction, operation and the leisure markets.
    [Show full text]
  • The Oriental Institute News & Notes No
    oi.uchicago.edu THE ORIENTAL INSTITUTE NEWS & NOTES NO. 165 SPRING 2000 © THE ORIENTAL INSTITUTE OF THE UNIVERSITY OF CHICAGO AS THE SCROLLS ARRIVE IN CHICAGO... NormaN Golb, ludwig rosenberger Professor in Jewish History and Civilization During the past several years, some strange events have befallen the logic as well as rhetoric by which basic scholarly positions the storied Dead Sea Scrolls — events that could hardly have on the question of the scrolls’ nature and origin had been and been foreseen by the public even a decade ago (and how much were continuing to be constructed. During the 1970s and 1980s, the more so by historians, who, of all people, should never at- I had made many fruitless efforts in encouragement of a dialogue tempt to predict the future). Against all odds, the monopoly of this kind, but only in the 1990s, perhaps for reasons we will on the scrolls’ publication, held for over forty years by a small never fully understand, was such discourse finally initiated. And coterie of scholars, was broken in 1991. Beginning with such it had important consequences, leading to significant turning pioneering text publications as those of Ben-Zion Wacholder in points in the search for the truth about the scrolls’ origins. Cincinnati and Michael Wise in Chicago, and continuing with One of the most enlightening of these came in 1996, when the resumption of the Discoveries in the Judaean Desert series England’s Manchester University hosted an international confer- of Oxford University Press, researchers everywhere discovered ence on a single manuscript discovered in Cave III — a role of how rich these remnants of ancient Hebraic literature of intert- simple bookkeeping entries known as the Copper Scroll.
    [Show full text]
  • Response to Thum Et Al
    Response to Thum et al. David M. Patrick, … , Eva van Rooij, Eric N. Olson J Clin Invest. 2011;121(2):462-463. https://doi.org/10.1172/JCI46108. Letter Thum et al. conclude that microRNA-21 (miR-21) is essential for cardiac hypertrophy and fibrosis in response to pressure overload (1). They also claim that our failure to observe a blockade to these processes in mice treated with an 8-mer locked nucleic acid–modified oligonucleot​ ide against miR-21 (called Anti-21) (2) is due to the ineffectiveness of such inhibitors. We wish to point out several caveats to their study regarding the role of miR-21 in cardiac hypertrophy and their conclusions regarding the efficacy of the Anti-21 oligonucleotide. First, we find that Anti-21 inhibits miR-21 with a half-maximal inhibitory concentration of 0.9 nM, indicating the efficacy of Anti-21. Second, Thum et al. do not state the method they used to measure miR-21 inhibition, though we assume it to be quantitative PCR (qPCR). In our hands, qPCR alone is unreliable for measuring miRNA inhibition, especially for 8-mer inhibitors, since they may be displaced during qPCR and thereby give an underrepresentation of miRNA inhibition. To demonstrate functional inhibition of a miRNA, it is important to show data from multiple assays, such as small RNA Northern blots, luciferase reporter assays, and target derepression, as shown in our study (2). Such data are lacking in the Thum et al. rebuttal, which makes comparison of the different chemistries impossible. Thum et al. also state that we measured miR-21 inhibition […] Find the latest version: https://jci.me/46108/pdf letters contrast and consistent with the findings Acknowledgments Address correspondence to: Thomas Thum, reported by Patrick et al., application of We kindly acknowledge the support of the Hannover Medical School, Institute for short 8-mer oligonucleotides against miR- Deutsche Forschungsgemeinschaft (DFG Molecular and Translational Therapeutic 21 did not affect pressure overload-induced TH903/10-1), the BMBF (01EO0802 and Strategies, Carl-Neuberg-Str.
    [Show full text]
  • Capitol Hill, That Is....): My Experiences As a Connecticut Sea Grant Knauss Marine Policy Fellow Laura Rear
    University of Connecticut OpenCommons@UConn Wrack Lines University of Connecticut Sea Grant July 2004 A Year on the Hill (Capitol Hill, that is....): My experiences as a Connecticut Sea Grant Knauss Marine Policy Fellow Laura Rear Follow this and additional works at: https://opencommons.uconn.edu/wracklines Recommended Citation Rear, Laura, "A Year on the Hill (Capitol Hill, that is....): My experiences as a Connecticut Sea Grant Knauss Marine Policy Fellow" (2004). Wrack Lines. 10. https://opencommons.uconn.edu/wracklines/10 A Year on the Hill (Capitol Hill, that is....) My experiences as a Connecticut Sea Grant Knauss Marine Policy Fellow Archaeological Program Assistant, I was fortunate enough to head out to by Laura Rear sea to the site of the RMS Titanic in June 2003 with several marine When I was accepted as a Knauss Sea Auster, Science Director for the archaeologists. The Titanic remains were Grant Marine Policy Fellow in June Connecticut National Undersea Research first found by Dr. Robert Ballard in 2002, I was exhilarated. I was going to Center (NURC), who would head out to 1985, using towed side scan sonar and get the chance to spend a year of my sea with me later in the year to explore cameras. In 1986 Ballard returned to the career working for the federal govern- seamounts in the mid-Atlantic. That con- site with Alvin to document the state of ment in Washington, DC. It was not until ference was the first of many that I the wrecked ocean liner. As per the five months later in November that I would attend on behalf of Ocean Guidelines for Research, Exploration and would come to DC for a week to inter- Exploration.
    [Show full text]
  • The Development of Autonomous Underwater Vehicles (AUV); a Brief Summary
    The Development of Autonomous Underwater Vehicles (AUV); A Brief Summary D. Richard Blidberg, (blidberg@ausi,org) Autonomous Undersea Systems Institute, Lee New Hampshire, USA Introduction The concept of a submersible vehicle is not a new idea. The first American submarine was called “Turtle.” It was built at Saybrook, Connecticut in 1775 by David Bushnell and his brother, Ezra. The Turtle was a little egg-shaped wooden submarine held together by iron straps. Turtle bobbed like a cork in rough surface winds and seas even though she was lead weighted at the bottom. In this hand and foot-operated contraption, one person could descend by operating a valve to admit water into the ballast tank and ascend with the use of pumps to eject the water. Two flap-type air vents at the top opened when the hatch was clear of water and closed when it was as not. The air supply lasted only 30 minutes. The Turtle's first engagement, which took place in New York Harbor in 1776, was also the first naval battle in history involving a submarine. [Pararas] In November of 1879, the Reverend George W. Garrett designed, what was considered by some to be the world's first practical powered submarine, the “Resurgam.” It was built at the Brittannia Engine Works and Foundry of J. B. Cochran in Birkenhead, England and was powered by a Lamm 'fireless' steam engine, and could travel for some ten hours on power stored in an insulated tank. After these historic underwater vehicles, there have been many more submersibles developed and used operationally for a number of different tasks.
    [Show full text]
  • Effects of Tourism on Herbivore Community Composition in Coral Reefs in the Gulf of Thailand Diplomarbeit
    Effects of Tourism on herbivore community composition in Coral Reefs in the Gulf of Thailand Diplomarbeit vorgelegt von Susanne Pusch Erstgutachter: Prof. Dr. Wilfried Gabriel Zweitgutachter: Prof. Dr. Christian Wild Fakultät für Biologie, Department Biologie II Ludwig-Maximilians-Universität München München, den 16.09.2011 Für meinen Vater, meine Mutter und Lukas 1 Erklärung Ich versichere hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ort, Datum:____________________ Unterschrift:____________________ Kontaktdaten der Betreuer: Prof. Dr. Wilfried Gabriel Ludwig-Maximilians-Universität München / Institute of Ecology / Großhaderner Str. 2 / D-82152 Munich / Email: [email protected] Prof. Dr. Christian Wild Universität Bremen / Leibniz Center for Tropical Marine Ecology / Fahrenheitstr.6 / D-28359 Bremen / Email: [email protected] 2 Danksagung Zunächst möchte ich mich bei Prof. Dr. Christian Wild bedanken, ohne den diese für mich sehr interessante Diplomarbeit nicht zustande gekommen wäre. Vor allem die anfängliche Betreuung bei der Datenaufnahme in Thailand hat mir bei der Erstellung meiner Arbeit sehr geholfen. Auch für die spontane Hilfe von Dr. Anna Fricke, sowie für die Hilfe der Mitarbeiter im Labor des ZMT Bremen möchte ich mich herzlich bedanken. Eine große Hilfe war für mich die Zusammenarbeit mit Hauke Schwieder, Swaantje Bennecke und Kristina Börder bei der Datenaufnahme in Thailand. Durch das freundschaftliche Verhältnis und ihre Hilfsbereitschaft wurde die Arbeit sehr erleichtert, und auch unvorhergesehene Probleme konnten wir gemeinsam bewältigen. Auch durch diese besondere Zusammenarbeit wurde der Aufenthalt für mich zu einem unvergesslichen Erlebnis, wofür ich mich herzlich bedanken will. Mein besonderer Dank gilt Hauke, der nicht nur in Thailand, sondern auch bei der weiteren Arbeit in Bremen eine große Hilfe war.
    [Show full text]
  • Developing Submergence Science for the Next Decade (DESCEND–2016)
    Developing Submergence Science for the Next Decade (DESCEND–2016) Workshop Proceedings January 14-15, 2016 ii Table of Contents ACKNOWLEDGMENTS ............................................................................................................ iv EXECUTIVE SUMMARY ............................................................................................................ 1 BENTHIC ECOSYSTEMS ........................................................................................................... 11 COASTAL ECOSYSTEMS .......................................................................................................... 24 PELAGIC ECOSYSTEMS ........................................................................................................... 28 POLAR SYSTEMS .................................................................................................................... 31 BIOGEOCHEMISTRY ............................................................................................................... 41 ECOLOGY AND MOLECULAR BIOLOGY ................................................................................... 48 GEOLOGY .............................................................................................................................. 53 PHYSICAL OCEANOGRAPHY ................................................................................................... 59 APPENDICES .......................................................................................................................... 65 Appendix
    [Show full text]
  • Classification Performances of Mine Hunting Sonar
    Classification performances of Mine Hunting Sonar : Theory, practical results and operational applications Franck Florin, François van Zeebroeck, Isabelle Quidu, Naig Le Bouffant To cite this version: Franck Florin, François van Zeebroeck, Isabelle Quidu, Naig Le Bouffant. Classification performances of Mine Hunting Sonar : Theory, practical results and operational applications. Undersea Defence Technology (UDT) Europe 2003, Jun 2003, Malmö, Sweden. hal-00504857 HAL Id: hal-00504857 https://hal.archives-ouvertes.fr/hal-00504857 Submitted on 21 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Classification performances of Mine Hunting Sonar : theory, practical results and operational applications F. Florin F. Van Zeebroeck I. Quidu N. Le Bouffant Thales Underwater Systems Route de Sainte Anne du Portzic, 29601 Brest cedex, France Tel: (33) 2 98 31 37 00 E_mail: [email protected] Abstract As low target strength objects can be detected by the new generation of mine hunting sonar systems, more and more non mine like objects are passed on to the classification process. In the past, the mine hunting performance was mainly driven by the performance of the mine detector. With this improved detection capability, the mine hunting system performance is now driven by classification.
    [Show full text]
  • Fishing Gear Used for Its Capture
    Conservation of cetaceans and sea turtles in the Adriatic Sea: status of species and potential conservation measures WP 7 0 NOTE FROM THE EDITORS The overall editorial work for this volume has been carried out by Caterina Maria Fortuna (ISPRA), Drasko Holcer (BWI) & Peter Mackelworth (BWI). Where single chapters or paragraphs were edited by different authors, their authorship is acknowledged accordingly. This report contains data and information collected within the IPA Adriatic Cross-border Cooperation Programme, NETCET project. Some information and data presented in this report is unpublished and was presented here thanks to the courtesy of the relevant project coordinators. Particularly, for the use of the data related to the 2010 Adriatic aerial survey, interested parties should contact Fortuna (ISPRA) & Holcer (BWI), whereas for data on the Italian monitoring programme on bycatch under Regulation (EC) n. 812/2004 requests should be addressed to Fortuna (ISPRA). Preferred citation for this report: Fortuna, C.M., Holcer, D., Mackelworth, P. (eds.) 2015. Conservation of cetaceans and sea turtles in the Adriatic Sea: status of species and potential conservation measures. 135 pages. Report produced under WP7 of the NETCET project, IPA Adriatic Cross-border Cooperation Programme. DISCLAIMER: This report has been produced with the financial assistance of the IPA Adriatic Cross-Border Cooperation Programme. The contents of this report are the sole responsibility of the NETCET project and can under no circumstances be regarded as reflecting the position of the IPA Adriatic Cross-Border Cooperation Programme Authorities. 1 FIRST SECTION: STATE OF THE ART Editors: Caterina Fortuna (ISPRA) & Drasko Holcer (BWI) Chapter 1 – Overview on basic features of the Adriatic Sea 1.1.
    [Show full text]
  • Mir100 User Guide.Book
    October 2017 v.1.02017 v.1.2 with MiR Robot Interface 2.0 User Guide en 11/2017 v.1.0 Copyright and disclaimer All rights reserved. No parts of this manual may be reproduced in any form without the express written permission of Mobile Industrial Robots ApS (MiR). MiR makes no warranties, express or implied, in respect of this document or its contents. In addition, the contents of the document is subject to change without prior notice. Every precaution has been taken in the preparation of this manual. Nevertheless, MiR assumes no responsibility for errors or omissions or any damages resulting from the use of the information contained. Copyright © 2016 - 2017 by Mobile Industrial Robots Contact the manufacturer: Mobile Industrial Robots Emil Neckelmanns Vej 15F DK-5220 Odense SØ www.mir-robots.com Phone: +45 20 377 577 E-mail: [email protected] CVR: 35251235 For more material, go to our website Table of contents 1 About this manual .............................................................................................................3 1.1 Overview......................................................................................................................3 1.2 Document history ........................................................................................................3 1.3 Further information.....................................................................................................3 2 Safety.................................................................................................................................4
    [Show full text]
  • GUERREIRO FACULTY of SCIENCES of the UNIVERSITY of LISBON/FCIENCIAS ID MARE - MARINE and ENVIRONMENTAL SCIENCES CENTRE Brazil, Universidade Federal De Pernambuco Feb
    Why do we need MSP and what triggered MSP initiatives? An historical and evolutionary perspective JOSÉ GUERREIRO FACULTY OF SCIENCES OF THE UNIVERSITY OF LISBON/FCIENCIAS ID MARE - MARINE AND ENVIRONMENTAL SCIENCES CENTRE Brazil, Universidade Federal de Pernambuco Feb. 4-5, 2019 THE VERY FIRST USES OF THE SEA: FISHERIES AND COMMERCE! Brazil Workshop – Feb. 4-5, 2019 2 The first attempts to Govern the Sea From 30 BC to 117 AD the Roman Empire surrounded the Mediterranean, controlling much of its coasts. The Romans then began to refer to this sea as the Mare Nostrum. The period between November and March was considered the most dangerous for navigation, so it was declared Mare Clausum (closed sea), although navigation was probably never effectively banned. In classical law, the sea was not territorialized. However, since the Middle Ages, the maritime republics like the Republic of Genova and the Republic of Venice claimed the "Mare Clausum" in the Mediterranean. Also the Nordic kingdoms and England imposed fees of passage, fishing monopolies and even blockades to foreign ships in the seas neighboring their territories. Brazil Workshop – Feb. 4-5, 2019 3 The Maritime Discoveries and the Mare Clausum With the advent of the Age of Maritime Discovery, between the XV and XVII centuries, maritime and coastal navigation became Oceanic. Thus, concern about the waters focused on maritime routes. The Iberian countries were pioneers in this process, seeking to obtain for themselves, exclusively, the rights on the lands discovered and to discover, within a policy of mercantilism protecting maritime routes. The celebration of the treaty of Alcáçovas in 1479 between the Kingdoms of Portugal and Castile constituted the first formalization of the concept of "Mare Clausum" and was the first of the sort, that regulated the possession of lands not yet discovered.
    [Show full text]