Topological Space - Wikipedia, the Free Encyclopedia Page 1 of 6

Total Page:16

File Type:pdf, Size:1020Kb

Topological Space - Wikipedia, the Free Encyclopedia Page 1 of 6 Topological space - Wikipedia, the free encyclopedia Page 1 of 6 Topological space From Wikipedia, the free encyclopedia Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion. The branch of mathematics that studies topological spaces in their own right is called topology. Contents 1 Definition 1.1 Examples 1.2 Equivalent definitions 2 Comparison of topologies 3 Continuous functions 4 Examples of topological spaces Four examples and two non-examples of topologies on the 5 Topological constructions three-point set {1,2,3}. The bottom-left example is not a 6 Classification of topological topology because the union of {2} and {3} [i.e. {2,3}] is spaces missing; the bottom-right example is not a topology because 7 Topological spaces with algebraic the intersection of {1,2} and {2,3} [i.e. {2}], is missing. structure 8 Topological spaces with order structure 9 Specializations and generalizations 10 See also 11 References 12 External links Definition A topological space is a set X together with τ (a collection of subsets of X) satisfying the following axioms: 1. The empty set and X are in τ. 2. The union of any collection of sets in τ is also in τ. 3. The intersection of any pair of sets in τ is also in τ. The collection τ is called a topology on X. The elements of X are usually called points , though they can be any mathematical objects. A topological space in which the points are functions is called a function space. The sets in τ are called the open sets, and their complements in X are called closed sets. A subset of X may be neither closed nor open, either closed or open, or both. A set that is both closed and open is called a clopen set . http://en.wikipedia.org/wiki/Topological_space 5/23/2011 Topological space - Wikipedia, the free encyclopedia Page 2 of 6 Examples 1. X = {1, 2, 3, 4} and collection τ = {{}, {1, 2, 3, 4}} of only the two subsets of X required by the axioms form a topology, the trivial topology. 2. X = {1, 2, 3, 4} and collection τ = {{}, {2}, {1,2}, {2,3}, {1,2,3}, {1,2,3,4}} of six subsets of X form another topology. 3. X = {1, 2, 3, 4} and collection τ = P(X) (the power set of X) form a third topology, the discrete topology. 4. X = Z, the set of integers, and collection τ equal to all finite subsets of the integers plus Z itself is not a topology, because (for example) the union of all finite sets not containing zero is infinite but is not all of Z, and so is not in τ. Equivalent definitions Main article: Characterizations of the category of topological spaces There are many other equivalent ways to define a topological space. (In other words, each of the following defines a category equivalent to the category of topological spaces above.) For example, using de Morgan's laws, the axioms defining open sets above become axioms defining closed sets: 1. The empty set and X are closed. 2. The intersection of any collection of closed sets is also closed. 3. The union of any pair of closed sets is also closed. Using these axioms, another way to define a topological space is as a set X together with a collection τ of subsets of X satisfying the following axioms: 1. The empty set and X are in τ. 2. The intersection of any collection of sets in τ is also in τ. 3. The union of any pair of sets in τ is also in τ. Under this definition, the sets in the topology τ are the closed sets, and their complements in X are the open sets. Another way to define a topological space is by using the Kuratowski closure axioms, which define the closed sets as the fixed points of an operator on the power set of X. A neighbourhood of a point x is any set that has an open subset containing x. The neighbourhood system at x consists of all neighbourhoods of x. A topology can be determined by a set of axioms concerning all neighbourhood systems. A net is a generalisation of the concept of sequence. A topology is completely determined if for every net in X the set of its accumulation points is specified. Comparison of topologies Main article: Comparison of topologies A variety of topologies can be placed on a set to form a topological space. When every set in a topology τ τ τ τ τ τ 1 is also in a topology 2, we say that 2 is finer than 1, and 1 is coarser than 2. A proof that relies http://en.wikipedia.org/wiki/Topological_space 5/23/2011 Topological space - Wikipedia, the free encyclopedia Page 3 of 6 only on the existence of certain open sets will also hold for any finer topology, and similarly a proof that relies only on certain sets not being open applies to any coarser topology. The terms larger and smaller are sometimes used in place of finer and coarser, respectively. The terms stronger and weaker are also used in the literature, but with little agreement on the meaning, so one should always be sure of an author's convention when reading. The collection of all topologies on a given fixed set X forms a complete lattice: if F = { τα : α in A} is a collection of topologies on X, then the meet of F is the intersection of F, and the join of F is the meet of the collection of all topologies on X that contain every member of F. Continuous functions A function between topological spaces is called continuous if the inverse image of every open set is open. This is an attempt to capture the intuition that there are no "breaks" or "separations" in the function. A homeomorphism is a bijection that is continuous and whose inverse is also continuous. Two spaces are called homeomorphic if there exists a homeomorphism between them. From the standpoint of topology, homeomorphic spaces are essentially identical. In category theory, Top , the category of topological spaces with topological spaces as objects and continuous functions as morphisms is one of the fundamental categories in mathematics. The attempt to classify the objects of this category (up to homeomorphism) by invariants has motivated and generated entire areas of research, such as homotopy theory, homology theory, and K-theory, to name just a few. Examples of topological spaces A given set may have many different topologies. If a set is given a different topology, it is viewed as a different topological space. Any set can be given the discrete topology in which every subset is open. The only convergent sequences or nets in this topology are those that are eventually constant. Also, any set can be given the trivial topology (also called the indiscrete topology), in which only the empty set and the whole space are open. Every sequence and net in this topology converges to every point of the space. This example shows that in general topological spaces, limits of sequences need not be unique. However, often topological spaces must be Hausdorff spaces where limit points are unique. There are many ways of defining a topology on R, the set of real numbers. The standard topology on R is generated by the open intervals. The set of all open intervals forms a base or basis for the topology, meaning that every open set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an open interval of non zero radius about every point in the set. More generally, the Euclidean spaces Rn can be given a topology. In the usual topology on Rn the basic open sets are the open balls. Similarly, C and Cn have a standard topology in which the basic open sets are open balls. Every metric space can be given a metric topology, in which the basic open sets are open balls defined by the metric. This is the standard topology on any normed vector space. On a finite-dimensional vector space this topology is the same for all norms. Many sets of linear operators in functional analysis are endowed with topologies that are defined by specifying when a particular sequence of functions converges to the zero function. Any local field has a topology native to it, and this can be extended to vector spaces over that field. http://en.wikipedia.org/wiki/Topological_space 5/23/2011 Topological space - Wikipedia, the free encyclopedia Page 4 of 6 Every manifold has a natural topology since it is locally Euclidean. Similarly, every simplex and every simplicial complex inherits a natural topology from Rn. The Zariski topology is defined algebraically on the spectrum of a ring or an algebraic variety. On Rn or Cn, the closed sets of the Zariski topology are the solution sets of systems of polynomial equations. A linear graph has a natural topology that generalises many of the geometric aspects of graphs with vertices and edges. The Sierpi ński space is the simplest non-discrete topological space. It has important relations to the theory of computation and semantics. There exist numerous topologies on any given finite set. Such spaces are called finite topological spaces . Finite spaces are sometimes used to provide examples or counterexamples to conjectures about topological spaces in general.
Recommended publications
  • A Guide to Topology
    i i “topguide” — 2010/12/8 — 17:36 — page i — #1 i i A Guide to Topology i i i i i i “topguide” — 2011/2/15 — 16:42 — page ii — #2 i i c 2009 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2009929077 Print Edition ISBN 978-0-88385-346-7 Electronic Edition ISBN 978-0-88385-917-9 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “topguide” — 2010/12/8 — 17:36 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY MAA Guides # 4 A Guide to Topology Steven G. Krantz Washington University, St. Louis ® Published and Distributed by The Mathematical Association of America i i i i i i “topguide” — 2010/12/8 — 17:36 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Paul Zorn, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Patricia B. Humphrey Virginia E. Knight Mark A. Peterson Jonathan Rogness Thomas Q. Sibley Joe Alyn Stickles i i i i i i “topguide” — 2010/12/8 — 17:36 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni- versity of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successfulexpositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition.
    [Show full text]
  • The Topology of Subsets of Rn
    Lecture 1 The topology of subsets of Rn The basic material of this lecture should be familiar to you from Advanced Calculus courses, but we shall revise it in detail to ensure that you are comfortable with its main notions (the notions of open set and continuous map) and know how to work with them. 1.1. Continuous maps “Topology is the mathematics of continuity” Let R be the set of real numbers. A function f : R −→ R is called continuous at the point x0 ∈ R if for any ε> 0 there exists a δ> 0 such that the inequality |f(x0) − f(x)| < ε holds for all x ∈ R whenever |x0 − x| <δ. The function f is called contin- uous if it is continuous at all points x ∈ R. This is basic one-variable calculus. n Let R be n-dimensional space. By Or(p) denote the open ball of radius r> 0 and center p ∈ Rn, i.e., the set n Or(p) := {q ∈ R : d(p, q) < r}, where d is the distance in Rn. A function f : Rn −→ R is called contin- n uous at the point p0 ∈ R if for any ε> 0 there exists a δ> 0 such that f(p) ∈ Oε(f(p0)) for all p ∈ Oδ(p0). The function f is called continuous if it is continuous at all points p ∈ Rn. This is (more advanced) calculus in several variables. A set G ⊂ Rn is called open in Rn if for any point g ∈ G there exists a n δ> 0 such that Oδ(g) ⊂ G.
    [Show full text]
  • Conjugate Convex Functions in Topological Vector Spaces
    Matematisk-fysiske Meddelelser udgivet af Det Kongelige Danske Videnskabernes Selskab Bind 34, nr. 2 Mat. Fys. Medd . Dan. Vid. Selsk. 34, no. 2 (1964) CONJUGATE CONVEX FUNCTIONS IN TOPOLOGICAL VECTOR SPACES BY ARNE BRØNDSTE D København 1964 Kommissionær : Ejnar Munksgaard Synopsis Continuing investigations by W. L . JONES (Thesis, Columbia University , 1960), the theory of conjugate convex functions in finite-dimensional Euclidea n spaces, as developed by W. FENCHEL (Canadian J . Math . 1 (1949) and Lecture No- tes, Princeton University, 1953), is generalized to functions in locally convex to- pological vector spaces . PRINTP_ll IN DENMARK BIANCO LUNOS BOGTRYKKERI A-S Introduction The purpose of the present paper is to generalize the theory of conjugat e convex functions in finite-dimensional Euclidean spaces, as initiated b y Z . BIRNBAUM and W. ORLICz [1] and S . MANDELBROJT [8] and developed by W. FENCHEL [3], [4] (cf. also S. KARLIN [6]), to infinite-dimensional spaces . To a certain extent this has been done previously by W . L . JONES in his Thesis [5] . His principal results concerning the conjugates of real function s in topological vector spaces have been included here with some improve- ments and simplified proofs (Section 3). After the present paper had bee n written, the author ' s attention was called to papers by J . J . MOREAU [9], [10] , [11] in which, by a different approach and independently of JONES, result s equivalent to many of those contained in this paper (Sections 3 and 4) are obtained. Section 1 contains a summary, based on [7], of notions and results fro m the theory of topological vector spaces applied in the following .
    [Show full text]
  • TOPOLOGY and ITS APPLICATIONS the Number of Complements in The
    TOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 55 (1994) 101-125 The number of complements in the lattice of topologies on a fixed set Stephen Watson Department of Mathematics, York Uniuersity, 4700 Keele Street, North York, Ont., Canada M3J IP3 (Received 3 May 1989) (Revised 14 November 1989 and 2 June 1992) Abstract In 1936, Birkhoff ordered the family of all topologies on a set by inclusion and obtained a lattice with 1 and 0. The study of this lattice ought to be a basic pursuit both in combinatorial set theory and in general topology. In this paper, we study the nature of complementation in this lattice. We say that topologies 7 and (T are complementary if and only if 7 A c = 0 and 7 V (T = 1. For simplicity, we call any topology other than the discrete and the indiscrete a proper topology. Hartmanis showed in 1958 that any proper topology on a finite set of size at least 3 has at least two complements. Gaifman showed in 1961 that any proper topology on a countable set has at least two complements. In 1965, Steiner showed that any topology has a complement. The question of the number of distinct complements a topology on a set must possess was first raised by Berri in 1964 who asked if every proper topology on an infinite set must have at least two complements. In 1969, Schnare showed that any proper topology on a set of infinite cardinality K has at least K distinct complements and at most 2” many distinct complements.
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • Chapter 7 Separation Properties
    Chapter VII Separation Axioms 1. Introduction “Separation” refers here to whether or not objects like points or disjoint closed sets can be enclosed in disjoint open sets; “separation properties” have nothing to do with the idea of “separated sets” that appeared in our discussion of connectedness in Chapter 5 in spite of the similarity of terminology.. We have already met some simple separation properties of spaces: the XßX!"and X # (Hausdorff) properties. In this chapter, we look at these and others in more depth. As “more separation” is added to spaces, they generally become nicer and nicer especially when “separation” is combined with other properties. For example, we will see that “enough separation” and “a nice base” guarantees that a space is metrizable. “Separation axioms” translates the German term Trennungsaxiome used in the older literature. Therefore the standard separation axioms were historically named XXXX!"#$, , , , and X %, each stronger than its predecessors in the list. Once these were common terminology, another separation axiom was discovered to be useful and “interpolated” into the list: XÞ"" It turns out that the X spaces (also called $$## Tychonoff spaces) are an extremely well-behaved class of spaces with some very nice properties. 2. The Basics Definition 2.1 A topological space \ is called a 1) X! space if, whenever BÁC−\, there either exists an open set Y with B−Y, CÂY or there exists an open set ZC−ZBÂZwith , 2) X" space if, whenever BÁC−\, there exists an open set Ywith B−YßCÂZ and there exists an open set ZBÂYßC−Zwith 3) XBÁC−\Y# space (or, Hausdorff space) if, whenever , there exist disjoint open sets and Z\ in such that B−YC−Z and .
    [Show full text]
  • Lecture 13: Basis for a Topology
    Lecture 13: Basis for a Topology 1 Basis for a Topology Lemma 1.1. Let (X; T) be a topological space. Suppose that C is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C 2 C such that x 2 C ⊂ U. Then C is the basis for the topology of X. Proof. In order to show that C is a basis, need to show that C satisfies the two properties of basis. To show the first property, let x be an element of the open set X. Now, since X is open, then, by hypothesis there exists an element C of C such that x 2 C ⊂ X. Thus C satisfies the first property of basis. To show the second property of basis, let x 2 X and C1;C2 be open sets in C such that x 2 C1 and x 2 C2. This implies that C1 \ C2 is also an open set in C and x 2 C1 \ C2. Then, by hypothesis, there exists an open set C3 2 C such that x 2 C3 ⊂ C1 \ C2. Thus, C satisfies the second property of basis too and hence, is indeed a basis for the topology on X. On many occasions it is much easier to show results about a topological space by arguing in terms of its basis. For example, to determine whether one topology is finer than the other, it is easier to compare the two topologies in terms of their bases.
    [Show full text]
  • Advance Topics in Topology - Point-Set
    ADVANCE TOPICS IN TOPOLOGY - POINT-SET NOTES COMPILED BY KATO LA 19 January 2012 Background Intervals: pa; bq “ tx P R | a ă x ă bu ÓÓ , / / calc. notation set theory notation / / \Open" intervals / pa; 8q ./ / / p´8; bq / / / -/ ra; bs; ra; 8q: Closed pa; bs; ra; bq: Half-openzHalf-closed Open Sets: Includes all open intervals and union of open intervals. i.e., p0; 1q Y p3; 4q. Definition: A set A of real numbers is open if @ x P A; D an open interval contain- ing x which is a subset of A. Question: Is Q, the set of all rational numbers, an open set of R? 1 1 1 - No. Consider . No interval of the form ´ "; ` " is a subset of . We can 2 2 2 Q 2 ˆ ˙ ask a similar question in R . 2 Is R open in R ?- No, because any disk around any point in R will have points above and below that point of R. Date: Spring 2012. 1 2 NOTES COMPILED BY KATO LA Definition: A set is called closed if its complement is open. In R, p0; 1q is open and p´8; 0s Y r1; 8q is closed. R is open, thus Ø is closed. r0; 1q is not open or closed. In R, the set t0u is closed: its complement is p´8; 0q Y p0; 8q. In 2 R , is tp0; 0qu closed? - Yes. Chapter 2 - Topological Spaces & Continuous Functions Definition:A topology on a set X is a collection T of subsets of X satisfying: (1) Ø;X P T (2) The union of any number of sets in T is again, in the collection (3) The intersection of any finite number of sets in T , is again in T Alternative Definition: ¨ ¨ ¨ is a collection T of subsets of X such that Ø;X P T and T is closed under arbitrary unions and finite intersections.
    [Show full text]
  • On L−Generalized Filters and Nets
    Annals of Fuzzy Mathematics and Informatics Volume x, No. x, (Month 201y), pp. 1{xx @FMI ISSN: 2093{9310 (print version) c Kyung Moon Sa Co. ISSN: 2287{6235 (electronic version) http://www.kyungmoon.com http://www.afmi.or.kr On L−generalized filters and nets G. A. Kamel Received 13 March 2017; Revised 20 April 2017; Accepted 5 May 2017 Abstract. In this paper, we consider the L−generalized filters and L−generalized nets on the non empty universal set X to be a natural generalization of the crisp generalized filters and the crisp generalized nets respectively. In each the crisp and L−generalized cases, the extended and restricted filters (nets) will be obtained respectively. The construction of convergence to limit points of the crisp generalized and L−generalized filters (nets) will be studied respectively. We also show that any crisp generalized net on the set X associates a unique L−generalized net on X; and in general the converse is not true. In addition to that we also show that for any given L−generalized filter there exists the L−generalized net, and the vice-versa is true. Finally, the relations between the convergence of the L−generalized filters and the L−generalized nets will be outlined. Moreover, to support these concepts and relations, the construction of some examples in all sections of paper will be studied. 2010 AMS Classification: 54A40 Keywords: Generalized filter, Generalized nets, L−generalized filter, L−generalized nets, Neighbourhoods generalized filter systems. Corresponding Author: G. A. Kamel ([email protected]) 1. Introduction Zadeh in his famous paper [23] introduced the concept of a fuzzy set A of the non-empty universal set X as a mapping A : X −! [0; 1]: Chang in [4] had first tried to fuzzify the concept of a topology on a non-empty set X as a subfamily of [0; 1]X , satisfying the same axioms of ordinary topology.
    [Show full text]
  • 16. Compactness
    16. Compactness 1 Motivation While metrizability is the analyst's favourite topological property, compactness is surely the topologist's favourite topological property. Metric spaces have many nice properties, like being first countable, very separative, and so on, but compact spaces facilitate easy proofs. They allow you to do all the proofs you wished you could do, but never could. The definition of compactness, which we will see shortly, is quite innocuous looking. What compactness does for us is allow us to turn infinite collections of open sets into finite collections of open sets that do essentially the same thing. Compact spaces can be very large, as we will see in the next section, but in a strong sense every compact space acts like a finite space. This behaviour allows us to do a lot of hands-on, constructive proofs in compact spaces. For example, we can often take maxima and minima where in a non-compact space we would have to take suprema and infima. We will be able to intersect \all the open sets" in certain situations and end up with an open set, because finitely many open sets capture all the information in the whole collection. We will specifically prove an important result from analysis called the Heine-Borel theorem n that characterizes the compact subsets of R . This result is so fundamental to early analysis courses that it is often given as the definition of compactness in that context. 2 Basic definitions and examples Compactness is defined in terms of open covers, which we have talked about before in the context of bases but which we formally define here.
    [Show full text]
  • Chapter 1: Bases for Topologies Contents
    MA3421 2016–17 Chapter 1: Bases for topologies Contents 1.1 Review: metric and topological spaces . .2 1.2 Review: continuity . .7 1.3 Review: limits of sequences . .8 1.4 Base for a topology . 11 1.5 Sub-bases, weak and product topologies . 14 1.6 Neighbourhood bases . 21 1 2 Chapter 1: Bases for topologies 1.1 Review: metric and topological spaces From MA2223 last year, you should know what a metric space is and what the metric topology is. Here is a quick refresher. Definition 1.1.1. Given any set X of points and a function d: X × X ! [0; 1) ⊂ R with these 3 properties: (i) d(z; w) ≥ 0 with equality if and only if z = w; (ii) d(z; w) = d(w; z); (iii) d(z; w) ≤ d(z; v) + d(v; w) (triangle inequality), we say that d is a metric on the space X and we call the combination (X; d) a metric space. Examples 1.1.2. Rn will denote the usual n-dimensional space (over R) and Cn the complex version. We define the (standard) Euclidean distance between pairs of points in Rn by v u n uX 2 d(x; y) = t (xj − yj) j=1 2 3 (abstracting the distance formula from R or R ), for x = (x1; x2; : : : ; xn) and y = (y1; y2; : : : ; yn). For n = 1, recall d(x; y) = jx − yj. n In the case on n-tuples z = (z1; z2; : : : ; zn) and w = (w1; w2; : : : ; wn) 2 C , we also define the standard distance via v u n uX 2 d(z; w) = t jzj − wjj j=1 Recall that for z = x + iy 2 C (with x; y 2 R the real and imaginary parts of z and i2 = −1) the modulus (or absolute value) of such a z is jzj = px2 + y2.
    [Show full text]
  • Solutions to Problem Set 4: Connectedness
    Solutions to Problem Set 4: Connectedness Problem 1 (8). Let X be a set, and T0 and T1 topologies on X. If T0 ⊂ T1, we say that T1 is finer than T0 (and that T0 is coarser than T1). a. Let Y be a set with topologies T0 and T1, and suppose idY :(Y; T1) ! (Y; T0) is continuous. What is the relationship between T0 and T1? Justify your claim. b. Let Y be a set with topologies T0 and T1 and suppose that T0 ⊂ T1. What does connectedness in one topology imply about connectedness in the other? c. Let Y be a set with topologies T0 and T1 and suppose that T0 ⊂ T1. What does one topology being Hausdorff imply about the other? d. Let Y be a set with topologies T0 and T1 and suppose that T0 ⊂ T1. What does convergence of a sequence in one topology imply about convergence in the other? Solution 1. a. By definition, idY is continuous if and only if preimages of open subsets of (Y; T0) are open subsets of (Y; T1). But, the preimage of U ⊂ Y is U itself. Hence, the map is continuous if and only if open subsets of (Y; T0) are open in (Y; T1), i.e. T0 ⊂ T1, i.e. T1 is finer than T0. ` b. If Y is disconnected in T0, it can be written as Y = U V , where U; V 2 T0 are non-empty. Then U and V are also open in T1; hence, Y is disconnected in T1 too. Thus, connectedness in T1 imply connectedness in T0.
    [Show full text]