Topologies of Some New Sequence Spaces, Their Duals, and the Graphical Representations of Neighborhoods ∗ Eberhard Malkowsky A, , Vesna Velickoviˇ C´ B
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Topology of Subsets of Rn
Lecture 1 The topology of subsets of Rn The basic material of this lecture should be familiar to you from Advanced Calculus courses, but we shall revise it in detail to ensure that you are comfortable with its main notions (the notions of open set and continuous map) and know how to work with them. 1.1. Continuous maps “Topology is the mathematics of continuity” Let R be the set of real numbers. A function f : R −→ R is called continuous at the point x0 ∈ R if for any ε> 0 there exists a δ> 0 such that the inequality |f(x0) − f(x)| < ε holds for all x ∈ R whenever |x0 − x| <δ. The function f is called contin- uous if it is continuous at all points x ∈ R. This is basic one-variable calculus. n Let R be n-dimensional space. By Or(p) denote the open ball of radius r> 0 and center p ∈ Rn, i.e., the set n Or(p) := {q ∈ R : d(p, q) < r}, where d is the distance in Rn. A function f : Rn −→ R is called contin- n uous at the point p0 ∈ R if for any ε> 0 there exists a δ> 0 such that f(p) ∈ Oε(f(p0)) for all p ∈ Oδ(p0). The function f is called continuous if it is continuous at all points p ∈ Rn. This is (more advanced) calculus in several variables. A set G ⊂ Rn is called open in Rn if for any point g ∈ G there exists a n δ> 0 such that Oδ(g) ⊂ G. -
TOPOLOGY and ITS APPLICATIONS the Number of Complements in The
TOPOLOGY AND ITS APPLICATIONS ELSEVIER Topology and its Applications 55 (1994) 101-125 The number of complements in the lattice of topologies on a fixed set Stephen Watson Department of Mathematics, York Uniuersity, 4700 Keele Street, North York, Ont., Canada M3J IP3 (Received 3 May 1989) (Revised 14 November 1989 and 2 June 1992) Abstract In 1936, Birkhoff ordered the family of all topologies on a set by inclusion and obtained a lattice with 1 and 0. The study of this lattice ought to be a basic pursuit both in combinatorial set theory and in general topology. In this paper, we study the nature of complementation in this lattice. We say that topologies 7 and (T are complementary if and only if 7 A c = 0 and 7 V (T = 1. For simplicity, we call any topology other than the discrete and the indiscrete a proper topology. Hartmanis showed in 1958 that any proper topology on a finite set of size at least 3 has at least two complements. Gaifman showed in 1961 that any proper topology on a countable set has at least two complements. In 1965, Steiner showed that any topology has a complement. The question of the number of distinct complements a topology on a set must possess was first raised by Berri in 1964 who asked if every proper topology on an infinite set must have at least two complements. In 1969, Schnare showed that any proper topology on a set of infinite cardinality K has at least K distinct complements and at most 2” many distinct complements. -
Generalized Inverse Limits and Topological Entropy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Science, University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Zagreb, 2016. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Supervisors: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Mentori: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016. Acknowledgements First of all, i want to thank my supervisor professor Judy Kennedy for accept- ing a big responsibility of guiding a transatlantic student. Her enthusiasm and love for mathematics are contagious. I thank professor Vlasta Matijevi´c, not only my supervisor but also my role model as a professor of mathematics. It was privilege to be guided by her for master's and doctoral thesis. I want to thank all my math teachers, from elementary school onwards, who helped that my love for math rises more and more with each year. Special thanks to Jurica Cudina´ who showed me a glimpse of math theory already in the high school. I thank all members of the Topology seminar in Split who always knew to ask right questions at the right moment and to guide me in the right direction. I also thank Iztok Baniˇcand the rest of the Topology seminar in Maribor who welcomed me as their member and showed me the beauty of a teamwork. -
On Domain of Nörlund Matrix
mathematics Article On Domain of Nörlund Matrix Kuddusi Kayaduman 1,* and Fevzi Ya¸sar 2 1 Faculty of Arts and Sciences, Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey 2 ¸SehitlerMah. Cambazlar Sok. No:9, Kilis 79000, Turkey; [email protected] * Correspondence: [email protected] Received: 24 October 2018; Accepted: 16 November 2018; Published: 20 November 2018 Abstract: In 1978, the domain of the Nörlund matrix on the classical sequence spaces lp and l¥ was introduced by Wang, where 1 ≤ p < ¥. Tu˘gand Ba¸sarstudied the matrix domain of Nörlund mean on the sequence spaces f 0 and f in 2016. Additionally, Tu˘gdefined and investigated a new sequence space as the domain of the Nörlund matrix on the space of bounded variation sequences in 2017. In this article, we defined new space bs(Nt) and cs(Nt) and examined the domain of the Nörlund mean on the bs and cs, which are bounded and convergent series, respectively. We also examined their inclusion relations. We defined the norms over them and investigated whether these new spaces provide conditions of Banach space. Finally, we determined their a-, b-, g-duals, and characterized their matrix transformations on this space and into this space. Keywords: nörlund mean; nörlund transforms; difference matrix; a-, b-, g-duals; matrix transformations 1. Introduction 1.1. Background In the studies on the sequence space, creating a new sequence space and research on its properties have been important. Some researchers examined the algebraic properties of the sequence space while others investigated its place among other known spaces and its duals, and characterized the matrix transformations on this space. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
Arxiv:1911.05823V1 [Math.OA] 13 Nov 2019 Al Opc Oooia Pcsadcommutative and Spaces Topological Compact Cally Edt E Eut Ntplg,O Ipie Hi Ros Nteothe the in Study Proofs
TOEPLITZ EXTENSIONS IN NONCOMMUTATIVE TOPOLOGY AND MATHEMATICAL PHYSICS FRANCESCA ARICI AND BRAM MESLAND Abstract. We review the theory of Toeplitz extensions and their role in op- erator K-theory, including Kasparov’s bivariant K-theory. We then discuss the recent applications of Toeplitz algebras in the study of solid state sys- tems, focusing in particular on the bulk-edge correspondence for topological insulators. 1. Introduction Noncommutative topology is rooted in the equivalence of categories between lo- cally compact topological spaces and commutative C∗-algebras. This duality allows for a transfer of ideas, constructions, and results between topology and operator al- gebras. This interplay has been fruitful for the advancement of both fields. Notable examples are the Connes–Skandalis foliation index theorem [17], the K-theory proof of the Atiyah–Singer index theorem [3, 4], and Cuntz’s proof of Bott periodicity in K-theory [18]. Each of these demonstrates how techniques from operator algebras lead to new results in topology, or simplifies their proofs. In the other direction, Connes’ development of noncommutative geometry [14] by using techniques from Riemannian geometry to study C∗-algebras, led to the discovery of cyclic homol- ogy [13], a homology theory for noncommutative algebras that generalises de Rham cohomology. Noncommutative geometry and topology techniques have found ample applica- tions in mathematical physics, ranging from Connes’ reformulation of the stan- dard model of particle physics [15], to quantum field theory [16], and to solid-state physics. The noncommutative approach to the study of complex solid-state sys- tems was initiated and developed in [5, 6], focusing on the quantum Hall effect and resulting in the computation of topological invariants via pairings between K- theory and cyclic homology. -
A Symplectic Banach Space with No Lagrangian Subspaces
transactions of the american mathematical society Volume 273, Number 1, September 1982 A SYMPLECTIC BANACHSPACE WITH NO LAGRANGIANSUBSPACES BY N. J. KALTON1 AND R. C. SWANSON Abstract. In this paper we construct a symplectic Banach space (X, Ü) which does not split as a direct sum of closed isotropic subspaces. Thus, the question of whether every symplectic Banach space is isomorphic to one of the canonical form Y X Y* is settled in the negative. The proof also shows that £(A") admits a nontrivial continuous homomorphism into £(//) where H is a Hilbert space. 1. Introduction. Given a Banach space E, a linear symplectic form on F is a continuous bilinear map ß: E X E -> R which is alternating and nondegenerate in the (strong) sense that the induced map ß: E — E* given by Û(e)(f) = ü(e, f) is an isomorphism of E onto E*. A Banach space with such a form is called a symplectic Banach space. It can be shown, by essentially the argument of Lemma 2 below, that any symplectic Banach space can be renormed so that ß is an isometry. Any symplectic Banach space is reflexive. Standard examples of symplectic Banach spaces all arise in the following way. Let F be a reflexive Banach space and set E — Y © Y*. Define the linear symplectic form fiyby Qy[(^. y% (z>z*)] = z*(y) ~y*(z)- We define two symplectic spaces (£,, ß,) and (E2, ß2) to be equivalent if there is an isomorphism A : Ex -» E2 such that Q2(Ax, Ay) = ß,(x, y). A. Weinstein [10] has asked the question whether every symplectic Banach space is equivalent to one of the form (Y © Y*, üy). -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
14. Arbitrary Products
14. Arbitrary products Contents 1 Motivation 2 2 Background and preliminary definitions2 N 3 The space Rbox 4 N 4 The space Rprod 6 5 The uniform topology on RN, and completeness 12 6 Summary of results about RN 14 7 Arbitrary products 14 8 A final note on completeness, and completions 19 c 2018{ Ivan Khatchatourian 1 14. Arbitrary products 14.2. Background and preliminary definitions 1 Motivation In section 8 of the lecture notes we discussed a way of defining a topology on a finite product of topological spaces. That definition more or less agreed with our intuition. We should expect products of open sets in each coordinate space to be open in the product, for example, and the only issue that arises is that these sets only form a basis rather than a topology. So we simply generate a topology from them and call it the product topology. This product topology \played nicely" with the topologies on each of the factors in a number of ways. In that earlier section, we also saw that every topological property we had studied up to that point other than ccc-ness was finitely productive. Since then we have developed some new topological properties like regularity, normality, and metrizability, and learned that except for normality these are also finitely productive. So, ultimately, most of the properties we have studied are finitely productive. More importantly, the proofs that they are finitely productive have been easy. Look back for example to your proof that separability is finitely productive, and you will see that there was almost nothing to do. -
MAT641-Inner Product Spaces
MAT641- MSC Mathematics, MNIT Jaipur Functional Analysis-Inner Product Space and orthogonality Dr. Ritu Agarwal Department of Mathematics, Malaviya National Institute of Technology Jaipur April 11, 2017 1 Inner Product Space Inner product on linear space X over field K is defined as a function h:i : X × X −! K which satisfies following axioms: For x; y; z 2 X, α 2 K, i. hx + y; zi = hx; zi + hy; zi; ii. hαx; yi = αhx; yi; iii. hx; yi = hy; xi; iv. hx; xi ≥ 0, hx; xi = 0 iff x = 0. An inner product defines norm as: kxk = phx; xi and the induced metric on X is given by d(x; y) = kx − yk = phx − y; x − yi Further, following results can be derived from these axioms: hαx + βy; zi = αhx; zi + βhy; zi hx; αyi = αhx; yi hx; αy + βzi = αhx; yi + βhx; zi α, β are scalars and bar denotes complex conjugation. Remark 1.1. Inner product is linear w.r.to first factor and conjugate linear (semilin- ear) w.r.to second factor. Together, this property is called `Sesquilinear' (means one and half-linear). Date: April 11, 2017 Email:[email protected] Web: drrituagarwal.wordpress.com MAT641-Inner Product Space and orthogonality 2 Definition 1.2 (Hilbert space). A complete inner product space is known as Hilbert Space. Example 1. Examples of Inner product spaces n n i. Euclidean Space R , hx; yi = ξ1η1 + ::: + ξnηn, x = (ξ1; :::; ξn), y = (η1; :::; ηn) 2 R . n n ii. Unitary Space C , hx; yi = ξ1η1 + ::: + ξnηn, x = (ξ1; :::; ξn), y = (η1; :::; ηn) 2 C . -
Ideal Convergence and Completeness of a Normed Space
mathematics Article Ideal Convergence and Completeness of a Normed Space Fernando León-Saavedra 1 , Francisco Javier Pérez-Fernández 2, María del Pilar Romero de la Rosa 3,∗ and Antonio Sala 4 1 Department of Mathematics, Faculty of Social Sciences and Communication, University of Cádiz, 11405 Jerez de la Frontera, Spain; [email protected] 2 Department of Mathematics, Faculty of Science, University of Cádiz, 1510 Puerto Real, Spain; [email protected] 3 Department of Mathematics, CASEM, University of Cádiz, 11510 Puerto Real, Spain 4 Department of Mathematics, Escuela Superior de Ingeniería, University of Cádiz, 11510 Puerto Real, Spain; [email protected] * Correspondence: [email protected] Received: 23 July 2019; Accepted: 21 September 2019; Published: 25 September 2019 Abstract: We aim to unify several results which characterize when a series is weakly unconditionally Cauchy (wuc) in terms of the completeness of a convergence space associated to the wuc series. If, additionally, the space is completed for each wuc series, then the underlying space is complete. In the process the existing proofs are simplified and some unanswered questions are solved. This research line was originated in the PhD thesis of the second author. Since then, it has been possible to characterize the completeness of a normed spaces through different convergence subspaces (which are be defined using different kinds of convergence) associated to an unconditionally Cauchy sequence. Keywords: ideal convergence; unconditionally Cauchy series; completeness ; barrelledness MSC: 40H05; 40A35 1. Introduction A sequence (xn) in a Banach space X is said to be statistically convergent to a vector L if for any # > 0 the subset fn : kxn − Lk > #g has density 0. -
Solutions to Problem Set 4: Connectedness
Solutions to Problem Set 4: Connectedness Problem 1 (8). Let X be a set, and T0 and T1 topologies on X. If T0 ⊂ T1, we say that T1 is finer than T0 (and that T0 is coarser than T1). a. Let Y be a set with topologies T0 and T1, and suppose idY :(Y; T1) ! (Y; T0) is continuous. What is the relationship between T0 and T1? Justify your claim. b. Let Y be a set with topologies T0 and T1 and suppose that T0 ⊂ T1. What does connectedness in one topology imply about connectedness in the other? c. Let Y be a set with topologies T0 and T1 and suppose that T0 ⊂ T1. What does one topology being Hausdorff imply about the other? d. Let Y be a set with topologies T0 and T1 and suppose that T0 ⊂ T1. What does convergence of a sequence in one topology imply about convergence in the other? Solution 1. a. By definition, idY is continuous if and only if preimages of open subsets of (Y; T0) are open subsets of (Y; T1). But, the preimage of U ⊂ Y is U itself. Hence, the map is continuous if and only if open subsets of (Y; T0) are open in (Y; T1), i.e. T0 ⊂ T1, i.e. T1 is finer than T0. ` b. If Y is disconnected in T0, it can be written as Y = U V , where U; V 2 T0 are non-empty. Then U and V are also open in T1; hence, Y is disconnected in T1 too. Thus, connectedness in T1 imply connectedness in T0.