Advance Topics in Topology - Point-Set

Total Page:16

File Type:pdf, Size:1020Kb

Advance Topics in Topology - Point-Set ADVANCE TOPICS IN TOPOLOGY - POINT-SET NOTES COMPILED BY KATO LA 19 January 2012 Background Intervals: pa; bq “ tx P R | a ă x ă bu ÓÓ , / / calc. notation set theory notation / / \Open" intervals / pa; 8q ./ / / p´8; bq / / / -/ ra; bs; ra; 8q: Closed pa; bs; ra; bq: Half-openzHalf-closed Open Sets: Includes all open intervals and union of open intervals. i.e., p0; 1q Y p3; 4q. Definition: A set A of real numbers is open if @ x P A; D an open interval contain- ing x which is a subset of A. Question: Is Q, the set of all rational numbers, an open set of R? 1 1 1 - No. Consider . No interval of the form ´ "; ` " is a subset of . We can 2 2 2 Q 2 ˆ ˙ ask a similar question in R . 2 Is R open in R ?- No, because any disk around any point in R will have points above and below that point of R. Date: Spring 2012. 1 2 NOTES COMPILED BY KATO LA Definition: A set is called closed if its complement is open. In R, p0; 1q is open and p´8; 0s Y r1; 8q is closed. R is open, thus Ø is closed. r0; 1q is not open or closed. In R, the set t0u is closed: its complement is p´8; 0q Y p0; 8q. In 2 R , is tp0; 0qu closed? - Yes. Chapter 2 - Topological Spaces & Continuous Functions Definition:A topology on a set X is a collection T of subsets of X satisfying: (1) Ø;X P T (2) The union of any number of sets in T is again, in the collection (3) The intersection of any finite number of sets in T , is again in T Alternative Definition: ¨ ¨ ¨ is a collection T of subsets of X such that Ø;X P T and T is closed under arbitrary unions and finite intersections. Definition: A set X for which a topology has been defined is called a topological space. Example: X “ ta; b; cu T1 “ tØ; X; tau ; ta; buu is a topology on X. T2 “ tØ;Xu is known as the \trivial" topology. T3 “ tall subsets of Xu is known as the \discrete" topology. T4 “ tØ; X; tb; cu ; tcuu has complements of sets in T1. Notice which Tx are subsets of Ty and vice versa. Definition: A set which belongs to T is called an open set. Example: If we let T contain all the sets which, in a calculus sense, we call open - We have \R with the standard [or usual] topology." Example: [Example 3, Page 77 in the text] X is a set. Tf contains all sets whose complements is either X or finite OR contains Ø and all sets whose complement is finite. Recall: pA X BqA “ AA Y BA and pA Y BqA “ AA X BA ADVANCE TOPICS IN TOPOLOGY - POINT-SET 3 Checking condition (2): Suppose tUαu is a collection of sets in Tf . A A Taking the complement of Uα ñ Uα “ Uα ñ which must be finite because A each of the Ui is finite. ¤ ´¤ ¯ £ ` ˘ n A n A A A Checking condition (3): Ui “ Ui each Ui is finite. ñ Ui must ˜i“1 ¸ i“1 be finite. £ ¤ ` ˘ ¤ ` ˘ Basis for a Topology Definition: If X is a set, a basis for a topology T on X is a collection B of subsets of X [called \basis elements"] such that: (1) Every x P X is in at least one set in B (2) If x P X and x P B1 X B2 [where B1;B2 are basis elements], then there is a basis element B3 such that x P B3 Ă B1 X B2 Question: How in fact do you know that you get a topology from basis elements? Examples: [of bases] (i) Open intervals of the form pa; bq are a basis for the standard topology on R. 2 (ii) Interior of circle are a basis for the standard topology in R . (iii) All one-point subsets of X are a basis for the discrete topology. 26 January 2012 Examples: (i) X “ ta; b; c; d; eu, T1 “ tØ; X; tau ; ta; buu, T2 “ tØ; X; tau ; tcu ; ta; bu ; ta; b; cu ; ta; cuu. T2 Ą T1, so T2 is “finer” than T1. i.e., The set that is “finer” has more open sets. We say, \tau is open in T1" which is equivalent to tau P T1. A In T2, tau is open. tau is not closed since tau “ tb; c; d; eu is not open. (ii) On the real number line, T is referred to as the \usual" or \standard" topology on R: (a) Sets in T are sets that are \open" in the calculus sense - i.e., p1; 3q; p0; 8q, and p1; 3q Y p4; 6q. (b) Sets in T are those that are unions of all sets of the from pa; bq where a ă b. 4 NOTES COMPILED BY KATO LA Recall the definition of a basis: A basis for a topology pX; T q is a collection of subsets B such that: (1) @ x P X is in some B P B (2) If x P X and x P B1 X B2, then there is B3 such that x P B3 Ă B1 X B2 Note: Every basis \generates" a topology this way: A subset U is \open" if every element in U satisfies: x P B Ă U for some B P B. Three Classic Lemmas Lemma 1: Every element in T is a union of basis elements. Lemma 2: If pX; T q is a topological space and C is a collection of open sets such that for every open set A, if x P A, then x P C Ă A for some C P C , then C is a basis. Lemma 3: Let B and B1 be bases for T and T 1 on X. Then T 1 is finer than T if and only if for each x and each B P B containing x, there is B1 P B1 such that x P B1 Ă B. Further examples: (i) R` is the \lower limit topology" on R where a basis is the set of all intervals of the form ra; bq where a ă b. Is (0, 1) open in R`? i.e., Can we write (0, 1) as a union of sets of the form ra; bq? 1 1 1 - Yes. (0, 1) = ; 1 Y ; 1 Y ¨ ¨ ¨ Y ; 1 Y ¨ ¨ ¨ 2 3 n „ ˙ „ ˙ „ ˙ How do R` and R compare? i.e., Can we write [0, 1) as a union of sets of the form pa; bq? - No. Consider using the same method as above. If we attempt to include zero, say 1 ´ ; 1 Y ¨ ¨ ¨ , will include zero, but as well as erroneous values less than zero. 100 „ ˙ Every set open in R is open in R`, but not the converse. Thus, R` is finer than R. ADVANCE TOPICS IN TOPOLOGY - POINT-SET 5 (ii) Rk is the so-called \k-topology" where the basis elements are intervals of the form 1 1 1 pa; bq OR pa; bq z k where k “ 1; ; ; ; ¨ ¨ ¨ . How do and compare? 2 3 4 R Rk " * Well, all sets open in R are open in Rk. Are sets open in Rk open in R as well? ? 1 1 1 1 1 i.e., p´1; 1q z k “ p´1; 0q Y ; 1 Y ; Y ; Y ¨ ¨ ¨ . 2 3 2 4 3 ˆ ˙ ˆ ˙ ˆ ˙ This is very close because 0 P left-hand side, but 0 R right-hand side. So Rk is finer than R. How do R` and Rk compare? 1 1 r0; 1q ‰ ; 1 Y ; 1 Y ¨ ¨ ¨ . 2 3 ˆ ˙ ˆ ˙ r0; 1q is open in R`, but not in Rk and p´1; 1q is open in Rk, but not in R`. So R` and Rk are not comparable. i.e., Just like skew lines! A topology on Z: tnu if n is odd Open sets in the basis have two forms: tn ´ 1; n; n ` 1u if n is even " This is the \Digital Line Topology." Is p3; 6q open? - No. p3; 6q “ t3u Y t3; 4; 5u Y t5u Y t5; 6; 7u. In fact, is any set like t6u [\even," in other words] open? - No. But r3; 7s is open: r3; 7s “ t3; 4; 5u Y t5; 6; 7u Note: t3u and t5u are open sets in the basis, but not necessary as they are included in r3; 7s by t3; 4; 5u and t5; 6; 7u respectively in the digital line topology. 6 NOTES COMPILED BY KATO LA 2 February 2012 Basis ñ Topology If we have a basis, we get a topology this way: Definition - Basic Property [BP]: A set A is called open if every element in A is in some basis element which is a subset of A. i.e., Definition of open when given a basis. Note: If B is a basis element, is B open? - Yes! If x P B, then x P B Ă B. basis element Do all sets U that satisfy the basic property form a topology? ljhn (1) Does Ø satisfy BP? - Yes, vacuously. Does X satisfy BP? i.e., If x P X, is there a B so that x P B Ă X?- Yes, by definition of a basis. (2) If tUαu is a collection of sets satisfying BP, does Uα? Since all Uα satisfy BP, α ¤ for each Uα and x P Uα, there is a B such that x P B Ă Uα.
Recommended publications
  • Lecture 13: Basis for a Topology
    Lecture 13: Basis for a Topology 1 Basis for a Topology Lemma 1.1. Let (X; T) be a topological space. Suppose that C is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C 2 C such that x 2 C ⊂ U. Then C is the basis for the topology of X. Proof. In order to show that C is a basis, need to show that C satisfies the two properties of basis. To show the first property, let x be an element of the open set X. Now, since X is open, then, by hypothesis there exists an element C of C such that x 2 C ⊂ X. Thus C satisfies the first property of basis. To show the second property of basis, let x 2 X and C1;C2 be open sets in C such that x 2 C1 and x 2 C2. This implies that C1 \ C2 is also an open set in C and x 2 C1 \ C2. Then, by hypothesis, there exists an open set C3 2 C such that x 2 C3 ⊂ C1 \ C2. Thus, C satisfies the second property of basis too and hence, is indeed a basis for the topology on X. On many occasions it is much easier to show results about a topological space by arguing in terms of its basis. For example, to determine whether one topology is finer than the other, it is easier to compare the two topologies in terms of their bases.
    [Show full text]
  • Math 553 - Topology Todd Riggs Assignment 1 Sept 10, 2014
    Math 553 - Topology Todd Riggs Assignment 1 Sept 10, 2014 Problems: Section 13 - 1, 3, 4, 5, 6; Section 16 - 1, 5, 8, 9; 13.1) Let X be a topological space and let A be a subset of X. Suppose that for each x 2 A there is an open set U containing x such that U ⊂ A. Show that A is open in X. Proof: Since for each x 2 A there exist Ux 2 T such that x 2 Ux and Ux ⊂ A, we have S A = Ux. That is, A is the union of open sets in X and thus by definition of the x2A topology on X; A is open. 13.3) Show that the collection Tc given in example 4 (pg 77) is a topology on the set X. Is the collection T1 = fUjX − U is infinite or empty or all of Xg a topology on X. Proof: PART (1) From example 4 Tc = fUjX − U is countable or is all of Xg. To show that Tc is a topology on X, we must show we meet all 3 conditions of the definition of topology. First, since X −X = ; is countable and X −; = X is all of X we have X and ; 2 Tc. Second, let Uα 2 Tc for α 2 I. We must look at two cases: (1) X − Uα = X for all α and (2) There exist α such that X − Uα is countable. Case (1): X − Uα = X S T This implies Uα = ; for all α. So X − ( Uα) = (X − Uα) = X and thus, α2I α2I S Uα 2 Tc.
    [Show full text]
  • Some Examples and Counterexamples of Advanced Compactness in Topology
    International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 www.ijres.org Volume 9 Issue 1 ǁ 2021 ǁ PP. 10-16 Some Examples and Counterexamples of Advanced Compactness in Topology Pankaj Goswami Department of Mathematics, University of Gour Banga, Malda, 732102, West Bengal, India ABSTRACT: The examples and counter examples are always usefull for better comprehension of underlying concept in a theorem or definition .Compactness has come to be one of the most importent and useful topic in advanced mathematics.This paper is an attempt to fill in some of the information that the standard textbook treatment of compactness leaves out, and giving some constructive significative counterexamples of Advanced Compactness in Topology . KEYWORDS: open cover, compact, connected, topological space, example, counterexamples, continuous function, locally compact, countably compact, limit point compact, sequentially compact, lindelöf , paracompact --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 15-01-2021 Date of acceptance: 30-01-2021 --------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION We begin by presenting some definitions, notations,examples and some theorems that are essential for concept of compactness in advanced topology .For more detailed, see [1-2], [7-10] and others, in references .If X is a closed bounded subset of the real line ℝ, then any family of open sets in ℝ whose union contains X has a finite sub family whose union also contains X . If X is a metric space or topological space in its own right , then the above proposition can be thought as saying that any class of open sets in X whose union is equal to X has a finite subclass whose union is also equal to X.
    [Show full text]
  • 16. Compactness
    16. Compactness 1 Motivation While metrizability is the analyst's favourite topological property, compactness is surely the topologist's favourite topological property. Metric spaces have many nice properties, like being first countable, very separative, and so on, but compact spaces facilitate easy proofs. They allow you to do all the proofs you wished you could do, but never could. The definition of compactness, which we will see shortly, is quite innocuous looking. What compactness does for us is allow us to turn infinite collections of open sets into finite collections of open sets that do essentially the same thing. Compact spaces can be very large, as we will see in the next section, but in a strong sense every compact space acts like a finite space. This behaviour allows us to do a lot of hands-on, constructive proofs in compact spaces. For example, we can often take maxima and minima where in a non-compact space we would have to take suprema and infima. We will be able to intersect \all the open sets" in certain situations and end up with an open set, because finitely many open sets capture all the information in the whole collection. We will specifically prove an important result from analysis called the Heine-Borel theorem n that characterizes the compact subsets of R . This result is so fundamental to early analysis courses that it is often given as the definition of compactness in that context. 2 Basic definitions and examples Compactness is defined in terms of open covers, which we have talked about before in the context of bases but which we formally define here.
    [Show full text]
  • Point Set Topology
    Point Set Topology A. Topological Spaces and Continuous Maps Definition 1.1 A topology on a set X is a collection T of subsets of X satisfying the following axioms: T 1. ∅;X ∈T. T2. {Oα | α ∈ I}⊆T =⇒ α∈IOα ∈T. T3. O; O0 ∈T =⇒ O∩O0 ∈TS. A topological space is a pair (X; T )whereXis a set and T is a topology on X. When the topology T on X under discussion is clear, we simply denote (X; T )by X.Let(X; T ) be a topological space. Members of T are called open sets. (T 3) implies that a finite intersection of open sets is open. Examples 1. Let X be a set. The power set 2X of X is a topology on X and is called the discrete topology on X. The collection I = {∅;X} is also a topology on X and is called the indiscrete topology on X. 2. Let (X; d) be a metric space. Define O ⊆ X to be open if for any x ∈ O, there exists an open ball B(x; r) lying inside O. Then, Td = {O ⊆ X | O is open} ∪ {∅} is a topology on X. Td is called the topology induced by the metric d. 3. Since Rn is a metric space with the usual metric: n d((x ; :::; x ); (y ; :::; y )) = (x − y )2; 1 n 1 n v i i ui=1 uX t Rn has a topology U induced by d. This topology on Rn is called the usual topology. 4. Let X be an infinite set.
    [Show full text]
  • MATH 411 HOMEWORK 3 SOLUTIONS 2.17.6. Let A, B, and A
    MATH 411 HOMEWORK 3 SOLUTIONS ADAM LEVINE 2.17.6. Let A, B, and Aα denote subsets of a space X. (a) Show that if A ⊂ B, then A¯ ⊂ B¯. By definition, A¯ is the intersection of all closed sets containing A. Since B¯ is a closed set that contains B and hence A, it must therefore contain A¯. (b) Show that A [ B = A¯ [ B¯. The set A [ B is a closed set that contains A [ B, so it contains both A and B, and therefore it contains both A¯ and B¯. Therefore, A [ B ⊃ A¯ [ B¯. Conversely, A¯ [ B¯ is a closed set (since it is the union of two closed sets) that contains A [ B, so it contains A [ B. (Note that we had to use the fact that finite intersections of closed sets are closed!) S S ¯ (c) Show that Aα ⊃ Aα; give an example where equality fails. S Just as in (b), the set Aα is a closed set that contains each Aα, so it contains each ¯ S ¯ Aα, and thus it contains Aα. (But we can't do the converse because an arbitrary union of closures isn't necessarily closed!) As a counterexample, let A be the closed set [ 1 ; 1] ⊂ . Then S A¯ = S A = i i R i2N i i2N i (0; 1], while S A = [0; 1]. i2N i 2.17.11. Show that the product of two Hausdorff spaces is Hausdorff. Let X and Y be Hausdorff spaces. For any two distinct points (x; y) and (x0; y0) in X × Y , we may assume that they differ in at least one coordinate.
    [Show full text]
  • Math 131: Introduction to Topology 1
    Math 131: Introduction to Topology 1 Professor Denis Auroux Fall, 2019 Contents 9/4/2019 - Introduction, Metric Spaces, Basic Notions3 9/9/2019 - Topological Spaces, Bases9 9/11/2019 - Subspaces, Products, Continuity 15 9/16/2019 - Continuity, Homeomorphisms, Limit Points 21 9/18/2019 - Sequences, Limits, Products 26 9/23/2019 - More Product Topologies, Connectedness 32 9/25/2019 - Connectedness, Path Connectedness 37 9/30/2019 - Compactness 42 10/2/2019 - Compactness, Uncountability, Metric Spaces 45 10/7/2019 - Compactness, Limit Points, Sequences 49 10/9/2019 - Compactifications and Local Compactness 53 10/16/2019 - Countability, Separability, and Normal Spaces 57 10/21/2019 - Urysohn's Lemma and the Metrization Theorem 61 1 Please email Beckham Myers at [email protected] with any corrections, questions, or comments. Any mistakes or errors are mine. 10/23/2019 - Category Theory, Paths, Homotopy 64 10/28/2019 - The Fundamental Group(oid) 70 10/30/2019 - Covering Spaces, Path Lifting 75 11/4/2019 - Fundamental Group of the Circle, Quotients and Gluing 80 11/6/2019 - The Brouwer Fixed Point Theorem 85 11/11/2019 - Antipodes and the Borsuk-Ulam Theorem 88 11/13/2019 - Deformation Retracts and Homotopy Equivalence 91 11/18/2019 - Computing the Fundamental Group 95 11/20/2019 - Equivalence of Covering Spaces and the Universal Cover 99 11/25/2019 - Universal Covering Spaces, Free Groups 104 12/2/2019 - Seifert-Van Kampen Theorem, Final Examples 109 2 9/4/2019 - Introduction, Metric Spaces, Basic Notions The instructor for this course is Professor Denis Auroux. His email is [email protected] and his office is SC539.
    [Show full text]
  • Basic Exam: Topology August 31, 2007 Answer five of the Seven Questions
    Department of Mathematics and Statistics University of Massachusetts Basic Exam: Topology August 31, 2007 Answer five of the seven questions. Indicate clearly which five ques- tions you want graded. Justify your answers. Passing standard: For Master’s level, 60% with two questions essentially complete. For Ph.D. level, 75% with three questions essentially complete. Let C(X, Y ) denote the set of continuous functions from topological spaces X to Y. Let R denote the real line with the standard topology. (1) (a) Give an example of a space which is Hausdorff, locally-connected, and not connected. (b) Give an example of a space which is Hausdorff, path-connected, and not locally path-connected. x (2) Consider the sequence fn(x) = sin( n ). Determine whether or not the sequence converges in each of the following topologies of C(R, R): the uniform topology, the compact-open topology, and the point-open (pointwise convergence) topology. (3) Let X = R/Z be the quotient space where the integers Z ⊂ R are identified to a single point. Prove that X is connected, Hausdorff, and non-compact. (4) Prove the Uniform Limit Theorem: “Let X be any topological space and Y a metric space. Let fn ∈ C(X, Y ) be a sequence which converges uniformly to f. Then f ∈ C(X, Y ).” (5) (a) Let f : X → Y be a quotient map, where Y is connected. Suppose that for all y ∈ Y , f −1(y) is connected. Show that X is connected. (b) Let g : A → B be continuous, where B is path-connected. Suppose that for all b ∈ B, g−1(b) is path-connected.
    [Show full text]
  • MATH 411 HOMEWORK 2 SOLUTIONS 2.13.3. Let X Be a Set
    MATH 411 HOMEWORK 2 SOLUTIONS ADAM LEVINE 2.13.3. Let X be a set, and let Tc = fU ⊂ X j X − U is countable or all of Xg T1 = fU ⊂ X j X − U is infinite or empty or all of Xg: Show that Tc is a topology. Is T1 a topology? For Tc, it is clear that ; and X are in Tc. If Uα is any collection of sets in Tc, then [ \ X − Uα = (X − Uα); α α which is an intersection of countable sets, hence countable. Likewise, if U1;:::;Uk are sets in Tc, then k k \ [ X − Uα = (X − Uα); i=1 i=1 which is a finite union of countable sets, hence countable. (Cf. Example 3 on page 77.) We claim that T1 is not a topology provided that X is an infinite set. (If X is finite, then T1 is just the indiscrete topology.) Choose some x0 2 X, and consider all of the 1-point sets fxg for x 6= x0. These sets all have infinite complement. On the other hand, the union S fxg equals X − fx g, which has complement fx g, x6=x0 0 0 so it is not open. 2.13.6. Show that the topologies of R` and RK are not comparable. The set [2; 3) is open in R`, but it is not open in RK ; any open set in RK containing 2 must contain an interval (2 − , 2 + ) for some > 0. The set (−1; 1) − K is open in RK , but it is not open in R`, since any open set in R` containing 0 must contain an interval [0; ) for some > 0, and therefore contain elements of K.
    [Show full text]
  • Chapter 8 Ordered Sets
    Chapter VIII Ordered Sets, Ordinals and Transfinite Methods 1. Introduction In this chapter, we will look at certain kinds of ordered sets. If a set \ is ordered in a reasonable way, then there is a natural way to define an “order topology” on \. Most interesting (for our purposes) will be ordered sets that satisfy a very strong ordering condition: that every nonempty subset contains a smallest element. Such sets are called well-ordered. The most familiar example of a well-ordered set is and it is the well-ordering property that lets us do mathematical induction in In this chapter we will see “longer” well ordered sets and these will give us a new proof method called “transfinite induction.” But we begin with something simpler. 2. Partially Ordered Sets Recall that a relation V\ on a set is a subset of \‚\ (see Definition I.5.2 ). If ÐBßCÑ−V, we write BVCÞ An “order” on a set \ is refers to a relation on \ that satisfies some additional conditions. Order relations are usually denoted by symbols such asŸ¡ß£ , , or . Definition 2.1 A relation V\ on is called: transitive ifÀ a +ß ,ß - − \ Ð+V, and ,V-Ñ Ê +V-Þ reflexive ifÀa+−\+V+ antisymmetric ifÀ a +ß , − \ Ð+V, and ,V+ Ñ Ê Ð+ œ ,Ñ symmetric ifÀ a +ß , − \ +V, Í ,V+ (that is, the set V is “symmetric” with respect to thediagonal ? œÖÐBßBÑÀB−\ש\‚\). Example 2.2 1) The relation “œ\ ” on a set is transitive, reflexive, symmetric, and antisymmetric. Viewed as a subset of \‚\, the relation “ œ ” is the diagonal set ? œÖÐBßBÑÀB−\×Þ 2) In ‘, the usual order relation is transitive and antisymmetric, but not reflexive or symmetric.
    [Show full text]
  • Mathematics 5853 Examination I September 28, 2004
    Mathematics 5853 Name (please print) Examination I September 28, 2004 Instructions: Give brief, clear answers. I. Let X = R and let T = {U ⊆ X | ∃M ∈ R, (M, ∞) ⊆ U} ∪ {∅} (where (M, ∞) means {r ∈ R | r > M}). (10) 1. Prove that T is a topology on X (you do not need to worry about special cases involving the empty set). X is open since (0, ∞) ⊂ X. The empty set is open by definition of T . Suppose {Uα}α∈A are open sets. Choose a (nonempty) Uα0 . For some M,(M, ∞) ⊆ Uα0 . Therefore (M, ∞) ⊆ ∪α∈AUα, so ∪α∈AUα is also open. Suppose {Uα1 ,...,Uαn } are open. For each i, choose Mi with (Mi, ∞) ⊆ Uαi . Put M equal to the n n maximum of the Mi, then (M, ∞) ⊆ ∩i=1Uαi , so ∩i=1Uαi is open. 2. Prove that with this topology, X is not Hausdorff. In fact, no two points can have disjoint open neighborhoods. For if U and V were open neighborhoods of two distinct points, then as in part 3 of the proof that T is a topology, there exists an interval (M, ∞) ⊆ U ∩ V , and U and V are not disjoint. II. Let S be a collection of subsets of a set X, such that X = ∪S∈S S. Define B = {S1 ∩ S2 ∩ · · · ∩ Sn | Si ∈ S}, (10) that is, the collection of all subsets of X that are intersections of finitely many elements of S. Verify that B is a basis. By hypothesis, X = ∪S∈S S. Let B1 = S1 ∩ · · · ∩ Sm and B2 = T1 ∩ · · · ∩ Tn be two elements of B, and suppose that x ∈ B1 ∩ B2.
    [Show full text]
  • General Topology. Part 1: First Concepts
    A Review of General Topology. Part 1: First Concepts Wayne Aitken∗ March 2021 version This document gives the first definitions and results of general topology. It is the first document of a series which reviews the basics of general topology. Other topics such as Hausdorff spaces, metric spaces, connectedness, and compactness will be covered in further documents. General topology can be viewed as the mathematical study of continuity, con- nectedness, and related phenomena in a general setting. Such ideas first arise in particular settings such as the real line, Euclidean spaces (including infinite di- mensional spaces), and function spaces. An initial goal of general topology is to find an abstract setting that allows us to formulate results concerning continuity and related concepts (convergence, compactness, connectedness, and so forth) that arise in these more concrete settings. The basic definitions of general topology are due to Fr`echet and Hausdorff in the early 1900's. General topology is sometimes called point-set topology since it builds directly on set theory. This is in contrast to algebraic topology, which brings in ideas from abstract algebra to define algebraic invariants of spaces, and differential topology which considers topological spaces with additional structure allowing for the notion of differentiability (basic general topology only generalizes the notion of continuous functions, not the notion of dif- ferentiable function). We approach general topology here as a common foundation for many subjects in mathematics: more advanced topology, of course, including advanced point-set topology, differential topology, and algebraic topology; but also any part of analysis, differential geometry, Lie theory, and even algebraic and arith- metic geometry.
    [Show full text]