Some Examples and Counterexamples of Advanced Compactness in Topology

Total Page:16

File Type:pdf, Size:1020Kb

Some Examples and Counterexamples of Advanced Compactness in Topology International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 www.ijres.org Volume 9 Issue 1 ǁ 2021 ǁ PP. 10-16 Some Examples and Counterexamples of Advanced Compactness in Topology Pankaj Goswami Department of Mathematics, University of Gour Banga, Malda, 732102, West Bengal, India ABSTRACT: The examples and counter examples are always usefull for better comprehension of underlying concept in a theorem or definition .Compactness has come to be one of the most importent and useful topic in advanced mathematics.This paper is an attempt to fill in some of the information that the standard textbook treatment of compactness leaves out, and giving some constructive significative counterexamples of Advanced Compactness in Topology . KEYWORDS: open cover, compact, connected, topological space, example, counterexamples, continuous function, locally compact, countably compact, limit point compact, sequentially compact, lindelöf , paracompact --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 15-01-2021 Date of acceptance: 30-01-2021 --------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION We begin by presenting some definitions, notations,examples and some theorems that are essential for concept of compactness in advanced topology .For more detailed, see [1-2], [7-10] and others, in references .If X is a closed bounded subset of the real line ℝ, then any family of open sets in ℝ whose union contains X has a finite sub family whose union also contains X . If X is a metric space or topological space in its own right , then the above proposition can be thought as saying that any class of open sets in X whose union is equal to X has a finite subclass whose union is also equal to X. The topological space for which the conclusion of this theorem holds are known as compact topological space. In particular that collection of open sets is called as an open cover. Defination 1.1. Let X be a topological space and A be a subset of X. An open cover of A is collection = {Gi} of open sets in X whose union contains A; that is, A subcollection ʹ of whose union is also contains A; that is, is called as subcover of A in . Example 1.2. Let A = (0,1) ⊂ ℝ then for each n ℕ , Gn = ( is an open cover of A that is . Defination 1.3. : A topological space X is said to be compact if every open covering of X contains a finite subcover that also covers X. Theorem 1.4.A subser A of R is compact iff A is bounded and closed.This is known as Heine- Borel theorem. In particular a subset of ℝ is compact iff it is closed and bounded. The proof is given in [10] and also in others. Example 1.5. 1. Any closed bounded subset [a, b] ⊂ ℝ is compact by Heine –Borel theorem. 2.The real line ℝ is not compact,for it, each n ℕ ,Gn = (-n, n) is an open cover which has no finite sub cover. 3. A = (0,1) ⊂ ℝ then for each n ℕ , Gn = ( is an open cover of A that is , clearly it has no finite sub cover, so A is not compact. In particular for any open interval A = (a, b) ⊂ ℝ , for each n ℕ ; Gn = (a -ϵn, b − ϵn),ϵn = ,where c be any point in (a,b); is an open cover of (a, b) which has no finite subcover. www.ijres.org 10 | Page Some Examples and Counterexamples in Advanced Compactness of Topology 4.Any finite discrete topological space is compact.As there are only finite number of open sets. 5.Any set X with cofinite topology is compact. For it , if U is open in X ,then X-U is finite and so X-U can be covered by a finite number of open sets say G1, G2, ..., Gn . Then for the collection Cn= {U, G1, G2, ..., Gn } is a open cover for X which is also finite. Hence any set X with cofinite topology is compact. 6.Cantor set is compact scince it is closed bounded subset of ℝ . Theorem 1.6. Every closed subset of compact space is compact. Proof is given in [10] and also in others. Theorem 1.7. Continuous image of compact spaces is compact. Proof is given in [10] and also in others. Definition1.8. A topological space X is said to be sequentially compact iff every sequence in X has a convergent sub-sequence. Example 1.9. 1.The closed interval [a,b] in ℝ is sequentially compact ,since any sequence in [a,b] is bounded ,and thus has a convergent subsequence.In particular compact metric spaces is sequentially compact. 2.The real line ℝ is not sequentially compact.The sequence {n} has no convergent sub-sequence.So in particular ℝ is not sequentially compact. 3.Any finite discrete space compact so sequentially compact but infinite discrete space is not sequentially compact. 4.The interval (0,1) is not sequentially compact .The sequence { } has no convergence sub-sequence in (0,1). Definition1.10. A topological space X is said to be locally compact iff every point in X has at least one nbd whose closure is compact. Example 1.11. 1.The real line ℝ is locally compact .For any point x in R there is an open interval (a,b) containing x whose closure [a,b] is compact. 2.In particular ℝ is locally compact. 3.The metric space ℚ set of all rational numbers with usual metric is not locally compact.For it closed intervals [a,b]∩ ℚ in ℚ are not compact ,it follows that all compact subsets of ℚ have empty interior.Hence ℚ is in locally compact. 4.ℝ ,ℝ with lower limit topology constructed from the interval {[a,b): a<b} is not locally compact as every compact subset of ℝ is countable , so has empty interior . 5.Any discrete metric space is locally compact,science for each point has a ndb whose closure is compact. Definition1.12. A topological space X is said to be countably compact iff every countable open cover of X has a finite subcover. Example 1.13. 1. Any compact spaces are the example of countably compact space. Definition1.14. A topological space X is said to be limit point compact(Bolzano- Weierstrass Property ) BWP if each infinite subset of X has a limit point in X. Example 1.15. 1.Every closed bounded interval [a,b] of ℝ , is limit point compact as each infinite subset of it has a limit point in it. 2.ℝ is not limit point compact ,as set of integers has no limit point on it. 3.In particular any compact spaces are limit point compact. Definition1.16. A collection = {Gi : i Λ } of subsets of a topological space X is said to be locally finite (nbd-finite) if each point x in X has an open neighbourhood having non-empty intersection with at most finitely many members of . Example 1.17. Let X = ℝ ∪ {0} , where ℝ is the set of all positive real numbers.Let X have the usal www.ijres.org 11 | Page Some Examples and Counterexamples in Advanced Compactness of Topology topology .Let An = { x X : x≥ n} for each non-negative integer n . Consider collection = { An :n=0,1,2,…}.Then is a locally- finite family in X. Definitin1.18. Let be a covering of a topological space X. A collection is called a refinement of if covers X and each member of is contained in some member of . Definition1.19. A topological space X is said to be Paracompact if every open covering of X has a locally finite refinement which is also an open covering of X. Example 1.20. 1.Every compact space is paracompact .For it let be an open cover of a compact space X, then contains a finite open subcover for X, that is has a finite open refinement , which covers X ⇒ has a locally finite refinement wcich covers X. 2.Every metric space is para compact space.Proof is given by A.H.Stone see in [9]. 3.Any infinite set carrying the particular point topology is not paracompact (see [10] for the definition of particular point topology) , in this case there is a open cover which has no nbd finite refinement. 4.The sorgenfrey lines is paracompact ,but not compact neither locally compact. 5.Every discrete space is paracompact as for it ,every open cover of it has a nbd-finite open refinement. 6.The real line ℝ is paracompact,but not compact.For it by A.H Stone [9], every metrizable space is paracompact. Definition1.21. A topological space X is said to be Lindel¨of if and only if every open cover of X X has a countable sub-cover. Example 1.22. Every compact space is Lindel¨of . For it if X is compact ,then every open cover has finite subcover i.e has countable sub-cover. Theorem1.23. Let (X, d) be a metric space.Then the following statements are equivalent 1.(X, d) compact. 2.(X, d) is countably compact. 3.(X, d) has the Bolzano-Weierstrass property. 4.(X, d) is sequentially compact. The proof is obvious ,see[10] Theorem1.24. For a topological spaces , compactness ⇒ lindelof sequentially compact ⇒ countabe compact compactness ⇒ countably compact. Proof is given see in [2]. II. COUNTEREXAMPLES 2.1.A non compact subset ℝ of in which open cover admits finite subcover. Let (0, 1) as subset of a ℝ and take Cn := (0, - ) ∪ ( , 1) is open cover of (0, 1) such that (0,1) ∪ . Now also we can see that (0,1) ⊂ ∪ ∪ ∪ .
Recommended publications
  • Sequential Compactness Vs
    SEQUENTIAL COMPACTNESS VS. COUNTABLE COMPACTNESS Angelo Bella and Peter Nyikos Abstract. The general question of when a countably compact topological space is sequentially compact, or has a nontrivial convergent sequence, is studied from the viewpoint of basic cardinal invariants and small uncountable cardinals. It is shown that the small uncountable cardinal h is both the least cardinality and the least net weight of a countably compact space that is not sequentially compact, and that it is also the least hereditary Lindel¨of degree in most published models. Similar results, some definitive, are given for many other cardinal invariants. Special attention is paid to compact spaces. It is also shown that MA(!1) for σ-centered posets is equiv- alent to every countably compact T1 space with an !-in-countable base being second countable, and also to every compact T1 space with such a base being sequential. No separation axioms are assumed unless explicitly stated. 1. Introduction This article continues the theme, begun in [Ny], of sequential compactness (and lack thereof) in countably compact topological spaces, without the usual assumption of separation axioms. We do mention (and, in a few places, prove) some results involving the separation axioms T1, KC, Hausdorff (T2) and T3 (= T2 and regular) but we will always spell these axioms out when they are assumed. In [Ny] one of us gave some reasons for taking this unusual (for him) step. These will not be repeated here, but there is an additional reason, which is behind prac- tically all the results in this paper: quite unexpectedly, we have found countably compact spaces to be quite amenable to the techniques of modern set theory even in a general topological setting.
    [Show full text]
  • Lecture 13: Basis for a Topology
    Lecture 13: Basis for a Topology 1 Basis for a Topology Lemma 1.1. Let (X; T) be a topological space. Suppose that C is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C 2 C such that x 2 C ⊂ U. Then C is the basis for the topology of X. Proof. In order to show that C is a basis, need to show that C satisfies the two properties of basis. To show the first property, let x be an element of the open set X. Now, since X is open, then, by hypothesis there exists an element C of C such that x 2 C ⊂ X. Thus C satisfies the first property of basis. To show the second property of basis, let x 2 X and C1;C2 be open sets in C such that x 2 C1 and x 2 C2. This implies that C1 \ C2 is also an open set in C and x 2 C1 \ C2. Then, by hypothesis, there exists an open set C3 2 C such that x 2 C3 ⊂ C1 \ C2. Thus, C satisfies the second property of basis too and hence, is indeed a basis for the topology on X. On many occasions it is much easier to show results about a topological space by arguing in terms of its basis. For example, to determine whether one topology is finer than the other, it is easier to compare the two topologies in terms of their bases.
    [Show full text]
  • Advance Topics in Topology - Point-Set
    ADVANCE TOPICS IN TOPOLOGY - POINT-SET NOTES COMPILED BY KATO LA 19 January 2012 Background Intervals: pa; bq “ tx P R | a ă x ă bu ÓÓ , / / calc. notation set theory notation / / \Open" intervals / pa; 8q ./ / / p´8; bq / / / -/ ra; bs; ra; 8q: Closed pa; bs; ra; bq: Half-openzHalf-closed Open Sets: Includes all open intervals and union of open intervals. i.e., p0; 1q Y p3; 4q. Definition: A set A of real numbers is open if @ x P A; D an open interval contain- ing x which is a subset of A. Question: Is Q, the set of all rational numbers, an open set of R? 1 1 1 - No. Consider . No interval of the form ´ "; ` " is a subset of . We can 2 2 2 Q 2 ˆ ˙ ask a similar question in R . 2 Is R open in R ?- No, because any disk around any point in R will have points above and below that point of R. Date: Spring 2012. 1 2 NOTES COMPILED BY KATO LA Definition: A set is called closed if its complement is open. In R, p0; 1q is open and p´8; 0s Y r1; 8q is closed. R is open, thus Ø is closed. r0; 1q is not open or closed. In R, the set t0u is closed: its complement is p´8; 0q Y p0; 8q. In 2 R , is tp0; 0qu closed? - Yes. Chapter 2 - Topological Spaces & Continuous Functions Definition:A topology on a set X is a collection T of subsets of X satisfying: (1) Ø;X P T (2) The union of any number of sets in T is again, in the collection (3) The intersection of any finite number of sets in T , is again in T Alternative Definition: ¨ ¨ ¨ is a collection T of subsets of X such that Ø;X P T and T is closed under arbitrary unions and finite intersections.
    [Show full text]
  • On Countably Paracompact Spaces
    ON COUNTABLY PARACOMPACT SPACES C. H. DOWKER LET X be a topological space, that is, a space with open sets such that the union of any collection of open sets is open and the intersection of any finite number of open sets is open. A covering of X is a collection of open sets whose union is X. The covering is called countable if it consists of a countable col­ lection of open sets or finite if it consists of a finite collection of open sets ; it is called locally finite if every point of X is contained in some open set which meets only a finite number of sets of the covering. A covering 53 is called a refinement of a covering U if every open set of 25 is contained in some open set of U. The space X is called countably paracompact if every countable covering has a locally finite refinement. The purpose of this paper is to study the properties of countably para­ compact spaces. The justification of the new concept is contained in Theorem 4 below, where it is shown that, for normal spaces, countable paracornpactness is equivalent to two other properties of known topological importance. 1. A space X is called compact if every covering has a finite refinement, paracompact if every covering has a locally finite refinement, and countably compact if every countable covering has a finite refinement. It is clear that every compact, paracompact or countably compact space is countably para­ compact. Just as one shows1 that every closed subset of a compact [para­ compact, countably compact] space is compact [paracompact, countably com­ pact], so one can show that every closed subset of a countably paracompact space is countably paracompact.
    [Show full text]
  • Math 553 - Topology Todd Riggs Assignment 1 Sept 10, 2014
    Math 553 - Topology Todd Riggs Assignment 1 Sept 10, 2014 Problems: Section 13 - 1, 3, 4, 5, 6; Section 16 - 1, 5, 8, 9; 13.1) Let X be a topological space and let A be a subset of X. Suppose that for each x 2 A there is an open set U containing x such that U ⊂ A. Show that A is open in X. Proof: Since for each x 2 A there exist Ux 2 T such that x 2 Ux and Ux ⊂ A, we have S A = Ux. That is, A is the union of open sets in X and thus by definition of the x2A topology on X; A is open. 13.3) Show that the collection Tc given in example 4 (pg 77) is a topology on the set X. Is the collection T1 = fUjX − U is infinite or empty or all of Xg a topology on X. Proof: PART (1) From example 4 Tc = fUjX − U is countable or is all of Xg. To show that Tc is a topology on X, we must show we meet all 3 conditions of the definition of topology. First, since X −X = ; is countable and X −; = X is all of X we have X and ; 2 Tc. Second, let Uα 2 Tc for α 2 I. We must look at two cases: (1) X − Uα = X for all α and (2) There exist α such that X − Uα is countable. Case (1): X − Uα = X S T This implies Uα = ; for all α. So X − ( Uα) = (X − Uα) = X and thus, α2I α2I S Uα 2 Tc.
    [Show full text]
  • A Absolutely Countably Compact Space, 286 Accumulation Point, 81 of a Sequence of Sets, 80 Action, 218, 220, 222–228, 231
    Index A B Absolutely countably compact space, 286 Baire property, 9, 69 Accumulation point, 81 Baire space, 9–11 of a sequence of sets, 80 Banach space, 80 Action, 218, 220, 222–228, 231, 234, 241, Base for the closed sets, 133 242 Base Tree Theorem, 274 Bernstein set, 158 algebraic, 220, 223, 234, 236 b f -group, 221, 224, 226–228 b f -action, 226 b f -space, 108, 122, 124, 125, 221, 222, 224, diagonal, 222 226–228, 231, 237 effective, 232 Birkhoff–Kakutani theorem, 39 faithful, 232 b-lattice, 164–167 free, 231 Bounded linearization of, 241 lattice, 164 trivial, 218, 229, 230, 240 neighborhood, 123 AD, see almost disjoint family open subset, 110 subset, 107–113, 115–119, 121–126, Additive group of the reals, 242 128–133, 136, 137, 139–142, 144–146, Admissible topology, 234 158, 221, 222 Alexandroff one-point compactification, 233 Boundedness, 111 Algebra of continuous functions, 221 Bounding number, 268 Almost compact space, 16, 17, 266 br -space, 108, 122, 124, 128, 129, 137 Almost disjoint family, 7, 8, 17, 28, 36, 195, 253–261, 266, 269, 271, 272, 280– 282, 284, 286 C Almost dominance with respect to a weak Canonical η-layered family, 263 selection, 280 Canonical open set in a GO-space, 170, 173 Almost metrizable topological group, 60 C-compact subset, 34, 36, 108, 115–117, Almost periodic point, 242 126–129, 137, 140, 184 ˇ Almost periodic subset, 242 Cech-complete space, 174–176, 181 Cech-completeˇ topological group, 181 Almost pseudo-ω-bounded space, 19, 20 Cellular family, 19 Almost P-space, 176 Cellularity, 49 (α, ) D -pseudocompact space, 77, 78, 85 C-embedded subset, 2–4, 15, 16, 18, 26, 110, Arcwise connected space, 184 122, 225 Arzelà-Ascoli theorem, 108, 239, 240 C∗-embedded subset, 2, 13, 17, 24, 25 Ascoli theorem, 80 Centered family, 275 © Springer International Publishing AG, part of Springer Nature 2018 291 M.
    [Show full text]
  • Products of Countably Compact Spaces
    PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 58, July 1976 PRODUCTS OF COUNTABLY COMPACT SPACES THOMAS W. RISHEL Abstract. Extensions of sufficient conditions for the product of two countably compact spaces to be countably compact, plus a relevant example. In 1953 Novak [4] published an example to show that countable compact- ness is not preserved under products. Novak's example consists of taking two countably compact subspaces Ax and A2 of the Stone-Cech compactification ßN of the natural numbers A such that Ax U A2 = ßN and Ax n A2 = A; the product Ax X A2 is not countably compact because it contains an infinite closed discrete space. Additional conditions are thus necessary on one of the countably compact spaces A or F to ensure countable compactness of the product A x F. Some of the additional properties on A which will guarantee this are: sequentially compact, first countable, sequential, k. These properties and some proofs have been discussed in a paper of S. Franklin [2]. Other properties which generate countably compact products in this manner are paracompactness and meta- compactness, since either of these conditions, when added to countable compactness of a factor, makes the factor compact, and the product of a compact space with a countably compact space is well known to be countably compact. In what follows, assume all spaces Hausdorff. A space which is a generalization of /:-space (hence, of first countable and sequential space) has proved fruitful in some product theorems. This space is called a weakly-^ space. Definition. A topological space A is weakly-/: iff a subset F of A is closed in X if F fi C is finite for every compact C in A.
    [Show full text]
  • Point Set Topology
    Point Set Topology A. Topological Spaces and Continuous Maps Definition 1.1 A topology on a set X is a collection T of subsets of X satisfying the following axioms: T 1. ∅;X ∈T. T2. {Oα | α ∈ I}⊆T =⇒ α∈IOα ∈T. T3. O; O0 ∈T =⇒ O∩O0 ∈TS. A topological space is a pair (X; T )whereXis a set and T is a topology on X. When the topology T on X under discussion is clear, we simply denote (X; T )by X.Let(X; T ) be a topological space. Members of T are called open sets. (T 3) implies that a finite intersection of open sets is open. Examples 1. Let X be a set. The power set 2X of X is a topology on X and is called the discrete topology on X. The collection I = {∅;X} is also a topology on X and is called the indiscrete topology on X. 2. Let (X; d) be a metric space. Define O ⊆ X to be open if for any x ∈ O, there exists an open ball B(x; r) lying inside O. Then, Td = {O ⊆ X | O is open} ∪ {∅} is a topology on X. Td is called the topology induced by the metric d. 3. Since Rn is a metric space with the usual metric: n d((x ; :::; x ); (y ; :::; y )) = (x − y )2; 1 n 1 n v i i ui=1 uX t Rn has a topology U induced by d. This topology on Rn is called the usual topology. 4. Let X be an infinite set.
    [Show full text]
  • On Feebly Compact Paratopological Groups 11
    ON FEEBLY COMPACT PARATOPOLOGICAL GROUPS TARAS BANAKH AND ALEX RAVSKY Abstract. We obtain many results and solve some problems about feebly compact paratopo- logical groups. We obtain necessary and sufficient conditions for such a group to be topologi- cal. One of them is the quasiregularity. We prove that each 2-pseudocompact paratopological group is feebly compact and that each Hausdorff σ-compact feebly compact paratopological group is a compact topological group. Our particular attention concerns periodic and topo- logically periodic groups. We construct examples of various compact-like paratopological groups which are not topological groups, among them a T0 sequentially compact group, a T1 2-pseudocompact group, a functionally Hausdorff countably compact group (under the axiomatic assumption that there is an infinite torsion-free Abelian countably compact topo- logical group without non-trivial convergent sequences), and a functionally Hausdorff second countable group sequentially pracompact group. We prove that the product of a family of feebly compact paratopological groups is feebly compact, and that a paratopological group G is feebly compact provided it has a feebly compact normal subgroup H such that a quotient group G/H is feebly compact. For our research we also study some general constructions of paratopological groups. We extend the well-known construction of Ra˘ıkov completion of a T0 topological group to the class of paratopological groups. We investigate cone topologies of paratopological groups which provide a general tool for constructing pathological examples, especially examples of compact-like paratopological groups with discontinuous inversion. We find a simple interplay between the algebraic properties of a basic cone subsemigroup S of a group G and compact-like properties of two basic semigroup topologies generated by S on the group G.
    [Show full text]
  • 17. Tychonoff's Theorem, and More on Compactness
    17. Tychonoff's theorem, and more on compactness 1 Motivation In this section we will prove Tychonoff's theorem. Before we can do that, we will discuss a different characterization of compactness in terms of filters and ultrafilters. We will have to do some work to create the tools we need, but they make the proof itself very straightforward. After that we will discuss some other notions related to compactness. Tychonoff's theorem, which says that compactness is (arbitrarily) productive, is an absolutely extraordinary result. The intuition that we have developed thus far for compact topological spaces is that they feel small. A space can be very large in terms of its number of points, but if it is compact it acts like a finite space in most ways; absent any other intuition, finite spaces are the only obvious ones for which all covers have finite subcovers. We also know that taking large products can break many of the \smallness" properties we have seen. Separable spaces feel small in some sense, but we now know that large products of separable spaces may not be separable. Second countable spaces feel small in a different sense, and again we know that large (uncountable) products of second countable spaces are almost never second countable. In fact, even finiteness itself is not countably productive. f0; 1g is a finite topological space, and f0; 1gN is uncountable, let alone finite. Compactness, however, is arbitrarily productive. Any product of compact spaces, no matter how large, is again compact. In this way, compact spaces can feel even smaller than finite spaces; they feel more like single points.
    [Show full text]
  • MATH 411 HOMEWORK 3 SOLUTIONS 2.17.6. Let A, B, and A
    MATH 411 HOMEWORK 3 SOLUTIONS ADAM LEVINE 2.17.6. Let A, B, and Aα denote subsets of a space X. (a) Show that if A ⊂ B, then A¯ ⊂ B¯. By definition, A¯ is the intersection of all closed sets containing A. Since B¯ is a closed set that contains B and hence A, it must therefore contain A¯. (b) Show that A [ B = A¯ [ B¯. The set A [ B is a closed set that contains A [ B, so it contains both A and B, and therefore it contains both A¯ and B¯. Therefore, A [ B ⊃ A¯ [ B¯. Conversely, A¯ [ B¯ is a closed set (since it is the union of two closed sets) that contains A [ B, so it contains A [ B. (Note that we had to use the fact that finite intersections of closed sets are closed!) S S ¯ (c) Show that Aα ⊃ Aα; give an example where equality fails. S Just as in (b), the set Aα is a closed set that contains each Aα, so it contains each ¯ S ¯ Aα, and thus it contains Aα. (But we can't do the converse because an arbitrary union of closures isn't necessarily closed!) As a counterexample, let A be the closed set [ 1 ; 1] ⊂ . Then S A¯ = S A = i i R i2N i i2N i (0; 1], while S A = [0; 1]. i2N i 2.17.11. Show that the product of two Hausdorff spaces is Hausdorff. Let X and Y be Hausdorff spaces. For any two distinct points (x; y) and (x0; y0) in X × Y , we may assume that they differ in at least one coordinate.
    [Show full text]
  • Math 131: Introduction to Topology 1
    Math 131: Introduction to Topology 1 Professor Denis Auroux Fall, 2019 Contents 9/4/2019 - Introduction, Metric Spaces, Basic Notions3 9/9/2019 - Topological Spaces, Bases9 9/11/2019 - Subspaces, Products, Continuity 15 9/16/2019 - Continuity, Homeomorphisms, Limit Points 21 9/18/2019 - Sequences, Limits, Products 26 9/23/2019 - More Product Topologies, Connectedness 32 9/25/2019 - Connectedness, Path Connectedness 37 9/30/2019 - Compactness 42 10/2/2019 - Compactness, Uncountability, Metric Spaces 45 10/7/2019 - Compactness, Limit Points, Sequences 49 10/9/2019 - Compactifications and Local Compactness 53 10/16/2019 - Countability, Separability, and Normal Spaces 57 10/21/2019 - Urysohn's Lemma and the Metrization Theorem 61 1 Please email Beckham Myers at [email protected] with any corrections, questions, or comments. Any mistakes or errors are mine. 10/23/2019 - Category Theory, Paths, Homotopy 64 10/28/2019 - The Fundamental Group(oid) 70 10/30/2019 - Covering Spaces, Path Lifting 75 11/4/2019 - Fundamental Group of the Circle, Quotients and Gluing 80 11/6/2019 - The Brouwer Fixed Point Theorem 85 11/11/2019 - Antipodes and the Borsuk-Ulam Theorem 88 11/13/2019 - Deformation Retracts and Homotopy Equivalence 91 11/18/2019 - Computing the Fundamental Group 95 11/20/2019 - Equivalence of Covering Spaces and the Universal Cover 99 11/25/2019 - Universal Covering Spaces, Free Groups 104 12/2/2019 - Seifert-Van Kampen Theorem, Final Examples 109 2 9/4/2019 - Introduction, Metric Spaces, Basic Notions The instructor for this course is Professor Denis Auroux. His email is [email protected] and his office is SC539.
    [Show full text]