Taphonomy of the Fossils of the Herefordshire (Silurian) Konservat

Total Page:16

File Type:pdf, Size:1020Kb

Taphonomy of the Fossils of the Herefordshire (Silurian) Konservat Taphonomy of the fossils of the Herefordshire (Silurian) Konservat-Lagerstätte Thesis submitted for the degree of Doctor of Philosophy At the University of Leicester By David Anthony Riley MGeol. (Leicester) FGS Department of Geology University of Leicester January 2012 ABSTRACT Preservation and taphonomy of the fossils of the Herefordshire (Silurian) Konservat-Lagerstätte David Anthony Riley The Herefordshire Lagerstätte represents a fully marine Silurian ecosystem, three dimensionally soft-bodied fossils, preserved by sparry calcite, which are recovered from carbonate concretions. Although, a taphonomic model exists it does not determine the pathways that led to their preservation, nor has it been tested on the other taxa recovered from the Lagerstätte. X-ray fluorescence (XRF) analysis indicates the sediment originated from an andesitic volcano from a destructive plate margin. Field relationships suggest that the bed was deposited from either a turbidity current or debris flow. Given the highly reactive nature of the volcanic ash, the cation exchanges that occur provide a mechanism for supersaturating the pore-fluid with carbonates. Examination of the four common taxa; Offacolus kingi (arthropod), Tanazios dokeron (arthropod), Kenostrychus clementsi (polychaete worm) and Acaenoplax hayae (mollusc), indicates a similar pathway of preservation. Energy-dispersive X-ray spectroscopy (EDX) identifies the only impurity within the fossil calcite is manganese; in comparison the concretion carbonates contain a variety of different cations. Therefore, the fossils and the concretions are the result of different processes, which were not coeval. Comparing the preservation Kenostrychus clementsi (polychaete) against experimental work indicates that preservation occurred within 6 days and rules out the occurrence of a void stage as previously thought. In addition, it also suggests that preservation was either instantaneous or there must have been an intermediate ―medusa‖ stage that preserved the tissue prior to templating. Electron microprobe analysis (EMPA) data indicate that the clay minerals that precipitated around the decaying animal were templating the organic matter. To precipitate the sparry calcite without the void stage, an hypothesis is proposed in which the sparry calcite nucleates and grows through the soft tissues. Isotopic data indicates that the concretions are not produced by organic matter decay. This is supported by the lack of correlation between the concretion and the fossil and the occurrence of barren concretions. Radial variation in the mineralogy, chemistry and isotopic ratios support the hypothesis that these concretions grew concentrically around a non-organic nucleus. These exceptional conditions may account for a preservation style that is so far unique to this single exposure. I ACKNOWLEDGMENTS ACKNOWLEDGMENTS I would like to thank my supervisors for their help and guidance, but particularly Sarah Gabbott and David Siveter, who persevered and helped me improve my writing style, but also to Mike Norry for the many discussions we had (geologically related or not), and to Derek Siveter for letting me use the Oxford University Museum of Natural History collections and providing me with the valuable samples I needed to complete this work. Thank you to Derek Briggs and Mark Sutton for their advice and comments, but also for seeing how fast I could catch concretions during fieldwork. Many thanks to the support and encouragement I had from my family: Mr Robert Riley, Mrs Maggie Riley, Mr Ian Phillips, and also to my late grandparents Mrs Catherine Phillips and Mr Anthony Phillips to whom this work is dedicated. Steve Grebby, Chris Willcox, Irfan Jan, Jawad Afzal, Dinah Smith, Mohibullah Kakar thank you for your help, advice and friendship, but also for electing me president when we made F32 an independent country. A big thank you to Sarah Lee and Alison Tasker who offered to read through my work and helped me improve my grammar. Thanks to Jan Zalasiewicz, Mark Williams, Andrea Snelling, Vince Williams and Carys Bennett. I would also like to acknowledge the Daniel Pidgeon Fund from The Geological Society of London for support with thin section preparation and the Timothy Jefferson Field Research Fund for supporting my field work at the exposure of the Lagerstätte. Rob Wilson, Nick Marsh, Rob Kelly, Colin Cunningham, Lyn Marvin, Kay Hawkins and all the administrative staff at the Geology Department at the University of Leicester, and the support staff and the Oxford University Museum of Natural History II ACKNOWLEDGMENTS are thanked for their help and support. I‘d also like to thank Prof. Warren Huff (Cincinnati) for extra data on the Welsh Borderland Bentonites, Phil Wilby (BGS) for advice and help with the CL imaging, Melanie Leng and Ian Millar (NIGL) for the isotope analysis. A further thank you to my colleagues and friends at Argos Fosse Park who made my part time job fun and interesting, and gave me the moral support and encouragement I sometimes needed, in particular I‘d like to thank Henry Bonner, Martin Perchard, Wendy Brown, Chris Payne, Shaun Tunaley, Sarah Nutt, Abby Fenn, Michelle Cook, Sam Clarkson, James Lockton, Andy Brewin, Mel Key and Chris Medhurst. The list is endless so we‘ll leave it there, but thank you to those I have not personally mentioned. III CONTENTS TABLE OF CONTENTS ABSTRACT ....................................................................................................................... I ACKNOWLEDGMENTS ............................................................................................... II TABLE OF CONTENTS ................................................................................................ IV LIST OF FIGURES ........................................................................................................ IX LIST OF TABLES ......................................................................................................... XII DEDICATION .............................................................................................................. XV INTRODUCTION ............................................................................................................ 1 AIMS AND OBJECTIVES OF THIS THESIS ............................................................ 2 MATERIAL .................................................................................................................. 4 CURRENT TAPHONOMIC MODEL FOR THE HEREFORDSHIRE LAGERSTÄTTE .......................................................................................................... 4 VOLCANISM AND THE FOSSIL RECORD ............................................................. 6 FOSSILS AND CONCRETIONS ................................................................................ 8 STRUCTURE OF THE THESIS .................................................................................. 9 NATURE, PROVENANCE, AND EMPLACEMENT OF THE HOST DEPOSIT OF THE HEREFORDSHIRE LAGERSTÄTTE (SILURIAN), UK .................................... 11 GEOLOGICAL SETTING ......................................................................................... 12 MATERIALS AND ANALYTICAL METHODS ..................................................... 16 COMPOSITION OF THE HOST BENTONITE ....................................................... 17 Petrology of the host bentonite ............................................................................... 17 XRF and geochemistry of the host bentonite .......................................................... 21 IV CONTENTS DISCUSSION ............................................................................................................. 25 Composition of the sedimentary deposit ................................................................. 25 Provenance and emplacement of the volcanic ash ................................................. 27 Significance of the host geochemistry to the taphonomy of the Herefordshire Lagerstätte .............................................................................................................. 34 THE TAPHONOMY OF THE SILURIAN HEREFORDSHIRE KONSERVAT LAGERSTÄTTE (SILURIAN): THE EVOLUTION OF A PRESERVATIONAL PATHWAY AS CONTROLLED BY EH-PH ............................................................... 36 GEOLOGICAL CONTEXT ....................................................................................... 38 MATERIALS AND METHODS ................................................................................ 40 RESULTS ................................................................................................................... 43 Clay Mineralisation ................................................................................................ 43 Calcite Mineralisation ............................................................................................ 45 Sparry Calcite Stable Isotope Analysis ................................................................... 48 Concretion Matrix ................................................................................................... 49 DISCUSSION ............................................................................................................. 50 Decay ...................................................................................................................... 50 Clay Mineralisation ................................................................................................ 51 Calcite Precipitation ..............................................................................................
Recommended publications
  • Phylogenomic Resolution of Sea Spider Diversification Through Integration Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogenomic resolution of sea spider diversification through integration of multiple data classes 1Jesús A. Ballesteros†, 1Emily V.W. Setton†, 1Carlos E. Santibáñez López†, 2Claudia P. Arango, 3Georg Brenneis, 4Saskia Brix, 5Esperanza Cano-Sánchez, 6Merai Dandouch, 6Geoffrey F. Dilly, 7Marc P. Eleaume, 1Guilherme Gainett, 8Cyril Gallut, 6Sean McAtee, 6Lauren McIntyre, 9Amy L. Moran, 6Randy Moran, 5Pablo J. López-González, 10Gerhard Scholtz, 6Clay Williamson, 11H. Arthur Woods, 12Ward C. Wheeler, 1Prashant P. Sharma* 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA 2 Queensland Museum, Biodiversity Program, Brisbane, Australia 3 Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany 4 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany 5 Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain 6 Department of Biology, California State University-Channel Islands, Camarillo, CA, USA 7 Départment Milieux et Peuplements Aquatiques, Muséum national d’Histoire naturelle, Paris, France 8 Institut de Systématique, Emvolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France 9 Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI, USA Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Probabilistic Methods Surpass Parsimony When Assessing Clade Support in Phylogenetic Analyses of Discrete Morphological Data
    O'Reilly, J., Puttick, M., Pisani, D., & Donoghue, P. (2017). Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data. Palaeontology. https://doi.org/10.1111/pala.12330 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/pala.12330 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at http://onlinelibrary.wiley.com/doi/10.1111/pala.12330/abstract. Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ [Palaeontology, 2017, pp. 1–14] PROBABILISTIC METHODS SURPASS PARSIMONY WHEN ASSESSING CLADE SUPPORT IN PHYLOGENETIC ANALYSES OF DISCRETE MORPHOLOGICAL DATA by JOSEPH E. O’REILLY1 ,MARKN.PUTTICK1,2 , DAVIDE PISANI1,3 and PHILIP C. J. DONOGHUE1 1School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK; [email protected]; [email protected]; [email protected]; [email protected] 2Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK 3School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK Typescript received 28 April 2017; accepted in revised form 13 September 2017 Abstract: Fossil taxa are critical to inferences of historical 50% support.
    [Show full text]
  • Aragonite Bias Exhibits Systematic Spatial Variation in the Late Cretaceous Western Interior Seaway, North America
    Paleobiology, 45(4), 2019, pp. 571–597 DOI: 10.1017/pab.2019.33 Article Aragonite bias exhibits systematic spatial variation in the Late Cretaceous Western Interior Seaway, North America Christopher D. Dean , Peter A. Allison, Gary J. Hampson, and Jon Hill Abstract.—Preferential dissolution of the biogenic carbonate polymorph aragonite promotes preserva- tional bias in shelly marine faunas. While field studies have documented the impact of preferential aragon- ite dissolution on fossil molluscan diversity, its impact on regional and global biodiversity metrics is debated. Epicontinental seas are especially prone to conditions that both promote and inhibit preferential dissolution, which may result in spatially extensive zones with variable preservation. Here we present a multifaceted evaluation of aragonite dissolution within the Late Cretaceous Western Interior Seaway of North America. Occurrence data of mollusks from two time intervals (Cenomanian/Turonian boundary, early Campanian) are plotted on new high-resolution paleogeographies to assess aragonite preservation within the seaway. Fossil occurrences, diversity estimates, and sampling probabilities for calcitic and ara- gonitic fauna were compared in zones defined by depth and distance from the seaway margins. Apparent range sizes, which could be influenced by differential preservation potential of aragonite between separate localities, were also compared. Our results are consistent with exacerbated aragonite dissolution within specific depth zones for both time slices, with aragonitic bivalves additionally showing a statistically significant decrease in range size compared with calcitic fauna within carbonate-dominated Cenoma- nian–Turonian strata. However, we are unable to conclusively show that aragonite dissolution impacted diversity estimates. Therefore, while aragonite dissolution is likely to have affected the preservation of fauna in specific localities, time averaging and instantaneous preservation events preserve regional biodiversity.
    [Show full text]
  • Segmentation and Tagmosis in Chelicerata
    Arthropod Structure & Development 46 (2017) 395e418 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Segmentation and tagmosis in Chelicerata * Jason A. Dunlop a, , James C. Lamsdell b a Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany b American Museum of Natural History, Division of Paleontology, Central Park West at 79th St, New York, NY 10024, USA article info abstract Article history: Patterns of segmentation and tagmosis are reviewed for Chelicerata. Depending on the outgroup, che- Received 4 April 2016 licerate origins are either among taxa with an anterior tagma of six somites, or taxa in which the ap- Accepted 18 May 2016 pendages of somite I became increasingly raptorial. All Chelicerata have appendage I as a chelate or Available online 21 June 2016 clasp-knife chelicera. The basic trend has obviously been to consolidate food-gathering and walking limbs as a prosoma and respiratory appendages on the opisthosoma. However, the boundary of the Keywords: prosoma is debatable in that some taxa have functionally incorporated somite VII and/or its appendages Arthropoda into the prosoma. Euchelicerata can be defined on having plate-like opisthosomal appendages, further Chelicerata fi Tagmosis modi ed within Arachnida. Total somite counts for Chelicerata range from a maximum of nineteen in Prosoma groups like Scorpiones and the extinct Eurypterida down to seven in modern Pycnogonida. Mites may Opisthosoma also show reduced somite counts, but reconstructing segmentation in these animals remains chal- lenging. Several innovations relating to tagmosis or the appendages borne on particular somites are summarised here as putative apomorphies of individual higher taxa.
    [Show full text]
  • Geological History and Phylogeny of Chelicerata
    Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while
    [Show full text]
  • Recent Advances and Unanswered Questions in Deep Molluscan Phylogenetics Author(S): Kevin M
    Recent Advances and Unanswered Questions in Deep Molluscan Phylogenetics Author(s): Kevin M. Kocot Source: American Malacological Bulletin, 31(1):195-208. 2013. Published By: American Malacological Society DOI: http://dx.doi.org/10.4003/006.031.0112 URL: http://www.bioone.org/doi/full/10.4003/006.031.0112 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Amer. Malac. Bull. 31(1): 195–208 (2013) Recent advances and unanswered questions in deep molluscan phylogenetics* Kevin M. Kocot Auburn University, Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, Alabama 36849, U.S.A. Correspondence, Kevin M. Kocot: [email protected] Abstract. Despite the diversity and importance of Mollusca, evolutionary relationships among the eight major lineages have been a longstanding unanswered question in Malacology. Early molecular studies of deep molluscan phylogeny, largely based on nuclear ribosomal gene data, as well as morphological cladistic analyses largely failed to provide robust hypotheses of relationships among major lineages.
    [Show full text]
  • A New Ordovician Arthropod from the Winneshiek Lagerstätte of Iowa (USA) Reveals the Ground Plan of Eurypterids and Chasmataspidids
    Sci Nat (2015) 102: 63 DOI 10.1007/s00114-015-1312-5 ORIGINAL PAPER A new Ordovician arthropod from the Winneshiek Lagerstätte of Iowa (USA) reveals the ground plan of eurypterids and chasmataspidids James C. Lamsdell1 & Derek E. G. Briggs 1,2 & Huaibao P. Liu3 & Brian J. Witzke4 & Robert M. McKay3 Received: 23 June 2015 /Revised: 1 September 2015 /Accepted: 4 September 2015 /Published online: 21 September 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract Euchelicerates were a major component of xiphosurid horseshoe crabs, and by extension the paraphyly of Palaeozoic faunas, but their basal relationships are uncertain: Xiphosura. The new taxon reveals the ground pattern of it has been suggested that Xiphosura—xiphosurids (horseshoe Dekatriata and provides evidence of character polarity in crabs) and similar Palaeozoic forms, the synziphosurines— chasmataspidids and eurypterids. The Winneshiek may not represent a natural group. Basal euchelicerates are Lagerstätte thus represents an important palaeontological win- rare in the fossil record, however, particularly during the initial dow into early chelicerate evolution. Ordovician radiation of the group. Here, we describe Winneshiekia youngae gen. et sp. nov., a euchelicerate from Keywords Dekatriata . Ground pattern . Microtergite . the Middle Ordovician (Darriwilian) Winneshiek Lagerstätte Phylogeny . Synziphosurine . Tagmosis of Iowa, USA. Winneshiekia shares features with both xiphosurans (a large, semicircular carapace and ophthalmic ridges) and dekatriatan euchelicerates such as Introduction chasmataspidids and eurypterids (an opisthosoma of 13 ter- gites). Phylogenetic analysis resolves Winneshiekia at the base Euchelicerates, represented today by xiphosurids (horseshoe of Dekatriata, as sister taxon to a clade comprising crabs) and arachnids (scorpions, spiders, ticks, and their rela- chasmataspidids, eurypterids, arachnids, and Houia.
    [Show full text]
  • Silurian Horseshoe Crab Illuminates the Evolution of Arthropod Limbs
    Silurian horseshoe crab illuminates the evolution of arthropod limbs Derek E. G. Briggsa,1, Derek J. Siveterb,c, David J. Siveterd, Mark D. Suttone, Russell J. Garwoodf, and David Legge aDepartment of Geology and Geophysics, and Yale Peabody Museum of Natural History, Yale University, P.O. Box 208109, New Haven, CT 06520-8109; bGeological Collections, University Museum of Natural History, Oxford OX1 3PW, United Kingdom; cDepartment of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, United Kingdom; dDepartment of Geology, University of Leicester, Leicester LE1 7RH, United Kingdom; eDepartment of Earth Sciences and Engineering, Imperial College London, London SW7 2BP, United Kingdom; and fSchool of Materials, and School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved August 16, 2012 (received for review April 9, 2012) The basic arrangement of limbs in euarthropods consists of a uni- Hindu goddess with many arms. The material is a single speci- ramous head appendage followed by a series of biramous appen- men, the holotype OUMNH C.29640, registered at the Oxford dages. The body is divided into functional units or tagmata which University Museum of Natural History (Fig. 1, Fig. S1, Movie S1). are usually distinguished by further differentiation of the limbs. The living horseshoe crabs are remnants of a much larger diversity Diagnosis. Head shield semioval, smooth, lacking external evi- of aquatic chelicerates. The limbs of the anterior and posterior dence of a differentiated ophthalmic area; 11 unfused opistho- divisions of the body of living horseshoe crabs differ in the loss somal tergites, the first reduced; telson terminating in two short of the outer and inner ramus, respectively, of an ancestral biramous spines.
    [Show full text]
  • Aragonite Bias Exhibits Systematic Spatial Variation in the Late Cretaceous Western Interior Seaway, North America
    This is a repository copy of Aragonite bias exhibits systematic spatial variation in the late Cretaceous Western Interior Seaway, North America. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/150559/ Version: Accepted Version Article: Dean, Christopher, Allison, Peter A., Hampson, Gary et al. (1 more author) (2019) Aragonite bias exhibits systematic spatial variation in the late Cretaceous Western Interior Seaway, North America. Paleobiology. ISSN 1938-5331 https://doi.org/10.1017/pab.2019.33 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Paleobiology For Peer Review Aragonite bias exhibits systematic spatial variation in the late Cretaceous Western Interior Seaway, North America Journal: Paleobiology Manuscript ID PAB-OR-2019-0021.R2 Manuscript Type: Article Date Submitted by the n/a Author: Complete List of Authors: Dean, Christopher; Imperial
    [Show full text]
  • Fossil Calibrations for the Arthropod Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration.
    [Show full text]
  • SILURIAN TIMES No. 13 (2005)
    SILURIAN TIMES No. 13 (2005) A NEWSLETTER OF THE INTERNATIONAL SUBCOMMISSION ON SILURIAN STRATIGRAPHY (ISSS) INTERNATIONAL COMMISSION ON STRATIGRAPHY INTERNATIONAL UNION OF GEOLOGICAL SCIENCES INTERNATIONAL UNION OF GEOLOGICAL SCIENCES President: Prof. Zhang Hongren (China) Secretary General: Dr. Peter T. Bobrowsky (Canada) http://www.iugs.org/ INTERNATIONAL COMMISSION ON STRATIGRAPHY Chairman: Dr. Felix Gradstein (Norway) Vice-Chairman: Prof. Stanley Finney (USA) Secretary-General: Prof. James G. Ogg (USA) http://www.stratigraphy.org/ INTERNATIONAL SUBCOMMISSION ON SILURIAN STRATIGRAPHY 5ISSS) Chairman: Rong Jia-yu (China) Vice-Chairman: T.N. Koren' (Russia) Secretary: J. Verniers (Belgium) TITULAR MEMBERS: C.E. Brett (USA) Rong Jia-yu (China) L.R.M. Cocks (UK) J. Verniers (Belgium) M.E. Johnson (USA) D. Holloway (Australia) T.N. Koren (Russia) J.-s. Jin (Canada) J. Kríž (Czech Republic) P. Mannik (Estonia) A. Le Hérissé (France) S. Peralta (Argentina) D.K. Loydell (UK) P. Štorch (Czech Republic) M.J. Melchin (Canada) CONTENTS OF SILURIAN TIMES No. 13: Chairman’s Corner & Editor's Notes 2 Scientific Question Raised By Philippe Legrand 3 Suggestion For Rapid Communication Of Publications 3 New Web Site for the Silurian Subcommission 3 Annual Report of the Sub-Commission on Silurian Stratigraphy 4-7 Report on the Past Field Meeting of the ISSS 2005, The Dynamic Silurian Earth Gotland, Sweden 8 Report on other Meetings of interest to Silurian specialists: North American Paleontology Convention 9 Report on meeting Devonian Vertebrates of
    [Show full text]
  • The Early History of the Metazoa—A Paleontologist's Viewpoint
    ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons.
    [Show full text]