Ultrahydrophobic Surfaces : Effects of Topography on Wettability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Substrate Wettability Guided Oriented Self Assembly of Janus Particles
www.nature.com/scientificreports OPEN Substrate wettability guided oriented self assembly of Janus particles Meneka Banik1, Shaili Sett2, Chirodeep Bakli3, Arup Kumar Raychaudhuri2, Suman Chakraborty4* & Rabibrata Mukherjee1* Self-assembly of Janus particles with spatial inhomogeneous properties is of fundamental importance in diverse areas of sciences and has been extensively observed as a favorably functionalized fuidic interface or in a dilute solution. Interestingly, the unique and non-trivial role of surface wettability on oriented self-assembly of Janus particles has remained largely unexplored. Here, the exclusive role of substrate wettability in directing the orientation of amphiphilic metal-polymer Bifacial spherical Janus particles, obtained by topo-selective metal deposition on colloidal Polymestyere (PS) particles, is explored by drop casting a dilute dispersion of the Janus colloids. While all particles orient with their polymeric (hydrophobic) and metallic (hydrophilic) sides facing upwards on hydrophilic and hydrophobic substrates respectively, they exhibit random orientation on a neutral substrate. The substrate wettability guided orientation of the Janus particles is captured using molecular dynamic simulation, which highlights that the arrangement of water molecules and their local densities near the substrate guide the specifc orientation. Finally, it is shown that by spin coating it becomes possible to create a hexagonal close-packed array of the Janus colloids with specifc orientation on diferential wettability substrates. -
Inverse Gas Chromatographic Examination of Polymer Composites
Open Chem., 2015; 13: 893–900 Invited Paper Open Access Adam Voelkel*, Beata Strzemiecka, Kasylda Milczewska, Zuzanna Okulus Inverse Gas Chromatographic Examination of Polymer Composites DOI: 10.1515/chem-2015-0104 received December 30, 2014; accepted April 1, 2015. of composite components and/or interactions between them, and behavior during technological processes. This paper reviews is the examination of Abstract: Inverse gas chromatographic characterization various polymer-containing systems by inverse gas of resins and resin based abrasive materials, polymer- chromatography. polymer and polymer-filler systems, as well as dental restoratives is reviewed. Keywords: surface activity, polymer-polymer interactions, 2 Discussion adhesion, dental restoratives, inverse gas chromatography 2.1 Surface energy and adhesion 1 Introduction IGC is useful for surface energy determination of solid polymers and fillers. Solid surface energy of consists of Inverse gas chromatography (IGC) was introduced in 1967 dispersive ( , from van der Waals forces) and specific by Kiselev [1], developed by Smidsrød and Guillet [2], and ( , from acid-base interactions) components: is still being improved. Its popularity is due to its simplicity D and user friendliness. Only a standard gas chromatograph = + (1) is necessary [3] although more sophisticated equipment has been advised. “Inverse” relates to the aim of the experiment. for solids can be calculated according to several It is not separation as in classical GC, but examination of methods [7]; one of the most often used is that of Schultz- the stationary phase properties. Test compounds with Lavielle [8-12]: known properties are injected onto the column containing dd the material to be examined. Retention times and peak RT××ln VN =× 2 N ×× aggsl × + C (2) profiles determine parameters describing the column filling. -
Nanoparticles Improving the Wetting Ability of Biological Liquids
dynam mo ic Torrisi and Scolaro, J Thermodyn Catal 2017, 8:1 er s h & T f C DOI: 10.4172/2157-7544.1000184 o a t l a a l Journal of y n r s i u s o J ISSN: 2157-7544 Thermodynamics & Catalysis Research Article Open Access Nanoparticles Improving the Wetting Ability of Biological Liquids Torrisi L* and Scolaro C Dottorato di Ricerca in Fisica and Dipartimento di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D’Alcontres 31, 98166 S. Agata (ME), Italy Abstract The contact angle of some biological liquids was investigated on different biocompatible surfaces and nanoparticles were employed to improve their wetting ability. Biocompatible nanoparticles based on titanium, silver and gold were prepared using the technique of the pulsed laser ablation in liquids. The nanoparticles were characterized in size, shape, coalescence and concentration in solutions. Solid biocompatible substrates based on polyethylene, hydroxyapatite and titanium were employed as simulation of prosthetic surfaces. Measurements of contact angle were performed in different biological solution, including the human blood, with respect to the distilled water, without and with the use of the metallic nanoparticles at concentration of the order of 80-370 µg/ml. Keywords: Nanoparticles; Laser ablation; Contact angle; viscosity, thermal and electric conduction, vapour pressure, the PH Biocompatibility; Interfaces and other parameters [5,9]. The wetting ability of the liquid on a given surface changes introducing specific nanoparticles at the interface. This Introduction aspect is of special interest in Biology and Medicine, especially due More and more the nanotechnology is becoming important to the impact on the protein absorption and the cellular response in and promising in different fields of the science. -
Technical Program
Sunday, June 14, 2009 Sunday, June 14, 2009, 6:00 PM - 8:00 PM Welcome Reception Auditorium & North Foyer, Lerner Hall Monday, June 15, 2009 Monday, June 15, 2009, 8:00 AM - 9:05 AM Plenary Lecture Auditorium, Lerner Hall Organizer: Ponisseril Somasundaran 8:00 1 The Renaissance of Colloid Chemistry through the Synthesis of Nanomaterials. Gabor A. Somorjai Monday, June 15, 2009, 9:05 AM - 9:30 AM Coffee Break Auditorium North Lobby, Lerner Hall Monday, June 15, 2009, 8:00 AM – 4:00 PM Coffee Break Carleton Lounge, Mudd Bldg. Monday, June 15, 2009, 9:30 AM - 12:15 PM Biocolloids for Imaging and Drug Delivery I: Nanoparticles Rm. 1024, Mudd Bldg. Organizers: Mark Borden and Steven P. Wrenn 9:30 2 Next Generation Nano Carriers for Multifunctional Drug Delivery, Imaging, And Targeting- How Do We Make Them? Robert K. Prud'homme (Keynote) 10:00 3 Pharmaceutical Nanomaterials; Novel Delivery Systems for Sensitive Bio-Materials. J. C. Mitchell 10:20 4 Multi-Functional Nanoparticle-Based Targeted Drug Delivery for Brain Cancer. Ki-Bum Lee 10:40 5 Nanocolloids for Drug Delivery and Imaging. Keith P. Johnston 11:00 6 Multimodal Nanoparticles for Noninvasive Bio-Imaging. Parvesh Sharma 11:20 7 Composite Nanoparticles Containing Upconverting Phosphors for Photodynamic Therapy. Stephanie J. Budijono 11:40 8 Formation of Magnetite Clusters Using a Multi-Inlet Vortex Mixer. Raquel Mejia-Ariza 12:00 9 Synthesis of Calcium Carbonate Nanoparticles in the Presence of Proteins as Stabilizing and Functionalizing Agents. Herley Casanova Monday, June 15, 2009, 9:30 AM - 11:40 AM Biomineralization I Rm. -
Robust Omniphobic Surfaces
Robust omniphobic surfaces Anish Tutejaa,1, Wonjae Choib,1, Joseph M. Mabryc, Gareth H. McKinleyb,2, and Robert E. Cohena,2 aDepartment of Chemical Engineering, bDepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139; and cAir Force Research Laboratory, Propulsion Directorate, Edwards Air Force Base, CA 93524 Edited by John M. Prausnitz, University of California, Berkeley, CA, and approved September 26, 2008 (received for review May 20, 2008) Superhydrophobic surfaces display water contact angles greater angle. The question that arises is, ‘‘Which of these states is naturally than 150° in conjunction with low contact angle hysteresis. Micro- realized by any given surface, and how can one design textures that scopic pockets of air trapped beneath the water droplets placed on promote the formation of a composite interface for a given liquid?’’ these surfaces lead to a composite solid-liquid-air interface in The answer is determined by considering the overall free energy of thermodynamic equilibrium. Previous experimental and theoreti- the system comprising the liquid droplet, the surrounding vapor, cal studies suggest that it may not be possible to form similar and the textured solid surface (13, 16, 18, 19). The critical value of fully-equilibrated, composite interfaces with drops of liquids, such the equilibrium contact angle (c) beyond which the composite as alkanes or alcohols, that possess significantly lower surface interface leads to a lower overall free energy, in comparison to the ؍ ␥ tension than water ( lv 72.1 mN/m). In this work we develop fully wetted interface, can be determined by equating the Wenzel surfaces possessing re-entrant texture that can support strongly and Cassie-Baxter relations. -
Inverse Gas Chromatography a Tool to Follow
Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects María Graciela Cares Pacheco, Rachel Calvet, G. Vaca-Medina, A. Rouilly, Fabienne Espitalier To cite this version: María Graciela Cares Pacheco, Rachel Calvet, G. Vaca-Medina, A. Rouilly, Fabienne Espitalier. In- verse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects. International Journal of Pharmaceutics, Elsevier, 2015, 494 (1), pp.113-126. 10.1016/j.ijpharm.2015.07.078. hal-01611017 HAL Id: hal-01611017 https://hal.archives-ouvertes.fr/hal-01611017 Submitted on 5 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects a, a b,c b,c a M.G. Cares-Pacheco *, R. Calvet , G. Vaca-Medina , A. Rouilly , F. Espitalier a Université de Toulouse; Mines Albi, UMR CNRS 5302, Centre RAPSODEE; Campus Jarlard, F-81013 Albi cedex 09, France b Université de Toulouse; INP-ENSIACET, LCA, 310130 Toulouse, France c INRA; UMR 1010 CAI, 310130 Toulouse, France A B S T R A C T Powders are complex systems and so pharmaceutical solids are not the exception. -
Northumbria Research Link
Northumbria Research Link Citation: Selim, Mohamed S., El-Safty, Sherif A., Shenashen, Mohamed A., Higazy, Shimaa A. and Elmarakbi, Ahmed (2020) Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. Journal of Materials Chemistry B, 8 (17). pp. 3701-3732. ISSN 2050-750X Published by: Royal Society of Chemistry URL: https://doi.org/10.1039/C9TB02119A <https://doi.org/10.1039/C9TB02119A> This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/id/eprint/43870/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher’s website (a subscription may be required.) Please do not adjust margins Journal Name ARTICLE Progress in biomimetic leverages for marine antifouling by nanocomposite coatings a,b a∗ a b c -Received 00th January 20xx, M. -
Synthesis of Zinc Oxide Nanomaterials Via Sol-Gel Process with Anti-Corrosive Effect for Cu, Al and Zn Metallic Substrates
coatings Article Synthesis of Zinc Oxide Nanomaterials via Sol-Gel Process with Anti-Corrosive Effect for Cu, Al and Zn Metallic Substrates Raluca Somoghi 1 , Violeta Purcar 1,* , Elvira Alexandrescu 1 , Ioana Catalina Gifu 1, Claudia Mihaela Ninciuleanu 1, Cosmin Mihai Cotrut 2 , Florin Oancea 1 and Hermine Stroescu 3 1 National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; [email protected] (R.S.); [email protected] (E.A.); [email protected] (I.C.G.); [email protected] (C.M.N.); fl[email protected] (F.O.) 2 Department of Metallic Materials Science, Physical Metallurgy, Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, Building J, 060042 Bucharest, Romania; [email protected] 3 Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania; [email protected] * Correspondence: [email protected] Abstract: Nanosized zinc oxide (ZnO) particles modified with different silane coupling agents (octyl- triethoxysilane (OTES), octadecyltriethoxysilane (ODTES) and (3-glycidyloxypropyl)trimethoxysilane (GPTMS)) were synthesized in basic catalysis using the sol-gel method. The structure and morphology were characterized by dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM) and Fourier transform infrared spectroscopy (FTIR) for bonding characteristics. The final hybrid materials were deposited on three types of metallic substrates (aluminum (Al), copper (Cu) Citation: Somoghi, R.; Purcar, V.; Alexandrescu, E.; Gifu, I.C.; and zinc (Zn)) in order to obtain coatings with ultrahydrophobic and anti-corrosion properties. Water ◦ Ninciuleanu, C.M.; Cotrut, C.M.; wettability was studied revealing a contact angle of 145 for the surface covered with ZnO material Oancea, F.; Stroescu, H. -
Contact Angle Vs Dyne
A practical means to measure surface treatment levels of PE Film using PGX+, a new portable contact angle instrument. Contact angle measurements The PGX + uses a liquid droplet (e.g. water) applied to the surface of the substrate in order to determine properties specific to the surface layer of the material. This is commonly referred to as a contact angle measurement using “the sessile drop method”. The contact angle is measured as the inward angle between the base and the tangent at the point of contact between the liquid and the surface. This value corresponds to the surface energy level in the equilibrium system formed between the liquid and the solid on the condition the surface is smooth, non-porous, non-sorptive, and homogeneous. Furthermore the liquid must not react chemically with the substrate. The relationship between a static contact angle and the surface energy forces was defined by Young [1] from the interfacial tensions: γSV = γSL + γLV cos θ; γ LV where γSV = solid-vapour interaction γSL =solid-liquid interaction γLV = liquid-vapour interaction θ ”Wetting” is obtained if contact angle is ≤ 90° γ SV γ SL Static contact angles A static contact angle occurs where the water droplet reaches an A “flying saucer”? “equilibrium” condition and the dimensions of the liquid droplet would not change over time. This situation will normally occur for a non- θ < 9 absorbent substrate (e.g. liquid container board, release papers). This 0° condition would also occur when a water droplet is applied to a copy paper because of its “hydrophobicity” (water repellence). -
Amphiphobic Nanocellulose-Modified Paper: Fabrication and Evaluation
RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 9 Please RSCdo not Advances adjust margins RSC Advances ARTICLE Amphiphobic Nanocellulose-modified Paper: Fabrication and Evaluation a a,b* a c c Received 00th January 20xx, Patchiya Phanthong, Guoqing Guan, Surachai Karnjanakom, Xiaogang Hao, Zhongde Wang, Accepted 00th January 20xx Katsuki Kusakabed and Abuliti Abudulaa, b DOI: 10.1039/x0xx00000x Amphiphobic nanocellulose-modified paper with high durability is successfully fabricated by a facile two-step methods. www.rsc.org/ Firstly, nanocellulose-modified paper is prepared by dipping filter paper, i.e., glass microfiber (GM) filter paper and polytetrafluoroethylene (PTFE) filter paper in dilute nanocellulose dispersed solution. -
Hydrophobicity, Hydrophilicity
Hydrophobicity, Hydrophilicity and Silanes Water, water everywhere is the refrain from the rhyme of the ancient mariner and a concern of every modern coatings technologist. hether decorative, protective are playing an increasing role in controlling the inter- or functional, coatings must action of water with a surface. contend with water in the Silanes are silicon chemicals that possess a hydrolyti- environment. A problem dis- cally sensitive center that can react with inorganic sub- tinct from the issue of wet strates such as glass to form stable covalent bonds and Wadhesion and hydrolytic stability of coatings is con- organic substitution that alters the physical interac- trolling the interaction of water with a coated surface. tions of treated substrates (Figure 1). Different than Very often the descriptors hydrophobic or hydrophilic most additives, which have a limited performance are applied to coated surfaces. Although the terms range, they can achieve surface properties ranging from hydrophobic and hydrophilic are casually used, they hydrophobic to hydrophilic. They may be a sole active are usually not defined. A growing number of applica- ingredient or a component in a coatings formulation, tions ranging from architectural coatings to aortic controlling the interaction of water over a broad spec- stents require a precise control and, therefore, precise trum of requirements. In order to understand how definition of substrate interaction with water. Silanes silanes can affect hydrophobicity and hydrophilicity, it is important to understand some of the fundamentals of Figure 1 | Silanes and surface modification. the interaction of water with surfaces. OCH 2CH 3 Water, Hydrophobicity CH 3CH 2CH 2CH 2CH 2CH 2CH 2CH 2— Si — OCH 2CH 3 and Hydrophilicity Hydrophobic and hydrophilic are frequently used OCH CH 2 3 descriptors of surfaces. -
Optimized Size and Distribution of Silver Nanoparticles on the Surface of Titanium Implant Regarding Cell Viability
applied sciences Article Optimized Size and Distribution of Silver Nanoparticles on the Surface of Titanium Implant Regarding Cell Viability 1,2,3, 4, 1 1 1 4 Péter Hajdu y, István Lampé y, Richárd Rácz ,Sándor Biri , Attila Csík , Ferenc Tóth , Melinda Szalóki 4, Viktória Heged ˝us 4, Zsuzsanna Dombrádi 5, István Varga 6, István Csarnovics 2,Sándor Kökényesi 2, Dezs˝oLászló Beke 7 and Csaba Heged ˝us 4,* 1 Institute for Nuclear Research (ATOMKI), Bem tér 18/c, H-4026 Debrecen, Hungary; [email protected] (P.H.); [email protected] (R.R.); [email protected] (S.B.); [email protected] (A.C.) 2 Faculty of Science and Technology Institute of Physics, University of Debrecen, Bem tér 18/a, H-4026 Debrecen, Hungary; [email protected] (I.C.); [email protected] (S.K.) 3 Doctoral School of Physics, University of Debrecen, Egyetem sqr. 1., H-4032 Debrecen, Hungary 4 Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, Nagyerdei Rd. 98, H-4032 Debrecen, Hungary; [email protected] (I.L.); [email protected] (F.T.); [email protected] (M.S.); [email protected] (V.H.) 5 Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Rd. 98., H-4032 Debrecen, Hungary; [email protected] 6 Department of Periodontology, Faculty of Dentistry, University of Debrecen, Nagyerdei Rd. 98, H-4032 Debrecen, Hungary; [email protected] 7 Department of Solid State Physics, University of Debrecen, Bem tér 18/b, H-4026 Debrecen, Hungary; [email protected] * Correspondence: [email protected] Péter Hajdu and István Lampé have contributed equally to this study as part of their Ph.D.