Redalyc.Differential Gene Expression in Pyropia Columbina (Bangiales, Rhodophyta) Under Natural Hydration and Desiccation Condit
Total Page:16
File Type:pdf, Size:1020Kb
Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Contreras-Porcia, Loretto; López-Cristoffanini, Camilo; Lovazzano, Carlos; Flores-Molina, María Rosa; Thomas, Daniela; Núñez, Alejandra; Fierro, Camila; Guajardo, Eduardo; Correa, Juan A.; Kube, Michael; Reinhardt, Richard Differential gene expression in Pyropia columbina (Bangiales, Rhodophyta) under natural hydration and desiccation conditions Latin American Journal of Aquatic Research, vol. 41, núm. 5, noviembre, 2013, pp. 933-958 Pontificia Universidad Católica de Valparaíso Valparaiso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175028822013 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 41(5): 933-958, 2013 Desiccation tolerance in Pyropia columbina 933 DOI: 103856/vol41-issue5-fulltext-13 Research Article Differential gene expression in Pyropia columbina (Bangiales, Rhodophyta) under natural hydration and desiccation conditions Loretto Contreras-Porcia1, Camilo López-Cristoffanini1,2, Carlos Lovazzano1 María Rosa Flores-Molina3, Daniela Thomas1, Alejandra Núñez1, Camila Fierro1, Eduardo Guajardo1 Juan A. Correa2, Michael Kube4 & Richard Reinhardt5 1Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales Universidad Andres Bello, República 470, Santiago, Chile 2Departamento de Ecología, Center for Advanced Studies in Ecology and Biodiversity (CASEB) Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Postal code 6513677, Santiago, Chile 3Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile P.O. Box 567, Valdivia, Chile 4Department of Crop and Animal Sciences, Faculty of Agriculture and Horticulture Humboldt Universität zu Berlin, Lentzeallee 55/57, 14195 Berlin, Germany 5Max-Planck Institute for Molecular Genetics, Ihnestr. 63-73, Berlin, Germany ABSTRACT. In rocky shores, desiccation is triggered by daily tide changes, and experimental evidence suggests that local distribution of algal species across the intertidal rocky zone is related to their capacity to tolerate desiccation. In this context, the permanence of Pyropia columbina in the high intertidal rocky zone is explained by its exceptional physiological tolerance to desiccation. This study explored the metabolic pathways involved in tolerance to desiccation in the Chilean P. columbina, by characterizing its transcriptome under contrasting conditions of hydration. We obtained 1,410 ESTs from two subtracted cDNA libraries in naturally hydrated and desiccated fronds. Results indicate that transcriptome from both libraries contain transcripts from diverse metabolic pathways related to tolerance. Among the transcripts differentially expressed, 15% appears involved in protein synthesis, processing and degradation, 14.4% are related to photosynthesis and chloroplast, 13.1% to respiration and mitochondrial function (NADH dehydrogenase and cytochrome c oxidase proteins), 10.6% to cell wall metabolism, and 7.5% are involved in antioxidant activity, chaperone and defense factors (catalase, thioredoxin, heat shock proteins, cytochrome P450). Both libraries highlight the presence of genes/proteins never described before in algae. This information provides the first molecular work regarding desiccation tolerance in P. columbina, and helps, to some extent, explaining the classical patterns of ecological distribution described for algae across the intertidal zone. Keywords: Pyropia, desiccation stress, ESTs, seaweeds, transcriptomics, proteins. Expresión diferencial de genes en Pyropia columbina (Bangiales, Rhodophyta) bajo hidratación y desecación natural RESUMEN. En zonas rocosas costeras, la desecación es gatillada por cambios diarios en los niveles de marea, y la evidencia experimental indica que la distribución de las algas en la zona intermareal está relacionada con su capacidad para tolerar la desecación. En este contexto, la presencia de Pyropia columbina en la zona alta del intermareal se explica por su excepcional tolerancia fisiológica a la desecación. Este estudio explora las vías metabólicas involucradas en la tolerancia a la desecación en P. columbina, a través de la caracterización de su transcriptoma bajo condiciones de hidratación contrastantes. Se obtuvo 1,410 ESTs provenientes de dos librerías de substracción de cDNA de frondas naturalmente hidratadas y desecadas. Los transcriptomas de ambas librerías contienen transcritos de diversas rutas metabólicas relacionadas a la tolerancia. Entre los transcritos expresados 15% están involucrados en la síntesis de proteínas, su procesamiento y degradación, 14,4% asociados a fotosíntesis y cloroplasto, 13,1% a respiración y función mitocondrial, 10,6% al metabolismo de la pared celular y 7,5% a la actividad antioxidante, proteínas chaperonas y factores de defensa (catalasa, tiorredoxina, proteínas de shock térmico, citocromo P450). En ambas librerías se destaca la presencia de genes/proteínas no descritos en algas. Esta información proporciona 934 Latin American Journal of Aquatic Research el primer trabajo molecular que estudia la tolerancia a desecación en P. columbina y sus resultados ayudan a explicar los patrones clásicos de distribución descritos para algas en la zona intermareal. Palabras clave: Pyropia, estrés por desecación, ESTs, macroalgas, transcriptómica, proteínas. ___________________ Corresponding author: Loretto Contreras-Porcia ([email protected]) INTRODUCTION induces the expression of several proteins related to desiccation (Bartels et al., 1990; Dinakar et al., 2012). Red algae (Rhodophyta), the most ancient lineage of Also, leaves of resurrection plants tend to curl to photosynthetic eukaryotes (Baldauf et al., 2000; Yoon reduce water loss and minimize oxidative damage due et al., 2004), are distributed worldwide and include to desiccation (Vicré et al., 2004; Farrant et al., 2007; several commercially important species. Porphyra and Toldi et al., 2009). Oxidative damage is attenuated or Pyropia spp. are rhodophytes that represent an annual avoided by increasing antioxidant activity of some value of over US$1.3 billion (Blouin et al., 2011). In enzymes (e.g., ascorbate peroxidase, glutathione Chile, Pyropia columbina (Montagne) W.A. Nelson reductase, superoxide dismutase, among others) and (formerly Porphyra columbina (Sutherland et al., levels of antioxidant compounds (e.g., anthocyanins) 2011) is one of the economically important species, (Farrant et al., 2007; Toldi et al., 2009; Dinakar et al., together with members of the rhodophycean genera 2012). Additionally, these plants reduce photo- Mazzaella, Gracilaria and Gelidium (Santelices, 1989; synthetic activity to minimize photo-oxidative damage Hoffmann & Santelices, 1997; Buschmann et al., that could lead to increased ROS levels. Thus, it seems 2008), and it is found along the Chilean coast from clear that diverse metabolic pathways are involved in 20° to 54°S (Hoffmann & Santelices, 1997; Guiry & attenuating the oxidative stress condition caused by Guiry, 2013). This species has a biphasic life history desiccation. that includes a microscopic sporophyte generation (2n, In the Chilean coastal ecosystems, P. columbina conchocelis stage) alternating with a macroscopic grows abundantly along the upper intertidal zone generation of male and female gametophytes (n). The (Alveal, 1970; Santelices, 1989; Hoffmann & foliose gametophytes constitute the edible “Nori”. Santelices, 1997), where it is exposed to a wide range Water, and its intracellular balance, is a critical of environmentally stressful conditions, mainly factor for all living organisms in both terrestrial and desiccation-driven stress induced by low tides and air marine ecosystems. Mobile animals actively avoid exposure (Contreras-Porcia et al., 2011a). P. desiccation, induced by water deficiency, while other columbina is well adapted to daily extremes, which organisms, such as resurrection plants ―a small group range from exposure to water (full hydration) during of angiosperms that live in the most arid habitats of high tides to long exposure to air (maximum the world― are adapted to tolerate water losses of up desiccation) during low tides. Natural exposure to to 90% (Gaff, 1987). This adaptation, in general these extreme regimes have been described in other terms, is based on the ability of an organism to organisms exposed to desiccation. It is already known equilibrate its internal water potential with the dry that Porphyra and Pyropia species have high tolerance environment, and re-start normal functions when re- to desiccation, and quickly recover photosynthetic hydrated (Alpert, 2000). Several studies using activity once rehydrated after a period of desiccation resurrection plants as model have been conducted to (e.g., Smith & Berry, 1986; Kim et al., 2008; fully understand their impressive adaptation to Contreras-Porcia et al., 2011a; Gao & Wang, 2012). desiccation (Scott, 2000). Recent advances in our Basic physiology of these organisms, including the understanding of the mechanisms of tolerance in these mechanisms to tolerate environmentally stressful organisms have revealed changes at the morphological conditions, remains poorly studied. However, it is level, osmolites and protein