Vertebrate Time-Tree Elucidates the Biogeographic Pattern of a Major Biotic Change Around the K–T Boundary in Madagascar

Total Page:16

File Type:pdf, Size:1020Kb

Vertebrate Time-Tree Elucidates the Biogeographic Pattern of a Major Biotic Change Around the K–T Boundary in Madagascar Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K–T boundary in Madagascar Angelica Crottinia,b,1, Ole Madsenc, Celine Pouxd,e,f, Axel Straußa, David R. Vieitesg, and Miguel Vencesa,2 aDivision of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, 38106 Braunschweig, Germany; bSezione di Zoologia e Citologia, Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milan, Italy; cAnimal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, The Netherlands; dUniversité Lille Nord de France, Campus Lille 1-Université des Sciences et Technologies de Lille, Laboratoire de Génétique et Évolution des Populations Végétales, F-59650 Villeneuve d’Ascq, France; eCentre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8198, F-59650 Villeneuve d’Ascq, France; fVertebrate Department, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium; and gMuseo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain Edited by David B. Wake, University of California, Berkeley, CA, and approved January 18, 2012 (received for review August 25, 2011) The geographic and temporal origins of Madagascar’s biota have reconstruction of molecular time-trees have started to resolve long been in the center of debate. We reconstructed a time-tree the biogeography of Madagascar, previously characterized as one including nearly all native nonflying and nonmarine vertebrate of the greatest mysteries of natural history (10, 11). For numerous clades present on the island, from DNA sequences of two single-copy Malagasy clades of amphibians, squamates, and mammals, sister- BDNF RAG1 protein-coding nuclear genes ( and ) and a set of congru- group relationships to African taxa and a Cenozoic age are now ent time constraints. Reconstructions calculated with autocorrelated well established, suggesting a predominance of Out-of-Africa over- or independent substitution rates over clades agreed in placing the – origins of the 31 included clades in Cretaceous to Cenozoic times. The seas dispersal favored by oceanic paleocurrents (11 15). However, two clades with sister groups in South America were the oldest, the exact timing of colonizations, as well as their possible clustering followed by those of a putative Asian ancestry that were significantly in particular periods, remain unstudied for many vertebrate clades older than the prevalent clades of African ancestry. No colonizations and are contentious for others (11), largely because of the use of EVOLUTION from Asia occurred after the Eocene, suggesting that dispersal and different molecular markers and time constraints. In addition, the vicariance of Asian/Indian groups were favored over a comparatively closest relatives of several other taxa are found in South America short period during, and shortly after, the separation of India and or Asia (16, 17). The temporal pattern of vertebrate colonization Madagascar. Species richness of clades correlates with their age but of Madagascar from these different source continents has not been those clades that have a large proportion of species diversity in rain- comprehensively studied to date. fi fi forests are signi cantly more species-rich. This nding suggests an Analyses of molecular data have led to great progress in un- underlying pattern of continuous speciation through time in Mada- derstanding the timing of vertebrate diversification (18, 19). Here, gascar’s vertebrates, with accelerated episodes of adaptive diversifi- cation in those clades that succeeded radiating into the rainforests. we generated a comprehensive dataset that uses the same molec- ular markers and time constraints for nearly all terrestrial and Cretaceous-Tertiary | historical biogeography | lineage diversification | freshwater vertebrate clades occurring on Madagascar and their rainforest adaptation | overseas dispersal sister taxa. The selected genes, BDNF (brain-derived neurotrophic factor) and RAG1 (recombination activating gene 1), are single- adagascar’s unique biodiversity has attracted the interest copy, protein-coding, and universal among gnathostomes. We use Mof evolutionary biologists and biogeographers for a long multiple cross-validated time constraints in a single time-tree to time. This island was part of the Gondwana supercontinent. As a obtain compatible age estimates across clades (20). Those esti- part of Indo-Madagascar, it separated from Africa 160–130 Mya. mates allow us to assess general biogeographic patterns of Mada- The breakup of Indo-Madagascar and northwards drifting of gascar’s colonization by vertebrates, for which we test whether: (i) India and the Seychelles started 88 Mya, leaving Madagascar the majority of extant vertebrate clades colonized Madagascar isolated in the Indian Ocean and without subaerial connection to – – during or after the K T boundary, as suggested by the fossil record any other landmass for the last 65 80 Myr (1). (7); (ii) colonizations followed different temporal patterns The isolation of Madagascar coincided with the end of the depending on the source continent; (iii) species richness of clades Cretaceous, a period of global mass extinction and biotic turnover, fi probably linked to a major meteorite impact marking the Creta- are related to their age in Madagascar; and (iv) clade diversi cation fl ceous–Tertiary (K–T) boundary at 65.5 Mya (2). In Madagascar, was in uenced by habitat type. the different composition of the Late Cretaceous vs. the extant vertebrate fauna led to the hypothesis of a major biotic change in deep time (3). The Cretaceous fauna included lungfishes, gars, Author contributions: D.R.V. and M.V. designed research; A.C., O.M., C.P., and D.R.V. nonranoid giant frogs, dinosaurs, and marsupial and gondwana- performed research; A.C., O.M., C.P., A.S., and M.V. analyzed data; and A.C. and M.V. – wrote the paper. therian mammals (3 8), whereas the extant vertebrate fauna is fl composed of mainly percomorph freshwater fishes, ranoid frogs, The authors declare no con ict of interest. modern squamate reptiles, lemurs, rodents, carnivores, afro- This article is a PNAS Direct Submission. therian mammals, bats, and numerous families of birds (9). Data deposition: The sequences reported in this paper have been deposited in the Gen- bank database (accession nos. JQ073048–JQ073135, JQ073138–JQ073291). The full align- Reconstructing the temporal pattern of this striking biotic ments reported in this paper have been deposited in the Dryad data repository, turnover is hampered by the almost complete lack of post-Cre- datadryad.org (http://dx.doi.org/10.5061/dryad.50r80407). taceous and pre-Pleistocene terrestrial fossil deposits. This fossil 1Present address: Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus gap presents difficulties in understanding how and when the extant Agrário de Vairão, R. Padre Armando Quintas, 4485-661 Vairão, Portugal. clades of vertebrates colonized the island, and how their sub- 2To whom correspondence should be addressed. E-mail: [email protected]. fi sequent diversi cation took place. In recent times, explicit pa- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. leogeographic and paleoclimatic modeling associated with the 1073/pnas.1112487109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1112487109 PNAS Early Edition | 1of6 Results after the Oligocene (Fig. 2B). The dispersal of the ancestors of day Vertebrate Time-Trees Based on Congruent Time Constraints. Phy- geckos to the Mascarene Islands located east of Madagascar oc- logenetic analyses of the combined 1,747 base pairs of RAG1 curred at 22 Mya, and dispersals to the continental Seychelles, and and BDNF for 188 taxa representing nonflying and nonmarine to Asia and Africa occurred in the Oligocene and Eocene (36–28 Malagasy vertebrate clades, their known non-Malagasy sister- Mya). Dispersals to the Comoro islands west of Madagascar were groups, and a set of other vertebrate taxa, recovered most of the recovered by both analyses post-Oligocene, in agreement with fi generally accepted deep and shallow relationships among verte- favorable surface currents in this period, a pattern con rmed by brates (Fig. 1). Time-tree reconstruction with 43 selected time the cross-validations also for those Comoro-Malagasy splits used constraints was based on two approaches that either allow sub- as age constraints in the main analyses. stitution rates to vary independently over clades (ICR) or in an fl autocorrelated fashion (ACR) (Materials and Methods). The Clade Age and Rainforest Habitat In uence Species Richness. Besides the extraordinary degree of endemism at higher taxonomic levels, extremes of the 95% credibility intervals (CrIs) from the two ’ approaches were merged into a single composite CrI (21). Madagascar s biota is characterized by a high, although in- A high congruence among most of an initial set of 48 time completely known, species richness, and by a high proportion of range-restricted species that are microendemic to particular areas constraints was obtained in three cross-validation approaches of the island (9). This pattern might also be typical for other using ACR, here named CV1–CV3 (see SI Appendix for details). tropical regions, but Madagascar is a particularly well-suited In CV1 we assessed statistically the effect of removing single model region to determine the underlying patterns of biotic di- constraints on the overall
Recommended publications
  • Zootaxa, Integrative Taxonomy of Malagasy Treefrogs
    Zootaxa 2383: 1–82 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2383 Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and comparative morphology reveals twelve additional species of Boophis FRANK GLAW1, 5, JÖRN KÖHLER2, IGNACIO DE LA RIVA3, DAVID R. VIEITES3 & MIGUEL VENCES4 1Zoologische Staatssammlung München, Münchhausenstr. 21, 81247 München, Germany 2Department of Natural History, Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany 3Museo Nacional de Ciencias Naturales-Consejo Superior de Investigaciones Científicas (CSIC), C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain 4Zoological Institute, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany 5Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by S. Castroviejo: 8 Dec. 2009; published: 26 Feb. 2010 Frank Glaw, Jörn Köhler, Ignacio De la Riva, David R. Vieites & Miguel Vences Integrative taxonomy of Malagasy treefrogs: combination of molecular genetics, bioacoustics and com- parative morphology reveals twelve additional species of Boophis (Zootaxa 2383) 82 pp.; 30 cm. 26 February 2010 ISBN 978-1-86977-485-1 (paperback) ISBN 978-1-86977-486-8 (Online edition) FIRST PUBLISHED IN 2010 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2010 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
    [Show full text]
  • Plethodontohyla Laevis (Boettger, 1913) and Transfer of Rhombophryne Alluaudi (Mocquard, 1901) to the Genus Plethodontohyla (Amphibia, Microhylidae, Cophylinae)
    Zoosyst. Evol. 94(1) 2018, 109–135 | DOI 10.3897/zse.94.14698 museum für naturkunde Resurrection and re-description of Plethodontohyla laevis (Boettger, 1913) and transfer of Rhombophryne alluaudi (Mocquard, 1901) to the genus Plethodontohyla (Amphibia, Microhylidae, Cophylinae) Adriana Bellati1,*, Mark D. Scherz2,*, Steven Megson3, Sam Hyde Roberts4, Franco Andreone5, Gonçalo M. Rosa6,7,8, Jean Noël9, Jasmin E. Randrianirina10, Mauro Fasola1, Frank Glaw2, Angelica Crottini11 1 Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia, Via Ferrata 1, I-27100 Pavia, Italy 2 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 3 School of Science and the Environment, Manchester Metropolitan University, Manchester, M1 5GD, UK 4 SEED Madagascar, Studio 7, 1A Beethoven Street, London, W10 4LG, UK 5 Museo Regionale di Scienze Naturali, Sezione di Zoologia, Via G. Giolitti, 36, I-10123, Torino, Italy 6 Department of Biology, University of Nevada, Reno, Reno NV 89557, USA 7 Institute of Zoology, Zoological Society of London, Regent’s Park, London, NW1 4RY, UK 8 Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Bloco C2, Campo Grande, 1749-016 Lisboa, Portugal 9 Madagascar Fauna and Flora Group, BP 442, Morafeno, Toamasina 501, Madagascar 10 Parc Botanique et Zoologique de Tsimbazaza, BP 4096, Antananarivo 101, Madagascar 11 CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Nº 7, 4485-661 Vairão, Portugal http://zoobank.org/AFA6C1FE-1627-408B-9684-F6240716C62B Corresponding author: Angelica Crottini ([email protected]) Abstract Received 26 June 2017 The systematics of the cophyline microhylid frog genera Plethodontohyla and Rhom- Accepted 19 January 2018 bophryne have long been intertwined, and their relationships have only recently started Published 2 February 2018 to become clear.
    [Show full text]
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Custom Trip
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Custom Trip October 20—November 6, 2016 Guide: Ken Behrens All photos taken during this trip by Ken Behrens Annotated bird list by Jerry Connolly TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with the opening of a satellite office in the country several years ago, we further solidified our expertise in the “Eighth Continent.” This custom trip followed an itinerary similar to that of our main set-departure tour. Although this trip had a definite bird bias, it was really a general natural history tour. We took our time in observing and photographing whatever we could find, from lemurs to chameleons to bizarre invertebrates. Madagascar is rich in wonderful birds, and we enjoyed these to the fullest. But its mammals, reptiles, amphibians, and insects are just as wondrous and accessible, and a trip that ignored them would be sorely missing out. We also took time to enjoy the cultural riches of Madagascar, the small villages full of smiling children, the zebu carts which seem straight out of the Middle Ages, and the ingeniously engineered rice paddies. If you want to come to Madagascar and see it all… come with Tropical Birding! Madagascar is well known to pose some logistical challenges, especially in the form of the national airline Air Madagascar, but we enjoyed perfectly smooth sailing on this tour. We stayed in the most comfortable hotels available at each stop on the itinerary, including some that have just recently opened, and savored some remarkably good food, which many people rank as the best Madagascar Custom Tour October 20-November 6, 2016 they have ever had on any birding tour.
    [Show full text]
  • Blumgart Et Al 2017- Herpetological Survey Nosy Komba
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs).
    [Show full text]
  • (Anura, Microhylidae) from the Sorata Massif in Northern Madagascar
    Zoosyst. Evol. 91 (2) 2015, 105–114 | DOI 10.3897/zse.91.4979 museum für naturkunde Leaping towards a saltatorial lifestyle? An unusually long-legged new species of Rhombophryne (Anura, Microhylidae) from the Sorata massif in northern Madagascar Mark D. Scherz1, Andolalao Rakotoarison2, Oliver Hawlitschek1,3, Miguel Vences2, Frank Glaw1 1 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstr. 21, 81247 München, Germany 2 Zoologisches Institut, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany 3 Current address: IBE, Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Spain http://zoobank.org/79F1E7CE-3ED3-4A6C-AA15-DC59AB3046B8 Corresponding author: Mark D. Scherz ([email protected]) Abstract Received 23 March 2015 The Madagascar-endemic microhylid genus Rhombophryne consists of a range of partly Accepted 15 June 2015 or completely fossorial frog species. They lead a poorly known, secretive lifestyle, and Published 16 July 2015 may be more diverse than previously thought. We describe a new species from the high altitude forests of the Sorata massif in north Madagascar with unusual characteristics Academic editor: for this genus; R. longicrus sp. n. has long, slender legs, unlike most of its fossorial or Peter Bartsch semi-fossorial congeners. The new species is closely related to R. minuta, a much smaller frog from the Marojejy massif to the southeast of Sorata with similarly long legs. We discuss the morphology of these species relative to the rest of the genus, and argue that Key Words it suggests adaptation away from burrowing and toward a more saltatorial locomotion and an accordingly more terrestrial lifestyle.
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • Does Selective Wood Exploitation Affect Amphibian Diversity? the Case of An’Ala, a Tropical Rainforest in Eastern Madagascar
    Oryx Vol 38 No 4 October 2004 Does selective wood exploitation affect amphibian diversity? The case of An’Ala, a tropical rainforest in eastern Madagascar Denis Vallan, Franco Andreone, Vola H. Raherisoa and Rainer Dolch Abstract The diversity of amphibians before and rainforest habitat showed a non-significant 10.1% after low-level forest exploitation in An’Ala forest in decrease in abundance after logging. It appears therefore central-eastern Madagascar was compared over the that amphibians are relatively resilient to a low-level course of 4 years. Neither abundance nor diversity of of forest exploitation and their diversity is apparently not amphibians generally were significantly affected by affected, at least in the short-term. This and other studies low-level selective logging, although the abundance of have, however, shown that logging commonly results individual species differed. Mantelline anurans were in a shift in species composition, with species typical of the most sensitive, in contrast to the tree frogs of the pristine rainforests being replaced by species adapted to subfamily Boophinae (Mantellidae) and Cophylinae secondary habitats. (Microhylidae). The abundance of Mantellinae anurans decreased by 15.8% after logging, whereas Boophinae Keywords Amphibian, Boophinae, Cophylinae, and Microhylidae anurans increased by 12.1% and diversity, Mantellinae, rainforest, selective wood 3.7%, respectively. In general, species strongly tied to exploitation. Introduction deforestation upon natural animal communities is urgently needed. Tropical rainforests worldwide are cleared and exploited Despite the existence of 16 protected areas in the for many reasons, and trees are often felled selectively, eastern rainforests (ANGAP, 2001), the vast majority of especially if the aim is to remove the most valuable the remaining natural vegetation does not have legal timber rather than clear felling for pasture and/or crop protection.
    [Show full text]
  • Correlates of Eye Colour and Pattern in Mantellid Frogs
    SALAMANDRA 49(1) 7–17 30Correlates April 2013 of eyeISSN colour 0036–3375 and pattern in mantellid frogs Correlates of eye colour and pattern in mantellid frogs Felix Amat 1, Katharina C. Wollenberg 2,3 & Miguel Vences 4 1) Àrea d‘Herpetologia, Museu de Granollers-Ciències Naturals, Francesc Macià 51, 08400 Granollers, Catalonia, Spain 2) Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, 640 Dr. Mary McLeod Bethune Blvd., Daytona Beach, FL 32114, USA 3) Department of Biogeography, Trier University, Universitätsring 15, 54286 Trier, Germany 4) Zoological Institute, Division of Evolutionary Biology, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany Corresponding author: Miguel Vences, e-mail: [email protected] Manuscript received: 18 March 2013 Abstract. With more than 250 species, the Mantellidae is the most species-rich family of frogs in Madagascar. These frogs are highly diversified in morphology, ecology and natural history. Based on a molecular phylogeny of 248 mantellids, we here examine the distribution of three characters reflecting the diversity of eye colouration and two characters of head colouration along the mantellid tree, and their correlation with the general ecology and habitat use of these frogs. We use Bayesian stochastic character mapping, character association tests and concentrated changes tests of correlated evolu- tion of these variables. We confirm previously formulated hypotheses of eye colour pattern being significantly correlated with ecology and habits, with three main character associations: many tree frogs of the genus Boophis have a bright col- oured iris, often with annular elements and a blue-coloured iris periphery (sclera); terrestrial leaf-litter dwellers have an iris horizontally divided into an upper light and lower dark part; and diurnal, terrestrial and aposematic Mantella frogs have a uniformly black iris.
    [Show full text]
  • A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
    Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al.
    [Show full text]
  • Madagascar: the Red Island
    Andrea L. Baden & Rachel L. Jacobs Stony Brook University Taxonomic group Total species Endemic species % Endemism Plants 13,000 11,600 89.2 Mammals 155 144 92.9 Birds 310 181 58.4 Reptiles 384 367 95.6 Amphibians 230 229 99.6 Freshwater fish 164 97 59.1 *Recently extinct species: 45 (including birds, reptiles, and mammals) “The ecological state of being unique to a particular geographic location, such as a specific island…[Endemic species are] only found in that part of the world and nowhere else.” Taxonomic group Total species Endemic species % Endemism Plants 13,000 11,600 89.2 Mammals 155 144 92.9 Birds 310 181 58.4 Reptiles 384 367 95.6 Amphibians 230 229 99.6 Freshwater fish 164 97 59.1 *Recently extinct species: 45 (including birds, reptiles, and mammals) North & Central America . Phillippenes . California floristic province . Polynesia-Micronesia . Caribbean Islands . Southwest Australia . Madrean Pine Oak Woodlands . Sundaland . Mesoamerica . Wallaceae South America . Western Ghats & Sri Lanka . Atlantic Forest Europe & Central Asia . Cerrado . Caucasus . Chilean winter-Rainfall-Valdivian . Irano-Antalian forests . Mediterranean Basin . Tumbes-Choco-Magdalena . Mtns of Central Asia . Tropical Andes Africa Asia-Pacific . Cape Floristic region . E. Melanesian Islands . E. African coastal forests . Himalaya . Eastern afromontane . Indo-Burma . W. African Guinean forests . Japan . Horn of Africa . Mtns of SW China . Madagascar . New Caledonia . Maputaland-Pondoland-Albany . New Zealand . Succulent Karoo > 44% of the world’s plant species > 35% of the world’s terrestrial vertebrates Cover ~ 1.4% of the earth’s surface . was once 11%, but 88% of that has since been lost Madagascar contains 1 of 6 major radiations of primates .
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • FAUNE DE MADAGASCAR Publiée Sous Les Auspices Du Gouvernement De La République Malgache
    FAUNE DE MADAGASCAR Publiée sous les auspices du Gouvernement de la République Malgache 47 REPTILES SAURIENS CHAMAELEONIDAE Genre Brookesia et complément pour le genre Chamae/eo par E.-R. BRYGûû (Mu.séUTn national dHistoire naturelle) Volume honoré d'une subvention de l'Agence de Coopération culturelle et technIque ÜR5TûM CNRS Paris 1978 FAUNE DE MADAGASCAR Collection fondée en 1956 par M. le Recteur Renaud PA LIAN Corre pondant de l'Institut Recteur de l'Académie de Bordeaux (alors Dirocteur adjoint de 1'1 RSM) Collection honorée d'une subvention de l'Académie des Scienoes (fonds Loutreuil) Comité de patronage M.le Dr RAIWTO RATSIMA~fANGA, membre correspondant de l'Institut, Paris.­ M.le Ministre de l1tducation nati nale, Tananarive. - M. le Président de l'Académie Malgache, Tananarive. - M. le Recteur de 1Université de Tananarive. - M. le Professeur de Zoologie de 1 niversité de Tananariv .- f. le DU'ecteur général du CNRS, Paris. - M. le Directeur général ct l üRSTüM, Pari. M. le Professeur Dr J. MILLOT, membre de l'ln titut, fondateur et ancien directeur de l'IRSM, Parjs. - M. Je Profe ur R. HEIM, fi mbre de lIn titut, Paris. MM. les Professeur J. DOR. T, membre de l'Institut, diJ'ecteul' du Muséum national, Paris; J.-M. PÉRÈS, membre de l'ln titut, Marseille; A. CILU3AUD, Paris; C. DELAMARE DEBouTTEVlLLE, Pari; P. LEHM ,Paris; M. RAKOTOMARIA, Tananarive. Comité de rédaction: M. R. PAlJLIA 1 Président; MM. C. DELAMARE DEBouTTEvILLE, P. DRACH, P. GRIVEA D, A. GRJEBINE, J.-J. PETTER, G. RAMANANTSOAVINA, P. ROEDERER, P. Vn:TTE ( ecrétaire). Les volumes de la «Faune de Madagascar », honorés d'une subvention de la République Malgache, sont publiés avec le concours financier du Centre National de la Recherche Scientifique et de l'Office de la Recherche Scientifique et Technique Outre-Mer.
    [Show full text]