Density-Dependent Effects of Multiple Predators Sharing a Common Prey in an Endophytic Habitat

Total Page:16

File Type:pdf, Size:1020Kb

Density-Dependent Effects of Multiple Predators Sharing a Common Prey in an Endophytic Habitat Oecologia (2004) 139: 418–426 DOI 10.1007/s00442-004-1511-9 COMMUNITY ECOLOGY Brian H. Aukema . Murray K. Clayton . Kenneth F. Raffa Density-dependent effects of multiple predators sharing a common prey in an endophytic habitat Received: 13 June 2003 / Accepted: 15 January 2004 / Published online: 13 February 2004 # Springer-Verlag 2004 Abstract Multiple predator species feeding on a common female basis. The combined effects of these predators did prey can lead to higher or lower predation than would be not enhance or reduce prey establishment or reproduction expected by simply combining their individual effects. in unexpected manners, and these predators were entirely Such emergent multiple predator effects may be especially substitutable. The herbivore’s net replacement rate was prevalent if predators share feeding habitat. Despite the never reduced significantly below one at prey and predator prevalence of endophagous insects, no studies have densities emulating field conditions. Similar numbers of examined how multiple predators sharing an endophytic each predator species emerged from the logs, but predator habitat affect prey or predator reproduction. We investi- reproduction suffered from high intraspecific interference. gated density-dependent predation of Thanasimus dubius The net replacement rate of P. cylindrica was not affected (Coleoptera: Cleridae) and Platysoma cylindrica (Coleop- by conspecifics or T. dubius. In contrast, the net tera: Histeridae) on a bark beetle prey, Ips pini (Coleop- replacement rate of T. dubius decreased with the presence tera: Scolytidae), in a laboratory assay. I. pini utilize of conspecifics or P. cylindrica. Combinations of both aggregation pheromones to group-colonize and reproduce predators led to an emergent effect, a slightly increased net within the stems of conifers. T. dubius and P. cylindrica replacement rate of T. dubius. This may have been due to exploit these aggregation pheromones to arrive simulta- predation by larval T. dubius on pupal P. cylindrica,asP. neously with the herbivore. Adult T. dubius prey cylindrica develops more rapidly than T. dubius within this exophytically, while P. cylindrica adults enter and prey shared habitat. within the bark beetle galleries. Larvae of both predators prey endophytically. We used a multiple regression Keywords Multiple predator effects . Endophagous . analysis, which avoids confounding predator composition Density dependence . Linear effects . Substitutable effects with density, to examine the effects of varying predator densities alone and in combination on herbivore establish- ment, herbivore reproduction, and predator reproduction. Introduction Predators reduced colonization success by both sexes, and decreased I. pini reproduction on a per male and per Most studies of predator-prey interactions have explored single paired relationships (Kareiva 1994). However, there B. H. Aukema (*) . K. F. Raffa is increasing emphasis on understanding multiple predator Department of Entomology, University of Wisconsin, effects that more closely emulate natural systems (Polis 345 Russell Laboratories, 1630 Linden Drive, and Strong 1996; Relyea and Yurewicz 2002). Studies of Madison, WI 53706, USA multiple predators on shared prey have identified “emer- e-mail: [email protected] ” Tel.: +1-608-2624755 gent properties that challenge strict notions of top-down Fax: +1-608-2623322 trophic cascades erected by collapsing different predators into single functional units (Polis and Strong 1996). B. H. Aukema Emergent multiple predator effects arise when the realized Biometry Program, University of Wisconsin (Madison), 345 Russell Laboratories, 1630 Linden Drive, effects of two predators deviate from expected combina- Madison, WI 53706, USA tions of their individual impacts (Sih et al. 1998). e-mail: [email protected] Predicting such outcomes is especially important for biological control, where an introduced predator’sor M. K. Clayton ’ Department of Statistics, University of Wisconsin (Madison), parasitoid s interactions with other natural enemies could 1210 West Dayton Street, inadvertently increase herbivore populations (Rosenheim Madison, WI 53706, USA 1998; Fagan et al. 2002; Van Lenteren et al. 2003). 419 Emergent effects may be “risk enhancing” to the prey if Materials and methods predators kill more prey than expected together than by themselves (Losey and Denno 1998; Swisher et al. 1998), Study animals or “risk reducing” if predators kill fewer prey than expected (Spiller 1986; Rosenheim et al. 1993). Emergent Ips pini (Say) reproduces within the subcortical tissues of stressed and recently dead pine trees across North America (Thomas 1955). multiple predator effects may be trait- or density-mediated. Male beetles chew through the bark, and construct “nuptial” Trait-mediated effects may occur when prey exhibit a chambers in which they are joined by females. While boring, males foraging strategy or defensive behavior in the presence of emit a pheromone blend that attracts both genders (Wood 1982) and one predator that predisposes predation by another pred- varies transcontinentally (Seybold et al. 1995; Miller et al. 1997). Male I. pini typically mate with two or three females (Schenk and ator species (Swisher et al. 1998; Okuyama 2002; Relyea Benjamin 1969; Kirkendall 1983). Final settlement densities average and Yurewicz 2002). Density-mediated effects may arise 1 male and 2 females/dm2 of bark surface (Schenk and Benjamin through intraguild predation among the predators, as their 1969; Poland and Borden 1994; Robins and Reid 1997). Each satiation may reduce threats to prey (Polis et al. 1989; female constructs one ovipositional gallery radiating from the nuptial chamber, and oviposits in niches that she chews along these Rosenheim et al. 1999; Snyder and Ives 2001). galleries and subsequently packs with frass. Larvae feed and tunnel Many factors influence trait- and density-mediated throughout the phloem tissue before pupating in oval chambers. interactions and the potential for emergent multiple Adults emerge to seek new hosts. Development requires approxi- predator effects, such as body size, growth rates, repro- mately 30 days, and adults can only live for a few days outside host ’ ductive phenology, feeding breadth, and the degree of trees. Thus almost all of I. pini s life cycle (except during overwintering in soil) occurs within an endophytic habitat. overlap of predator habitats (Polis et al. 1989; Sih et al. Two beetles, Thanasimus dubius (F.) (Cleridae), and Platysoma 1998). To date, however, predators that share endophytic cylindrica (Paykull) (Histeridae) are the numerically dominant habitats have never been studied. All multiple-predator predators attacking I. pini. Together, they represent approximately studies on terrestrial arthropods have involved exophytic 79% of all predators sampled in funnel traps arriving to trees being colonized by this herbivore (Aukema et al. 2000b). Both are highly herbivores, despite the ubiquity of endophytic insects effective at exploiting the aggregation pheromones of I. pini to across insect and plant taxa, geographic regions, and locate prey (Raffa and Klepzig 1989; Herms et al. 1991; Aukema et biomes (Cornell et al. 1998). An endophytic lifestyle can al. 2000a, 2000b; Ayres et al. 2001). For example, T. dubius has provide substantial protection from natural enemies been shown to be four times more attracted to I. pini colonizing red pine, Pinus resinosa Aiton, than is this herbivore to itself (Aukema relative to external feeding (Hawkins et al. 1997; Cornell et al. 2000b). Adult T. dubius prey on adult I. pini on the bark et al. 1998), although many specialist predators and surface, mate, and oviposit in bark crevices. Larvae enter the parasitoids exploit host plant compounds and herbivore galleries and prey on the developing I. pini brood (Thatcher and pheromones to effectively locate prey, including endo- Pickard 1966; Aukema and Raffa 2002). Adult P. cylindrica average phages (Vet and Dicke 1992). Once inside the confines of 1.2 mm in width and 4.5 mm in length, approximately the size of I. pini, and are heavily sclerotized. They enter bark beetle chambers the plant however, both predators and prey may suffer and use the gallery architecture to confine adult beetles, which they high density-dependent mortality (Aukema and Raffa crush and consume (Aukema and Raffa 2004). The impact of P. 2002). The effects of additional predator species on cylindrica on I. pini has never been quantified. However, behavioral these relationships are unknown. observations in the laboratory, the high number arriving to pheromones of I. pini, and its numerical association with I. pini We used a multivariate regression approach to examine indicate that it is a potentially effective predator (Erbilgin et al. the density-dependent effects of two predators by 2002; Aukema and Raffa 2004). Both T. dubius and P. cylindrica are themselves and in combination on an endophytic bark habitat specialists in that they feed almost exclusively within trees beetle (Coleoptera: Scolytidae) prey. This approach has colonized by bark beetles, but are feeding generalists in that they feed on most primary and secondary species within this community certain advantages over conventional 2×2 factorial designs (Savely 1939; Thomas 1955). that use the presence/absence of two predators (i.e., 1 We obtained I. pini from a laboratory culture raised on white pine, control, 1 A, 1 B, 1 A + 1 B). Multivariate regression
Recommended publications
  • And Pityogenes Knechteli (Swaine) (Coleoptera: Scolytidae) in Lodgepole Pine
    " "SEMIOCHEMICAL-BASED COMMUNICATION IN INTERSPECIFIC INTERACTIONS BETWEEN IPS PINI (SAY) AND PITYOGENES KNECHTELI (SWAINE) (COLEOPTERA: SCOLYTIDAE) IN LODGEPOLE PINE . THERESE M. POLAND and JOHN H. BORDEN Centre forPest Management,Department of Biological Sciences, SimonFraser University, Bumaby, l BritishColumbia,Canada V5A 1S6 ,_._, _ ::._.., _.,.... Abstract The Canadian Entomologist 126:269-276 (1994) .,:.... _ , . , a The pine engraver, Ips pini Say, and Pityogenes knechteli Swaine often co-exist in " , lodgepole pine, Pinus contorta var. latifolia Engelmann. We tested the hypotheses that ,.. " P. knechteli produces an attractive pheromone and that the attraction of P. knechteli and _%_'.. • I. pini to conspecifics is inhibited by the presence of the other species. Pityogenes ._:,: knechteli males and females were attracted to bolts infested with conspecific males and •. , , to bolts infested with I. pini males; however, there was no significant cross-attraction of ...... •: _ - I. pini males or females to bolts infested with P. knechteli males. Attraction ofP. knechteli " :;• _ ..... ,and I. pini males and females to bolts infested with conspecific males was not inhibited • ,. ._ in the presence of bolts infested with males of the other bark beetle species. Pityogenes .... knechteli has no potential for compe.titive displacement of I. pini but may enhance the adverse effectof I. pini on.the mountain pine beetle, Dendroctonus ponderosae Hopkins. ; Poland, T.M., et J.H. Borden. 1994. Communication s6mio-chimique lors des interactions _e.. ., intersp6cifiquesentreIpspini (Say)et Pityogenesknechteli (Swaine) (Coleoptera:Scolytidae) " " chez le Pin de Murray.The Canadian Entomologist 126:269-276 ? R_sum_ • _ ' Les scolytes Ips pini Say et Pityogenes knechteli Swaine cohabitent souvent dans des ' '_7:.':_ ......:'_:_::'_ Pins de Murray Pinus contorta var.
    [Show full text]
  • Seasonality and Lure Preference of Bark Beetles (Curculionidae: Scolytinae) and Associates in a Northern Arizona Ponderosa Pine Forest
    COMMUNITY AND ECOSYSTEM ECOLOGY Seasonality and Lure Preference of Bark Beetles (Curculionidae: Scolytinae) and Associates in a Northern Arizona Ponderosa Pine Forest 1,2 1 3 1 M. L. GAYLORD, T. E. KOLB, K. F. WALLIN, AND M. R. WAGNER Environ. Entomol. 35(1): 37Ð47 (2006) ABSTRACT Ponderosa pine forests in northern Arizona have historically experienced limited bark beetle-caused tree mortality, and little is known about the bark beetle community in these forests. Our objectives were to describe the ßight seasonality and lure preference of bark beetles and their associates in these forests. We monitored bark beetle populations for 24 consecutive months in 2002 and 2003 using Lindgren funnel traps with Þve different pheromone lures. In both years, the majority of bark beetles were trapped between May and October, and the peak captures of coleopteran predator species, Enoclerus (F.) (Cleridae) and Temnochila chlorodia (Mannerheim), occurred between June and August. Trap catches of Elacatis (Coleoptera: Othniidae, now Salpingidae), a suspected predator, peaked early in the spring. For wood borers, trap catches of the Buprestidae family peaked in late May/early June, and catches of the Cerambycidae family peaked in July/August. The lure targeted for Dendroctonus brevicomis LeConte attracted the largest percentage of all Dendroc- tonus beetles except for D. valens LeConte, which was attracted in highest percentage to the lure targeted for D. valens. The lure targeted for Ips pini attracted the highest percentage of beetles for all three Ips species [I.pini (Say), I. latidens (LeConte), and I. lecontei Swaine] and the two predators, Enoclerus and T. chlorodia.
    [Show full text]
  • Alien Invasive Species and International Trade
    Forest Research Institute Alien Invasive Species and International Trade Edited by Hugh Evans and Tomasz Oszako Warsaw 2007 Reviewers: Steve Woodward (University of Aberdeen, School of Biological Sciences, Scotland, UK) François Lefort (University of Applied Science in Lullier, Switzerland) © Copyright by Forest Research Institute, Warsaw 2007 ISBN 978-83-87647-64-3 Description of photographs on the covers: Alder decline in Poland – T. Oszako, Forest Research Institute, Poland ALB Brighton – Forest Research, UK; Anoplophora exit hole (example of wood packaging pathway) – R. Burgess, Forestry Commission, UK Cameraria adult Brussels – P. Roose, Belgium; Cameraria damage medium view – Forest Research, UK; other photographs description inside articles – see Belbahri et al. Language Editor: James Richards Layout: Gra¿yna Szujecka Print: Sowa–Print on Demand www.sowadruk.pl, phone: +48 022 431 81 40 Instytut Badawczy Leœnictwa 05-090 Raszyn, ul. Braci Leœnej 3, phone [+48 22] 715 06 16 e-mail: [email protected] CONTENTS Introduction .......................................6 Part I – EXTENDED ABSTRACTS Thomas Jung, Marla Downing, Markus Blaschke, Thomas Vernon Phytophthora root and collar rot of alders caused by the invasive Phytophthora alni: actual distribution, pathways, and modeled potential distribution in Bavaria ......................10 Tomasz Oszako, Leszek B. Orlikowski, Aleksandra Trzewik, Teresa Orlikowska Studies on the occurrence of Phytophthora ramorum in nurseries, forest stands and garden centers ..........................19 Lassaad Belbahri, Eduardo Moralejo, Gautier Calmin, François Lefort, Jose A. Garcia, Enrique Descals Reports of Phytophthora hedraiandra on Viburnum tinus and Rhododendron catawbiense in Spain ..................26 Leszek B. Orlikowski, Tomasz Oszako The influence of nursery-cultivated plants, as well as cereals, legumes and crucifers, on selected species of Phytophthopra ............30 Lassaad Belbahri, Gautier Calmin, Tomasz Oszako, Eduardo Moralejo, Jose A.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Integrating Cultural Tactics Into the Management of Bark Beetle and Reforestation Pests1
    DA United States US Department of Proceedings --z:;;-;;; Agriculture Forest Service Integrating Cultural Tactics into Northeastern Forest Experiment Station the Management of Bark Beetle General Technical Report NE-236 and Reforestation Pests Edited by: Forest Health Technology Enterprise Team J.C. Gregoire A.M. Liebhold F.M. Stephen K.R. Day S.M.Salom Vallombrosa, Italy September 1-3, 1996 Most of the papers in this publication were submitted electronically and were edited to achieve a uniform format and type face. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. Some participants did not submit papers so they have not been included. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Remarks about pesticides appear in some technical papers contained in these proceedings. Publication of these statements does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by State and Federal Law. Applicable regulations must be obtained from the appropriate regulatory agencies. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife - if they are not handled and applied properly.
    [Show full text]
  • Checkered Beetle Thanasimus Dubius (Fabricius)
    adult larva The Bugwood Network and USDA Forest Service adult larva The Bugwood Network and USDA Forest Service checkered beetle Thanasimus dubius (Fabricius) Checkered beetles in the family Cleridae are among the most important insect predators attacking forest insect pests. Adults of most species are active, antlike, brightly colored, hairy beetles that prey on adult beetles. Larvae live in the galleries and tunnels of bark beetles and woodborers and destroy the immature stages of these insects. Thanasimus dubius is one of the most important predators of destructive bark beetles in the Eastern United States. The adult is 7 to 10 mm long with the head, thorax, and base of the wing covers being a dull red. The antennae and legs are red to black, and the wing covers are mostly black with crossbands of whitish hairs. The larva is elongate, spindle-shaped, and purplish with several dark brown hardened areas on the body. Winter is spent in the larval, pupal, or adult stages. In early spring, the adults emerge and fly to bark beetle-infested trees or logs and feed on the adult prey as they emerge from hibernation. Eggs are deposited in entrances to bark beetle galleries. Young checkered beetle larvae feed on bark beetle eggs; older ones feed on host larvae, pupae, and adults. Pupation occurs in cells in the outer bark. checkered beetle Thanasimus dubius (Fabricius) Checkered beetles in the family Cleridae are among the most important insect predators attacking forest insect pests. Adults of most species are active, antlike, brightly colored, hairy beetles that prey on adult beetles.
    [Show full text]
  • Dendroctonus Beetles and Old-Growth Forests in the Rockies
    Utah State University DigitalCommons@USU Quinney Natural Resources Research Library, The Bark Beetles, Fuels, and Fire Bibliography S.J. and Jessie E. 1992 Dendroctonus Beetles and Old-Growth Forests in the Rockies J M. Schmid G D. Amman Follow this and additional works at: https://digitalcommons.usu.edu/barkbeetles Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Forest Biology Commons, Forest Management Commons, and the Wood Science and Pulp, Paper Technology Commons Recommended Citation Schmid, J. and Amman, G. (1992). Dendroctonus beetles and old-growth forests in the Rockies. In: MR Kaufmann, WH Moir and WH Bassett (tech.eds) Old-growth Forest in the Southwest and Rock Mountain Regions, Proceedings of a Workshop (pp. 51-59). USDA Forest Service Rocky Mountain Research Station, General Technical Report RM-GTR-213. This Contribution to Book is brought to you for free and open access by the Quinney Natural Resources Research Library, S.J. and Jessie E. at DigitalCommons@USU. It has been accepted for inclusion in The Bark Beetles, Fuels, and Fire Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Dendroctonus Beetles and Old-Growth Forests in the Rockies1 J. M. Schmid and G. D. Amman2 Abstract.-Dendroctonus beetles (Coleoptera: Scolytidae) are a major mortality agent in old growth pine, spruce-fir, and Douglas-fir forests of the Rocky Mountains. The frequency of recurring bark beetle epidemics depends on the size of the area being considered, how extensively the stand(s) was decimated by a previous epidemic(s), and how fast the stand(s) grows into the hazardous condition.
    [Show full text]
  • Psw 2020 Fettig006 Audley.Pdf
    Forest Ecology and Management 475 (2020) 118403 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Impacts of mountain pine beetle outbreaks on lodgepole pine forests in the T Intermountain West, U.S., 2004–2019 ⁎ Jackson P. Audleya, Christopher J. Fettiga, , A. Steven Munsonb, Justin B. Runyonc, Leif A. Mortensond, Brytten E. Steede, Kenneth E. Gibsone, Carl L. Jørgensenf, Stephen R. McKelveya, Joel D. McMilling, Jose F. Negrónh a Pacific Southwest Research Station, USDA Forest Service, 1731 Research Park Drive, Davis, CA95618,USA b Forest Health Protection, USDA Forest Service, 4746 South 1900 East, Ogden, UT 84403, USA c Rocky Mountain Research Station, USDA Forest Service, 1648 South 7th Avenue, Bozeman, MT 59717, USA d Pacific Southwest Research Station, USDA Forest Service, 2480 Carson Road, Placerville, CA 95667,USA e Forest Health Protection, USDA Forest Service, 26 Fort Missoula, Missoula, MT 59804, USA f Forest Health Protection, USDA Forest Service, 1249 South Vinnell Way, Suite 200, Boise, ID 83709, USA g Forest Health Protection, USDA Forest Service, 2500 South Pine Knoll Drive, Flagstaff, AZ 86001, USA h Rocky Mountain Research Station, USDA Forest Service, 240 West Prospect Road, Fort Collins, CO 80526, USA ARTICLE INFO ABSTRACT Keywords: Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), is the most important forest Bark beetles insect in western North America. We determined causes and rates of tree mortality and changes in forest Climate change structure and composition associated with D. ponderosae outbreaks in the Intermountain West, U.S. during Dendroctonus ponderosae 2004–2019 based on a network of 125 0.081-ha circular plots installed in Colorado, Idaho, Montana, Utah and Disturbance Wyoming.
    [Show full text]
  • SOUTHERN PINE BEETLE (Dendroctonus Frontalis Zimmermann)
    SOUTHERN PINE BEETLE (Dendroctonus frontalis Zimmermann): SEMIOCHEMICAL ECOLOGY, RELATIONSHIP BETWEEN OUTBREAK POPULATIONS AND LIGHTNING STRIKE, AND ECOLOGICAL IMPACTS OF SUPPRESSION AND CONTROL TECHNIQUES. by JENNY C. STAEBEN (Under the Direction of Kamal J. K. Gandhi) ABSTRACT The economically damaging southern pine beetle (Dendroctonus frontalis Zimmermann) is one of the most destructive insect pests in southeastern United States. SPB populations are monitored using a racemic kairomone, α-pinene, and pheromone, frontalin to capture SPB and predator, Thanasimus dubius (Fabricius). I assessed whether SPB and T. dubius differentiate between enantiomers of α-pinene. Results indicated the response of female and male SPB to α-pinene enantiomers did not significantly differ, although males were somewhat more responsive to (+)-α-pinene. Captures of T. dubius increased with volumes of α-pinene, and T. dubius did not differentiate between enantiomers. Typically SPB infest pines other southern pine bark beetle guild (SPBBG) members (which include Dendroctonus terebrans (Olivier) and Ips beetle species). Colonizing Ips species release either ipsdienol and/or ipsenol. I assessed the inter- and intraspecies attraction among SPBBG and their predators. Results indicate SPB and T. dubius are not attracted to Ips attractants and vice versa. BTB and Ips calligraphus (Germar) were attracted to Ips attractants. SPBBG predators (other than Pycnomerus sulcicollis LeConte) did not differentiate between SPB and Ips attractants. Using linear regression, I assessed the relationship between lightning strike and SPB infestations. Results indicated a relationship between SPB infestations developing within 100-250 m of a negatively-charged lightning strike with a magnitude of > 150 kilo amps. There was no relationship between the basal area pine stands and the likelihood of lightning strike.
    [Show full text]
  • Coleoptera, Cleridae, Clerinae) 35 Doi: 10.3897/Zookeys.92.1157 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys Defi92: 35–60 nition (2011) and Revision of the Orthrius-group of genera (Coleoptera, Cleridae, Clerinae) 35 doi: 10.3897/zookeys.92.1157 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Definition and Revision of the Orthrius-group of genera (Coleoptera, Cleridae, Clerinae) Roland Gerstmeier†, Jonas Eberle‡ Technische Universität München, Department für Ökologie und Ökosystemmanagement, Lehrstuhl für Tierökologie, Hans-Carl-von-Carlowitz-Platz 2, 85350 Freising, Germany † urn:lsid:zoobank.org:author:03727426-842C-4C2F-9703-613CCADC305D ‡ urn:lsid:zoobank.org:author:3A048DFB-D6E1-4F17-9705-9B2EB2753B94 Corresponding author : Roland Gerstmeier ( [email protected] ) Academic editor: Terry Erwin | Received 20 February 2011 | Accepted 8 April 2011 | Published 28 April 2011 urn:lsid:zoobank.org:pub:65A96102-685B-4BB6-A311-B96FEC3333A2 Citation: Gerstmeier R, Eberle J (2011) Defi nition and Revision of the Orthrius-group of genera (Coleoptera, Cleridae, Clerinae). ZooKeys 92 : 35 – 60 . doi: 10.3897/zookeys.92.1157 Abstract An “Orthrius-group” of genera is proposed, and defi ned to include Aphelochroa Quedenfeldt, 1885; Cari- dopus Schenkling, 1908; Dozocolletus Chevrolat, 1842; Gyponyx Gorham, 1883; Languropilus Pic, 1940; Orthrius Gorham, 1876; Pieleus Pic, 1940; Xenorthrius Gorham, 1892; plus three new genera Neorthrius gen. n., Nonalatus gen. n. and Pseudoastigmus gen. n. A phylogeny of the 11 constituent Orthrius-group genera (analysis of 22 morphological characters using Clerus Geoff roy as the out-group taxon was per- formed with TNT v1.1) is proposed. Four genera are synonymised: Burgeonus Pic, 1950, syn. n. (with Aphelochroa Quedenfeldt, 1885); Brinckodes Winkler, 1960, syn.
    [Show full text]
  • Insect Infestation of Fire- Injured'trees in the Greater Yellowstone Area
    /11... United States Department of Agriculture Insect Infestation of Fire­ Forest Service Injured'Trees in the • Intermountain Research Station Research Note Greater Yellowstone Area INT-398 September 1991 Gene D. Amman1 Kevin c. Ryan2 ABSTRACT Survival of conifers following fire depends on the type and degree of injuries sustained, initial tree Permanent plots were established in the Greater vigor, and the postfire environment, including Yellowstone Area (GYA,) following the 1988 fires to weather and insect and disease population dynam­ determine response of bark beetles to fire-injured ics (Ryan 1982, 1990). As fire injuries increase, the conifers. Within 2 years (1989 and 1990), 67 percent probability of tree death increases. Numerous of the Douglas-(z.r had been infested by bark beetles authors (compare Peterson 1985; Peterson and (primarily the Douglas-fir beetle) and wood borers; Arbaugh 1986, 1989; Ryan 1990; Ryan and others 44 percent of the lodgepole pine were infested (prima­ 1988) have identified the proportion of crown killed rily by the pine engraver); 82 percent of the Engel­ as the key injury contributing to death of most mann spruce were infested (mostly by spruce beetle); trees, but injuries to bole cambium or roots or both and 71 percent of the subalpine fir were infested may dominate in some cases (Ferguson and others (mostly by wood borers). Bark beetle infestation 1960; Ryan and others 1988; Ryan and Reinhardt usually occurred in trees having 50 percent or more 1988). Resistance to cambium injury increases with • basal girdling by fire. However, uninjured Douglas­ the square of the bark thickness (compare Martin fir also had 46 percent of the trees infested in 1990.
    [Show full text]
  • 5 Chemical Ecology of Cerambycids
    5 Chemical Ecology of Cerambycids Jocelyn G. Millar University of California Riverside, California Lawrence M. Hanks University of Illinois at Urbana-Champaign Urbana, Illinois CONTENTS 5.1 Introduction .................................................................................................................................. 161 5.2 Use of Pheromones in Cerambycid Reproduction ....................................................................... 162 5.3 Volatile Pheromones from the Various Subfamilies .................................................................... 173 5.3.1 Subfamily Cerambycinae ................................................................................................ 173 5.3.2 Subfamily Lamiinae ........................................................................................................ 176 5.3.3 Subfamily Spondylidinae ................................................................................................ 178 5.3.4 Subfamily Prioninae ........................................................................................................ 178 5.3.5 Subfamily Lepturinae ...................................................................................................... 179 5.4 Contact Pheromones ..................................................................................................................... 179 5.5 Trail Pheromones ......................................................................................................................... 182 5.6 Mechanisms for
    [Show full text]