Financed by the World Bank Loan

Total Page:16

File Type:pdf, Size:1020Kb

Financed by the World Bank Loan E4275 REV Public Disclosure Authorized Guiyang Rural Road Project (P129401) Financed by the World Bank Loan ENVIRONMENTAL CODE OF PRACTICES Public Disclosure Authorized Public Disclosure Authorized Guizhou Institute of Environmental Science and Designing Public Disclosure Authorized Guo Huan Ping Zheng: Jia Zi No. 3302 July 2013 · Guiyang Project of Guiyang Rural Road Construction Financed by the World Bank Loan Environmental Code of Practices Contents 1 Preface .................................................................................................................................. 1 1.1 Background of project .......................................................................................... 1 1.2 Environmental assessment (EA) .......................................................................... 1 1.3 Purpose, criterion and scope of drawing up environmental code of practices ..... 1 1.4 Relevant laws, rules and security policies ............................................................ 3 1.5 Experience summary of rural road subproject of “Guiyang transport project” ...... 4 1.6 Structure of the report ......................................................................................... 10 2 Outline of Basic Information of Guiyang City ............................................................. 12 2.1 Natural environment ........................................................................................... 12 2.2 Social environment ............................................................................................. 27 3 Implementation Management of Environmental Code of Practices ........................ 32 3.1 Organization structuring and main responsibilities ............................................ 32 3.2 Settings and main responsibilities of environmental administrative staff .......... 33 3.3 Construction preparation and environmental supervision .................................. 34 3.4 Document management and report ..................................................................... 36 4 Environmental Code of Practices for Site Construction ............................................ 38 4.1 Environment code of practices for site environment .......................................... 38 4.2 Environmental code of practices for site construction ....................................... 39 5 Environmental Code of Practices for Site Cleaning .................................................... 42 5.1 Contents of site cleaning .................................................................................... 42 5.2 Environmental code of practices for site cleaning ............................................. 42 6 Environmental Code of Practices for Access road ...................................................... 44 6.1 Site selection requirements of access road ......................................................... 44 6.2 Environmental impact analysis on access road .................................................. 44 6.3 Environmental code of practices for access road ............................................... 44 7 Environmental Code of Practices for Quarry and Borrow Area .............................. 46 7.1 Site selection requirements of quarry and borrow area ...................................... 46 7.2 Analysis of quarry and borrow area on environment ......................................... 46 7.3 Environmental code of practices for quarry and borrow area ............................ 46 8 Environmental Code of Practices for Spoil/Waste Residue Ground ........................ 48 8.1 Site selection requirements of spoil/waste residue ground ................................ 48 8.2 Analysis on environmental impact factors of spoil/waste residue ground ......... 48 I Project of Guiyang Rural Road Construction Financed by the World Bank Loan Environmental Code of Practices 8.3 Environmental code of practices for spoil/waste residue ground ....................... 48 9 Environmental Code of Practices for Slope Stability and Earth Squaring/Filling 50 9.1 Analysis on common damages appearing on road slope and formation cause .. 50 9.2 Type of slope protection ..................................................................................... 51 9.3 Environmental code of practices for slope protection ........................................ 54 10 Environmental Code of Practices for Drainage System ........................................... 56 10.1 The importance of drainage system to rural road ............................................. 56 10.2 Types of drainage system of rural road ............................................................ 56 10.3 Environmental code of practices for drainage system ...................................... 56 11 Environmental Code of Practices for Bridge Construction ..................................... 61 11.1 Features and damage causes of rural road bridge ............................................. 61 11.2 Analysis of impact of bridge construction on the environment ........................ 62 11.3 Environmental code of practices for bridge construction ................................. 63 12 Environmental Code of Practices for Pipe Culvert ................................................... 68 12.1 Classification and applicable conditions of pipe culvert .................................. 68 12.2 Analysis of impact of pipe culvert construction on the environment ............... 68 12.3 Environmental code of practices for pipe culvert............................................. 68 13 Environmental Code of Practices for Maintenance Station and Overloading Control Station ............................................................................................................... 75 13.1 Requirements of site selection of maintenance station and overloading control station ............................................................................................................... 75 13.2 Analysis of impact of maintenance station and overloading control station on the environment ............................................................................................... 75 13.3 Environmental code of practices for maintenance station and overloading control station ................................................................................................... 75 14 Environmental Code of Practices for Preventing Water and Soil Loss ................. 79 14.1 Soil and water conservation measures and construction arrangement ............. 79 14.2 Prevention area of the main works ................................................................... 79 14.3 Prevention area of concrete mixing station ...................................................... 80 14.4 Prevention area of access road ......................................................................... 81 14.5 Prevention area of temporary spoil (residue) ground ....................................... 81 15 Management of Social Interference ............................................................................. 83 15.1 Connectivity of water conservancy system ...................................................... 83 15.2 Connectivity of branch line .............................................................................. 84 15.3 Environmental code of practices for noise influence ....................................... 84 II Project of Guiyang Rural Road Construction Financed by the World Bank Loan Environmental Code of Practices 15.4 Flying dust management measures ................................................................... 85 15.5 Solid waste management measures .................................................................. 85 15.6 Organizational planning of construction transportation ................................... 86 16 Environmental Code of Practices for Sewage Treatment ........................................ 87 16.1 Types of sewage from construction and operation of road ............................... 87 16.2 Environmental code of practices for sewage treatment .................................... 87 16.3 Emergency management system and emergency measures suggested ............ 88 17 Environmental Code of Practices for Historic Preservation ................................... 90 18 Environmental Code of Practices for Safety and Health ......................................... 92 18.1 Analysis of construction safety and health ....................................................... 92 18.2 Measures for construction safety and health .................................................... 92 18.3 Road Traffic Safety Signs and Facilities .......................................................... 93 19 Environmental Code of Practices for Hazardous Waste and Chemical Waste .... 94 19.1 Measures for managing hazardous waste and chemical waste ......................... 94 19.2 Risk prevention measures and emergency plan ................................................ 94 20 Environmental Code of Practices for Public Consultation ...................................... 96 20.1 The purpose of public participation .................................................................. 96 20.2 General requirements of public participation ................................................... 96 20.3 Organizational forms and findings of public participation ............................... 96 21 Training and Capacity Building ................................................................................. 110 Attached Maps: ..................................................................................................................
Recommended publications
  • Lithofacies Palaeogeography of the Late Permian Wujiaping Age in the Middle and Upper Yangtze Region, China
    Journal of Palaeogeography 2014, 3(4): 384-409 DOI: 10.3724/SP.J.1261.2014.00063 Lithofacies palaeogeography and sedimentology Lithofacies palaeogeography of the Late Permian Wujiaping Age in the Middle and Upper Yangtze Region, China Jin-Xiong Luo*, You-Bin He, Rui Wang School of Geosciences, Yangtze University, Wuhan 430100, China Abstract The lithofacies palaeogeography of the Late Permian Wujiaping Age in Middle and Upper Yangtze Region was studied based on petrography and the “single factor analysis and multifactor comprehensive mapping” method. The Upper Permian Wujiaping Stage in the Middle and Upper Yangtze Region is mainly composed of carbonate rocks and clastic rocks, with lesser amounts of siliceous rocks, pyroclastic rocks, volcanic rocks and coal. The rocks can be divided into three types, including clastic rock, clastic rock-limestone and lime- stone-siliceous rock, and four fundamental ecological types and four fossil assemblages are recognized in the Wujiaping Stage. Based on a petrological and palaeoecological study, six single factors were selected, namely, thickness (m), content (%) of marine rocks, content (%) of shallow water carbonate rocks, content (%) of biograins with limemud, content (%) of thin- bedded siliceous rocks and content (%) of deep water sedimentary rocks. Six single factors maps of the Wujiaping Stage and one lithofacies palaeogeography map of the Wujiaping Age were composed. Palaeogeographic units from west to east include an eroded area, an alluvial plain, a clastic rock platform, a carbonate rock platform where biocrowds developed, a slope and a basin. In addition, a clastic rock platform exists in the southeast of the study area. Hydro- carbon source rock and reservoir conditions were preliminarily analyzed based on lithofacies palaeogeography.
    [Show full text]
  • 6. Estimates of Compensation Fees for Land Acquisition and House Demolition
    RP895 V1 Public Disclosure Authorized Zhaotong Central City Environmental Construction Project Resettlement Action Plan (RAP) Public Disclosure Authorized Public Disclosure Authorized Management Office of Foreign-funded Urban Construction Projects of Zhaoyang District, Zhaotong Municipality Resettlement Office of World Bank Financed Zhaotong Central City Environmental Construction Project Zhaotong, China, November 2009 Public Disclosure Authorized 1 Summary A. Overview 1. The Zhaotong Central City Environmental Construction Project (hereinafter referred to as the “Project”) consists of 3 components: northern area water supply and pipeline project, central city sewage treatment and intercepting sewer project and central city river rehabilitation project. The Project has a construction period of 5 years and a total investment estimate of 825 million yuan, including a World Bank loan of US$60 million yuan. 2. The Project Coordinating and Leading Group of Foreign Funded Projects of Zhaoyang District, Zhaotong Municipality is the executing agency of the Project, and the Management Office of Foreign-funded Urban Construction Projects of Zhaoyang District and the Owner are the implementing agencies of the Project. According to the latest feasibility study outputs, the detailed socioeconomic survey and the impact survey, the Project Management Office (PMO) of Zhaoyang District, Zhaotong Municipality has prepared this RAP with the assistance of the China Cross-Cultural Consulting Center at Sun Yat-sen University (CCCC at SYU) and World Bank experts. B. Impacts of the Project 3. During November 7-15, 2009, the Owner made a detailed survey of the key physical indicators affected by the Project, such as population, houses and attachments, land and special facilities, according to the latest feasibility study outputs, with the assistance of local governments at all levels, administrative villages, communities, villager team officials and the design agency.
    [Show full text]
  • Combining Ability for Seed Yield and Other Characters in Rapeseed
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Suranaree University of Technology Intellectual Repository COMBINING ABILITY FOR SEED YIELD AND OTHER CHARACTERS IN RAPESEED Zesu Huang1,3, Paisan Laosuwan2,*, Thitiporn Machikowa3 and Zehui Chen1 Received: Aug 7, 2009; Revised: Nov 2, 2009; Accepted: Nov 24, 2009 Abstract Rapeseed (Brassica napus L.) is one of the most important oilseed crops of China. The improvement of yield and oil content is presently being emphasized for this crop. The objective of this study was to evaluate combining ability of rapeseed lines to be used in breeding for yield, oil content and other characters. Nine inbred lines used as males were crossed to five recessive genetic male sterile (RGMS) lines used as females in a factorial manner (NCII design) to produce 45 single crosses. The crosses and their parents were tested at Guiyang and Zunyi, Guizhou, China in 2007-2008. The results showed that mean squares for hybrids were significantly different for all characters. The SS ratios of sum of squares due to GCA to sum of squares of hybrids were 0.70, 0.80, 0.88 and 0.82 for seed yield, oil content, days to flowering and days to maturity, respectively, but SCA effects were significant for all characters except for days to maturity. This indicates that both additive and non-additive gene effects were important, but additive gene effects were more predominant for these characters. Males III188, III224, and Q034 gave large positive GCA effects for seed yield. Their respective values were 317.6, 253.1, and 383.5 kg ha-1.
    [Show full text]
  • World Bank Document
    WEN CHUAN EARTHQUAKE RECOVERY PROJECT Cheng County Moba Gorge Water Source Project in Gansu Province Public Disclosure Authorized Environmental Impact Assessment Public Disclosure Authorized Public Disclosure Authorized Moba Gorge Water Source Engineering Construction Management Department of Cheng County Lanzhou University Public Disclosure Authorized May 2012 1 Content 1 General Instructions ........................................................................................................................... 5 1.1 Project Background .................................................................................................................. 5 1.2 Evaluation Basis ....................................................................................................................... 6 1.3 Assessment Aim, Principles and Keys .................................................................................... 9 1.4 Functional Division of Assessment Area ............................................................................... 10 1.5 Assessment Time Intervals and Factors................................................................................ 11 1.6 Assessment Rating and Scope .............................................................................................. 11 1.7 Environmental Protection Goal .............................................................................................. 12 1.8 Assessment Standards .........................................................................................................
    [Show full text]
  • BEDRI KARAKAS the Role of Sorbitol Synthesis in Photosynthesis of Peach (Prunus Persica) (Under the Direction of MARK W
    BEDRI KARAKAS The role of sorbitol synthesis in photosynthesis of peach (Prunus persica) (Under the Direction of MARK W. RIEGER) This dissertation examines the hypothesis that polyol synthesis enhances photosynthetic capacity in peach and related species. Members of Prunus synthesize, translocate, and utilize sorbitol as their main photosynthetic end product whereas most other plants utilize sucrose for those purposes. First, I approached this hypothesis by examining eight genetically diverse Prunus species with various sorbitol: sucrose ratios and activities of sorbitol-6-phosphate dehydrogenase (S6PDH), principal sorbitol synthesis enzyme. Leaf photosynthetic capabilities (A), in vitro activity of the S6PDH and sorbitol contents of greenhouse grown plants were measured. I found an inverse relation between A and S6PDH activity of the species. This observation does not support the working hypothesis and that sorbitol synthesis enhances A. Second, I used two peach varieties (i.e., Encore and Nemaguard) to examine the same hypothesis within a single species by source/sink manipulations (i.e., fruiting versus non-fruiting, fruit present versus fruit removed, and shoot tip removal) and existing natural variation (i.e., leaf node position). In all cases, except fruiting versus non-fruiting and fruit present, photosynthesis and S6PDH enzyme activity showed positive correlations. Finally, I analyzed the response of S6PDH gene to shoot tip removal treatment in connection with S6PDH activity and A in potted Nemaguard peach plants. To document hourly changes, leaves were sampled three times during the day (i.e., sunrise, midday, and sunset) and analyzed for S6PDH gene expression and S6PDH activity. Sorbitol-6-phosphate dehydrogenase mRNA transcript levels significantly increased while S6PDH activity decreased 24-hour following shoot tip removal.
    [Show full text]
  • Supplemental Information
    Supplemental information Table S1 Sample information for the 36 Bactrocera minax populations and 8 Bactrocera tsuneonis populations used in this study Species Collection site Code Latitude Longitude Accession number B. minax Shimen County, Changde SM 29.6536°N 111.0646°E MK121987 - City, Hunan Province MK122016 Hongjiang County, HJ 27.2104°N 109.7884°E MK122052 - Huaihua City, Hunan MK122111 Province 27.2208°N 109.7694°E MK122112 - MK122144 Jingzhou Miao and Dong JZ 26.6774°N 109.7341°E MK122145 - Autonomous County, MK122174 Huaihua City, Hunan Province Mayang Miao MY 27.8036°N 109.8247°E MK122175 - Autonomous County, MK122204 Huaihua City, Hunan Province Luodian county, Qiannan LD 25.3426°N 106.6638°E MK124218 - Buyi and Miao MK124245 Autonomous Prefecture, Guizhou Province Dongkou County, DK 27.0806°N 110.7209°E MK122205 - Shaoyang City, Hunan MK122234 Province Shaodong County, SD 27.2478°N 111.8964°E MK122235 - Shaoyang City, Hunan MK122264 Province 27.2056°N 111.8245°E MK122265 - MK122284 Xinning County, XN 26.4652°N 110.7256°E MK122022 - Shaoyang City,Hunan MK122051 Province 26.5387°N 110.7586°E MK122285 - MK122298 Baojing County, Xiangxi BJ 28.6154°N 109.4081°E MK122299 - Tujia and Miao MK122328 Autonomous Prefecture, Hunan Province 28.2802°N 109.4581°E MK122329 - MK122358 Guzhang County, GZ 28.6171°N 109.9508°E MK122359 - Xiangxi Tujia and Miao MK122388 Autonomous Prefecture, Hunan Province Luxi County, Xiangxi LX 28.2341°N 110.0571°E MK122389 - Tujia and Miao MK122407 Autonomous Prefecture, Hunan Province Yongshun County, YS 29.0023°N
    [Show full text]
  • Uranium Enrichment in a Paleo-Karstic Bauxite Deposit, Yunfeng, SW China Mineralogy, Geochemistry, Transport
    Journal of Geochemical Exploration 190 (2018) 424–435 Contents lists available at ScienceDirect Journal of Geochemical Exploration journal homepage: www.elsevier.com/locate/gexplo Uranium enrichment in a paleo-karstic bauxite deposit, Yunfeng, SW China: T Mineralogy, geochemistry, transport – deposition mechanisms and significance for uranium exploration ⁎ Yongzhen Longa,b, Guoxiang Chic, , Jianping Liua,b, Dexian Zhanga,b, Hao Songc,d a Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China b School of Geosciences and Info-Physics, Central South University, Changsha 410083, China c Department of Geology, University of Regina, Saskatchewan, S4S 0A2, Canada d Chengdu University of Technology, Chengdu, 610059, China ARTICLE INFO ABSTRACT Keywords: Elevated concentrations of uranium have been found in many bauxite deposits, but the status of uranium in the Paleo-karstic ores and the mechanisms of enrichment have not been well understood. In this paper, we report a new case of Bauxite deposit uranium enrichment in a paleo-karstic bauxite deposit at Yunfeng, southwestern China, present electron probe Uranium minerals micro-analyzer (EPMA) and Raman spectroscopic evidence for the presence of separate U-minerals, and propose EPMA a model in which uranium was enriched through successive processes from chemical weathering through early Raman spectroscopy to burial diagenesis. The Yunfeng bauxite ores, developed in Lower Carboniferous mudrocks overlying Middle to Yunfeng Guizhou Upper Cambrian carbonate rocks, contain 18.0 to 62.4 ppm (average 35.1 ppm) U, which is much high than the abundances in average crustal rocks (1–3 ppm). Micron-sized uraninite occurs as rims of Ti-oxides, fillings of micro-fractures in kaolinite, and disseminated grains in association with sulfides in the matrix of diaspore and kaolinite.
    [Show full text]
  • Guiyang Today
    今日贵阳 GUIYANG TODAY October 2020 (the Seventeenth Issue) Guiyang Foreign Affairs Office Guiyang Daily Guiyang and Gui’an New Area Embark on the Journey of Integrated Development Huaxi University Town in Gui'an New Area (provided by the Office of the Administrative Committee) The 9th plenary session of the 10th CPC Guiyang Municipal Committee was held on August 7, 2020, during which new deployment was put forward to promote the integrated growth of Guiyang and Gui’an New Area. According to the session, we should follow new development concepts, strive for high-end, green and intensive development, uphold high standards and requirements and accelerate high-level opening up to promote high-quality growth. Following the main line of “building up the city, increasing its popularity, and attracting investment to develop industries”, with the vision of “introduction of quality products and brands for the prosperity of over 100 industries”, we endeavor to develop an economic growth pole in western China, a new highland for inland open economy and an ecological civilization demonstration zone. Why choose integrated development? Profile of Gui’an New Area Gui’an New Area features open development, boost the development of opening up, coordinated and concerted Gui’an New Area is the eighth state-level terrain and convenient location. It plays an its surrounding areas and bring into full reform and innovation, sharing of public new area approved by the State Council on indispensable role in promoting industrial play its leading role as the capital city services, joint protection and treatment of Jan. 6, 2014. Located between Guiyang and development of Guizhou Province.
    [Show full text]
  • Table of Codes for Each Court of Each Level
    Table of Codes for Each Court of Each Level Corresponding Type Chinese Court Region Court Name Administrative Name Code Code Area Supreme People’s Court 最高人民法院 最高法 Higher People's Court of 北京市高级人民 Beijing 京 110000 1 Beijing Municipality 法院 Municipality No. 1 Intermediate People's 北京市第一中级 京 01 2 Court of Beijing Municipality 人民法院 Shijingshan Shijingshan District People’s 北京市石景山区 京 0107 110107 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Haidian District of Haidian District People’s 北京市海淀区人 京 0108 110108 Beijing 1 Court of Beijing Municipality 民法院 Municipality Mentougou Mentougou District People’s 北京市门头沟区 京 0109 110109 District of Beijing 1 Court of Beijing Municipality 人民法院 Municipality Changping Changping District People’s 北京市昌平区人 京 0114 110114 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Yanqing County People’s 延庆县人民法院 京 0229 110229 Yanqing County 1 Court No. 2 Intermediate People's 北京市第二中级 京 02 2 Court of Beijing Municipality 人民法院 Dongcheng Dongcheng District People’s 北京市东城区人 京 0101 110101 District of Beijing 1 Court of Beijing Municipality 民法院 Municipality Xicheng District Xicheng District People’s 北京市西城区人 京 0102 110102 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Fengtai District of Fengtai District People’s 北京市丰台区人 京 0106 110106 Beijing 1 Court of Beijing Municipality 民法院 Municipality 1 Fangshan District Fangshan District People’s 北京市房山区人 京 0111 110111 of Beijing 1 Court of Beijing Municipality 民法院 Municipality Daxing District of Daxing District People’s 北京市大兴区人 京 0115
    [Show full text]
  • Mercury Accumulation in Vegetable Houttuynia Cordata Thunb. from Two
    www.nature.com/scientificreports OPEN Mercury accumulation in vegetable Houttuynia cordata Thunb. from two diferent geological areas in southwest China and implications for human consumption Qingfeng Wang1,2*, Zhonggen Li1,2, Xinbin Feng2, Ao Wang4, Xinyu Li2,3, Dan Wang1 & Leilei Fan1 Houttuynia cordata Thunb. (HCT) is a common vegetable native to southwest China, and grown for consumption. The results suggested that THg contents in all parts and MeHg in underground parts of HCT in Hg mining areas were much higher than those in non-Hg mining areas. The highest THg and MeHg content of HCT were found in the roots, followed by the other tissues in the sequence: roots > leaves > rhizomes > aboveground stems (THg), and roots > rhizomes > aboveground stems > leaves (MeHg). The average THg bioaccumulation factor (BCF) of HCT root in the Hg mining area and in non-Hg mining areas could reach 1.02 ± 0.71 and 0.99 ± 0.71 respectively, indicating that HCT is a Hg accumulator. And the THg and MeHg contents in all tissues of HCT, including the leaves, were signifcantly correlated with THg and MeHg content in the soil. Additionally, preferred dietary habits of HCT consumption could directly afect the Hg exposure risk. Consuming the aboveground parts (CAP) of HCT potentially poses a high THg exposure risk and consuming the underground parts (CUP) may lead to a relatively high MeHg exposure risk. Only consuming the rhizomes (OCR) of the underground parts could signifcantly reduce the exposure risk of THg and to some extent of MeHg. In summary, HCT should not be cultivated near the Hg contaminated sites, such as Hg tailings, as it is associated with a greater risk of Hg exposure and high root Hg levels, and the roots should be removed before consumption to reduce the Hg risk.
    [Show full text]
  • (RCC) DAMS “Celebration for 30 Years’ Application of RCC in Dams”
    th 5 INTERNATIONAL SYMPOSIUM ON ROLLER COMPACTED CONCRETE (RCC) DAMS “Celebration for 30 years’ application of RCC in Dams” Sponsored By: Chinese National Committee on Large Dams Spanish National Committee on Large Dams Technical Committee on RCC dams, CSHEE Technical Committee on RCC dams, CHES Guizhou Wujiang Hydropower Development Co. Ltd. Guizhou Branch, China Huadian Corporation Other sponsors to be invited Organized By: China Institute of Water Resources and Hydropower Research Co-sponsored By: National Natural Science Foundation of China (NNSFC) International Commission on Large Dams (ICOLD) Longyou Wuqiang Concrete Admixture Co., Ltd. China Three Gorges Project Corporation Longtan Hydropower Development Co., Ltd. Chengdu Hydropower Investigation, Design & Research Institute, CHECC Guiyang Hydropower Investigation, Design & Research Institute, CHECC Mid-South Design and Research Institute, CHECC Kunming Hydropower Investigation, Design & Research Institute, CHECC Guizhou Society for Hydroelectric Engineering Guizhou Survey, Design and Research Institute for Water Resources and Hydropower Sinohydro Corporation Sinohydro Engineering Bureau Minjiang Sinohydro Engineering Bureau 7 Sinohydro Engineering Bureau 8 Sinohydro Engineering Bureau 9 Nanjing Hydraulic Research Institute Jiangsu Bote New Materials Co., Ltd. Other Corporations, Companies and Institutes to be invited ADVISORY COMMITTEE Chairman LU Youmei Chairman, Chinese National Committee on Large Dams (CHINCOLD) Vice-Chairmen GAO Bo Department of International Cooperation, Science and Technology, the Ministry of Water Resources KUANG Shangfu China Institute of Water Resources and Hydropower Research MEI Jinyu Technical Committee on RCC dams, CSHEE LI Chunmin Technical Committee on RCC dams, CHES FAN Jixiang Sinohydro Corporation Members De Vivo (France) International Commission on Large Dams (ICOLD) ZHENG Sheng’an Chengdu Hydropower Investigation, Design & Research Institute, CHECC DAI Bo Longtan Hydropower Development Co.,Ltd.
    [Show full text]
  • Youjiang China-9
    China China-7: Bailongjiang China-8: Youjiang China-9: Huang-he Bailongjiang 27 Introduction China, in the southeast of Eurasia, faces the Pacific Ocean on the southeast, stretches northwestward to the interior of Asia and borders the South Asian sub-continent on the southwest. As the world's third largest country in area, China has a vast territory which spans for about 620 longitude from east to west and 500 latitude from north to south, and covers an area of 9 600 000 km2. The topographical conditions of China are very complex, but the general tendency is higher in the west and lower in the east. The climatic conditions of China are complex and multiple in nature. Monsoon climate is a predominant feature of the country which, with its most part under the influence of SE and SW monsoons possesses the peculiarity that it is humid and ample in rainfall around the southeast while dry and scarce in precipitation in the northwest. Generally, the regional distribution of precipitation in China is extensively uneven. According to the quantity and character of precipitation in various areas, the country can be divided into 5 types of zones, viz. a very humid zone, a humid zone, a semi-humid zone, a semi-arid zone and an arid zone. The mean annual precipitation is 608 mm varying from 1 600 mm the southeast and southwest to less than 200 mm in the north and northwest. China is a country having a large number of rivers. There are about 5 000 rivers each with a catchment area in excess of 1 000 km2.
    [Show full text]