Update on Isothiazolinones

Total Page:16

File Type:pdf, Size:1020Kb

Update on Isothiazolinones ALLERGEN FOCUS sitization and subsequent ACD without further exposure following a single ac- UPDATE ON cidental exposure.3 The authors con- cluded that these allergens described must be considered strong allergens. ISOTHIAZOLINONES YYet, MCI and MI are not included Isothiazolinones, including methylisothiazolinone, methylchloroisothiazolinone, and in the Consumer Product Safety Com- benzisothiazolinone, are common synthetic biocides/preservatives found in many skin and hair mission (CPSC) designated “strong al- products as well as industrial products. lergens”.4 These designated allergens are paraphenylenediamine, orris root, epoxy MICHAEL LIPP, DO, MISHA BERTOLINO, MA, ALINA GOLDENBERG, MD, MAS, AND resins systems containing any concentra- SHARON E. JACOB, MD tion of ethylenediamine, diethylenetri- amine, and diglycidyl ethers of molecu- lar weight less than 200, formaldehyde, and oil of bergamot. Notably, neither the FDA nor the CPSC has added any strong sensitizers to this list since 1961. This article highlights ACD in rela- tion to isothiazolinones, including MCI, MI, and benzisothiazolinone (BIT), which are common synthetic biocides/ preservatives found in many skin and hair products as well as industrial prod- ucts. Also, discussed is the historical use of isothiazolinones and the current epi- demic due to the rise in usage among consumer products. SOURCES OF EXPOSURE llergic contact dermatitis (ACD) on pathophysiology, risk of recurrence, The history of bathing began as a reli- is a socially and economically sig- and avoidance strategies should be initi- gious or ritual practice of “removing the Anificant condition. It is estimated ated to break the ACD cycle. stains of life.”5 Historically, these “stains” to affect more than 72 million Americans Experimental design studies indicate came from childbirth, touching the each year.1 In addition to physical mor- that antigenic potency in addition to the dead, murder, or contact with persons of bidity, ACD can have a significant impact concentration of antigen are important inferior caste and disease.5 Today, the act on quality of life leading to missed work factors in the determination of whether of bathing is to achieve good hygiene days and lost income, inability to enjoy an exposure to an antigen will result in as well as for relaxation, but it also pos- leisure activities, and loss of sleep. Often, sensitization. For weakly sensitizing al- es a potential risk of allergic reactions numerous doctor visits and medications lergens, exposures can occur over many via exposure to many preservatives and result in significant expenditures for the years before a reaction develops; where- other allergens from skincare products. patient before the underlying cause is as for strong sensitizers, sensitization can MCI/MI (in a fixed 3:1 ratio) were first discovered. In 2004, the total direct cost occur more rapidly. If there is skin bar- registered as preservatives in the United (eg, prescription drugs, office visits, etc.) rier compromise or exposure to a supra- States in 1977 under the trade name associated with treatment for contact potent antigen, even a single exposure Kathon CG.5 During the 1980s, isothia- dermatitis was 1.6 billion.1 could induce primary sensitization (eg, zolinone preservatives became exten- Patch testing is the gold standard for poison ivy). Kanerva and colleagues3 sively used in consumer personal care ACD diagnosis.2 Once the offending al- collected clinical cases in which a single and industrial products, because they are lergen is identified, avoidance is critical exposure had resulted in suspicion for compatible with surfactants and emulsi- for sustained remission. However, be- development of ACD. Six patients with fiers and able to maintain biocidal activ- cause ACD has a delayed-onset (time accidental occupational exposure and ity over a wide pH range (pH 2-9).5,6 between sensitization or exposure and no previous relevant skin symptoms A recent search on GoodGuide, a re- elicitation of the dermatitis) it may be were patch tested to demonstrate sen- source for searching more than 250,000 difficult to make the association. There- sitization. Methylchloroisothiazolinone available products on the market, listed fore, when ACD is suspected, a patient- (MCI) and methylisothiazolinone (MI) MI to be an ingredient in 6725 consum- centered educational approach focusing were found to have induced both sen- er products,7 while the Environmental ® May 2016 | THE DERMATOLOGIST | www.the-dermatologist.com 43 ALLERGEN FOCUS the use of products are eligible) on MI Table 1. EXPOSURE TO ISOTHIAZOLINONES states that “the agency determined that Consumer Products Industrial Products methylisothiazolinone is highly to very Dishwashing products Paints highly toxic” in mammalian studies, yet Shampoos Inks the agency also concluded that “the risks Household cleaners Glues to workers in most situations are not of Hair conditioners Lacquers concern and short-term risks of corro- Laundry detergents/softeners Varnishes sivity can be adequately managed, as nec- Soaps and cleansers Cutting oils essary. The agency further believes risks Air fresheners Jet fuels from secondary occupational exposures, Hand sanitizers Pesticides residential exposures, and postapplica- Baby wipes Paper manufacturing tion exposures are comparatively less and 16 Vaginal products Ultrasound gel also not of concern.” To mitigate the Sanitary napkin adhesives potential inhalation and dermal toxicity Sunscreens risk to workers, the agency requires the 16 Moisturizers use of personal protective equipment. Cosmetics In certain instances, it has been necessary Pharmaceuticals for painted walls to be treated with inor- Children’s crafting supplies ganic sulfur salt to inactivate the isothia- zolinone component.5 Additionally, the R.E.D. environmental assessment states Working Group’s skin deep database stores of pediatric skincare products and that MI is also “highly toxic to freshwa- has 3234 cosmetic skincare products found that 30 of 152 products (19.7%) ter and estuarine/marine organism” and listed to contain MI as an ingredient.8 contained MI.11 Significant allergic re- that “quantitative risk assessment has not This is a substantial increase from pre- actions to MI found in baby wipes has been conducted.”16 vious reports estimating that the use of been documented.11,12 One pediatric MI nearly doubled between 2007 (1125 review of ACD ranked MCI/MI No. ISOTHIAZOLINONES SENSITIZATION CAUSES AN products) and 2010 (2408 products).9 8 (2.61%) among its top 10 allergens EPIDEMIC In 2016, Scheman and Severson10 found in personal hygiene products The first cases of ACD to MCI/MI analyzed 2013 data from the American across 5 studies.13 were reported in 1985 from cosmetic Contact Dermatitis Society’s (ACDS) The industrial and occupational set- use, marking the beginning of the first Contact Allergen Management Program tings are another source of isothia- epidemic to isothiazolinones.17 In 1988, (CAMP). For the study, 4660 consumer zolinone exposure. (Table 1). These de Groot and colleagues18 reported on products were evaluated by category preservatives can be found in a wide the significant ingredients responsible for and MI was found in dishwashing prod- range of products such as hand care and allergy to cosmetics. In the 119 patients ucts (64%), shampoos (53%), household surface-wipes, children’s craft paints, with cosmetic-related contact dermati- cleaners (47%), hair conditioners (45%), beauty products, water-based paints, tis, 56.3% were associated with skincare hair dyes (43%), laundry additives/soft- latex paints, lacquers, printer ink, cut- products. They also found that preser- eners (30%), soaps/cleansers (29%), and ting fluid, coolants, pesticides, and ultra- vatives were most frequently implicated surface disinfectants (27%).10 Nearly sound gel.14 Airborne contact dermatitis (32.0%), followed by fragrances (26.5%) 100% (except 1 product) contained MI has been recognized in people using and emulsifiers (14.3%). The most sig- (without MCI) in household cleaning, water-based paint which may contain nificant cosmetic allergen was Kathon dishwashing, and laundry products. Al- MCI, MI, or BIT and has been associ- CG, (a preservative system containing, though a small overall percentage of ated with dyspnea, as well as facial der- as active ingredients, a mixture of MCI makeup products (<5%) did contain MI, matitis.14 Unlike MCI/MI, BIT has not and MI) reacting in 33 patients (27.7%).18 when it did, it was always without MCI. been deemed safe to use as a preserva- Within 6 months de Groot and Herx- Other product categories that contained tive in cosmetic products.15 Notably, a heimer19 published another study on MI (without MCI) in high percentage multicenter study of paints from 5 Eu- a significant number of the cases of included moisturizers (82%), shaving ropean countries reported that BIT was Kathon CG (MCI/MI) allergy caused products (78%), sunscreens (71%), anti- found in 95.8%, MI in 93.0%, and MCI by products of the “leave-on” variety (eg, aging products (67%), hairstyling prod- in 23.9% of paints, and the use of iso- moisturizing creams) and stated that an ucts (56%), soaps and cleansers (30%), thiazolinones in paints is less regulated.15 epidemic had begun. Furthermore, they and hair dyes (20%).10 It is important to The Environmental Protection Agen- asserted that the use of isothiazolinone note that products that are marketed as cy’s Reregistration Eligibility Decision preservative in these types
Recommended publications
  • Isothiazolinone
    Patient Information Cl+ Me– Isothiazolinone Your TRUE TEST ® indicates that you have a contact allergy to Cl+ Me– Isothiazolinone. Cl+ Me– Isothiazolinone in contact with your skin may result in dermatitis. Brief or occasional contact may not pose a problem. Cl+ Me– Isothiazolinone (Kathon CG ®) is a preservative with a broad spectrum of application, and is effective against bacteria, fungi, yeast and algae. Where is Cl+ Me– Isothiazolinone found? Cl+ Me– Isothiazolinone is found in many cosmetics and toiletries such as moisturizers, foundations, powders, self-tanners, sunscreens, makeup removers, eye shadows, mascaras, shampoos, liquid soaps, hair conditioners, gels, baby wipes, some toilet papers etc. It is found in topical medicines, detergents, fabric softeners, cleansers, pesticides and polishes. Industrially Cl+ Me- Isothiazolinone is used as a preservative in waterbased metalworking fluids, water-cooling and slime control agents in paper mills. It may be found in water based paints/lacquers, cleaning agents, printing inks, coloring agents, curing agents, adhesives and glues, impregnating agents and radiography liquids. If you are very sensitive you may react to airborne Cl+ Me- Isothiazolinone released from newly painted rooms where water based paints have been used. 2012 ©SmartPractice Denmark Page 1 of 2 How to avoid Cl+ Me– Isothiazolinone It is important to use only ingredient-labeled cosmetics and other skin care products that do not list Cl+ Me– Isothiazolinone or any of its synonyms on the label. Avoid exposure to chemicals containing Cl+ Me- Isothiazolinone such as water based surface coatings. If you suspect that you are being exposed to this allergen at work, consult your employer regarding Material Safety Data Sheets.
    [Show full text]
  • Isothiazolinone Content of US Consumer Adhesives: Ultrahigh- Performance Liquid Chromatographic Mass Spectrometry Analysis
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Dermatitis Manuscript Author . Author manuscript; Manuscript Author available in PMC 2020 March 01. Published in final edited form as: Dermatitis. 2019 ; 30(2): 129–134. doi:10.1097/DER.0000000000000455. Isothiazolinone Content of US Consumer Adhesives: Ultrahigh- Performance Liquid Chromatographic Mass Spectrometry Analysis Molly C. Goodier, BS*,†, Lun-Yi Zang, PhD‡, Paul D. Siegel, PhD‡, and Erin M. Warshaw, MD, MS†,§,∥ * University of Minnesota School of Medicine, Minneapolis Veterans Affairs Medical Center, MN † Department of Dermatology, Minneapolis Veterans Affairs Medical Center, MN ‡ Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV § Department of Dermatology, University of Minnesota Medical School, Centers for Disease Control and Prevention, Morgantown, WV ∥ Park Nicollet Contact Dermatitis Clinic, Minneapolis, MN. Abstract Background: There are limited data regarding the prevalence and concentration of isothiazolinone preservatives in consumer adhesives. Objectives: The aim of this study was to determine the prevalence and concentration of 5 specific isothiazolinones (methylisothiazolinone [MI], methylchloroisothiazolinone [MCI], benzisothiazolinone [BIT], butyl BIT, and octylisothiazolinone) in US adhesives. Methods: Thirty-eight consumer adhesives were analyzed using ultrahigh-performance liquid chromatographic–mass spectrometry. Fisher exact tests were used to test for isothiazolinone content and: 1) glue format (2) application purpose and 3) extraction method. Results: Nineteen adhesives (50%) had at least 1 isothiazolinone, and 15 contained 2 isothiazolinones. Frequencies and concentrations were as follows:MI (44.7%; 4–133 ppm), MCI (31.6%; 7–27 ppm), BIT (15.8%; 10–86 ppm), and octylisothiazolinone (2.6%; 1 ppm). Butyl BIT was not detected in any of the adhesives.
    [Show full text]
  • Chloromethylisothiazolinone/Methylisothiazolinone, Still a Prevalent Allergen Causing Contact Dermatitis
    Chloromethylisothiazolinone/Methylisothiazolinone, still a prevalent allergen causing Contact Dermatitis Ana M Giménez Arnau1, Wolfgang Uter2, Ramón M Pujol1 1. Department of Dermatology. Hospital del Mar. IMAS. Universitat Autònoma. Barcelona. Spain 2. University Erlangen. Nürnberg. Germany Introduction Isothiazolinones are heterocyclic compounds used as biocides (Fig.1). Five derivatives are used in significant amounts: Methylisothiazolinone (MIT,MI), Chloromethylisothiazolinone (CMIT,CMI,MCI), Benzisothiazolinone (BIT), Octylisothiazolinone (OIT,OI), Dichlorooctylisothiazolinone (DCOIT,DCOI), Butylbenzoisothiazolinone (BBIT). Isothiazolinones are antimicrobials used to control bacteria, fungi and algae in cooling water systems, fuel storage tanks, pulp and paper mill water systems, oil extraction systems, wood preservation and antifouling agents. They are frequently used in personal care products such as shampoos and other hair cair products, as well as certain water-based paints formulations. There, often combinations of MIT and CMIT or MIT and BIT are used.1 Kathon CG is a 3:1 mixture of MIT (1.125%) and MCI (0.375%) with magnesium nitrate and magnesium chloride as stabilizers (23%) and water (75.5%). Initally, using RIPT test no sensitization was observed at 10, 6 or 5 ppm (n=1121) or at 15 ppm (n=200).2 From January 1990, cosmetics products in the EEC should not contain more than 15 ppm. MCI/MIT ratio is disturbed in the 73% of the Kathon-CG-preserved "leave on" cosmetics.3 MCI is significantly stronger sensitizer than MIT and BIT.4
    [Show full text]
  • Bssl V11.0.Pdf
    Content 1 Introduction 3 2 Definitions 3 3 Testing methods 7 4 Scope and validity 8 5 Consumer safety limits 9 Annex I Compilation of single substances Annex II Usage Ranges bluesign® system substances list (BSSL) | v11.0 | December 1, 2020 ©bluesign technologies ag | www.bluesign.com 2 1 Introduction The document specifies the limits for chemical substances in articles. It also defines usage bans for chemical substances prohibited from the manufacturing of articles. It is important to know that due to quantity and range of listed substances and substance groups the consumer safety limits cannot be controlled by testing of articles alone and/or by confirmation declarations from suppliers (conventional RSL and/or testing approach). This is the reason why the bluesign® SYSTEM integrates the up-stream parts of the manufacturing chain including chemical suppliers. Only an input-stream management with an appropriate network of bluesign® SYSTEM PARTNERS leads to comprehensive knowledge on chemical products and assures that restrictions and bans are achieved. Definitions 2.1 Accessory A component of a consumer product which is not classified as textile fabric (e.g. button, label, zipper, etc.) 2.2 Article An object which during production is given a special shape, surface or design, which determines its function to a greater degree than does its chemical composition (fibers, textile fabrics, buttons, zippers, etc.). 2.3 BSSL bluesign® system substances list (BSSL) Consumer safety limits. A list that specifies consumer safety limits for chemical substances in articles. It also defines usage bans for chemical substances prohibited from the manufacturing of articles. 2.4 CAS CAS registry numbers are unique numerical identifiers for chemical elements, compounds, polymers, biological sequences, mixtures and alloys.
    [Show full text]
  • Amended Safety Assessment of Methylisothiazolinone and Methylchloroisothiazolinone As Used in Cosmetics
    Amended Safety Assessment of Methylisothiazolinone and Methylchloroisothiazolinone as Used in Cosmetics Status: Draft Report for Panel Review Release Date: May 10, 2019 Panel Meeting Date: June 6-7, 2019 The 2019 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; Ronald A. Hill, Ph.D. James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Christina L. Burnett, Senior Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L St NW, Suite 1200 ◊ Washington, DC 20036-4702 ◊ ph 202.331.0651 ◊fax 202.331.0088 ◊ [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Christina L. Burnett, Senior Scientific Writer/Analyst Date: May 10, 2019 Subject: Draft Amended Report on the Safety Assessment on Methylisothiazolinone and Methylchloroisothiazolinone Enclosed is the draft amended report of the safety assessment of Methylisothiazolinone and Methylchloroisothiazolinone (MCI/MI) as used in cosmetics. (It is identified as mcimi062019rep in the pdf document.) This ingredient combination functions as a preservative in cosmetics. In 1992, the final report on MCI/MI was published with the conclusion that this mixture may be safely used in rinse-off products at a concentration not to exceed 15 ppm and in leave-on cosmetic products at a concentration not to exceed 7.5 ppm.
    [Show full text]
  • Isothiazolinone Content of US Consumer Adhesives: Ultrahigh
    STUDIES Isothiazolinone Content of US Consumer Adhesives: Ultrahigh-Performance Liquid Chromatographic Mass Spectrometry Analysis 02/07/2020 on BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3HsbbxaSipcMJ0ThO3aV/oAuxvLDyChWkt91sWC5jaww= by https://journals.lww.com/dermatitis from Downloaded Molly C. Goodier, BS,*† Lun-Yi Zang, PhD,‡ Paul D. Siegel, PhD,‡ and Erin M. Warshaw, MD, MS†§|| Downloaded from Background: There are limited data regarding the prevalence and concentration of isothiazolinone preservatives in con- https://journals.lww.com/dermatitis sumer adhesives. Objectives: The aim of this study was to determine the prevalence and concentration of 5 specific isothiazolinones (methylisothiazolinone [MI], methylchloroisothiazolinone [MCI], benzisothiazolinone [BIT], butyl BIT, and octylisothiazolinone) in US adhesives. Methods: Thirty-eight consumer adhesives were analyzed using ultrahigh-performance liquid chromatographic–mass by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX1AWnYQp/IlQrHD3HsbbxaSipcMJ0ThO3aV/oAuxvLDyChWkt91sWC5jaww= spectrometry. Fisher exact tests were used to test for isothiazolinone content and: 1) glue format (2) application purpose and 3) extraction method. Results: Nineteen adhesives (50%) had at least 1 isothiazolinone, and 15 contained 2 isothiazolinones. Frequencies and concentrations were as follows: MI (44.7%; 4–133 ppm), MCI (31.6%; 7–27 ppm), BIT (15.8%; 10–86 ppm), and octylisothiazolinone (2.6%; 1 ppm). Butyl BIT was not detected in any of the adhesives. Format (stick vs liquid) was not statistically associated with isothiazolinone presence. At least half of adhesives in the following application purposes had at least 1 isothiazolinone: shoe, craft, fabric, and school. All-purpose glues had a statistically significant lower concentration of MI and MCI, whereas craft glues were associated with higher concentrations of MI and MCI. Compared with other glues, fabric adhesives were associated with a higher risk of containing BIT.
    [Show full text]
  • Assessment Report
    Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products Evaluation of active substances Assessment Report OIT Product-type 08 (Wood preservative) January 2017 UK OIT Product-type 8 January 2017 CONTENTS 1. STATEMENT OF SUBJECT MATTER AND PURPOSE ............................................... 3 1.1. Procedure followed .............................................................................................................................. 3 1.2. Purpose of the assessment report ................................................................................................ 3 2. OVERALL SUMMARY AND CONCLUSIONS ................................................................... 3 2.1. Presentation of the Active Substance ......................................................................................... 3 2.1.1. Identity, Physico-Chemical Properties & Methods of Analysis ................................................... 3 2.1.2. Intended Uses and Efficacy ..................................................................................................................... 4 2.1.3. Classification and Labelling ..................................................................................................................... 4 2.1.3.1. Current active substance classification ...................................................................................... 4 2.1.3.2. Proposed active substance classification ..................................................................................
    [Show full text]
  • CIR EXPERT PANEL MEETING JUNE 8-9, 2020 Distributed for Comment Only -- Do Not Cite Or Quote
    Data Supplement MI CIR EXPERT PANEL MEETING JUNE 8-9, 2020 Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: Expert Panel for Cosmetic Ingredient Safety Members and Liaisons From: Jinqiu Zhu, PhD, DABT, ERT, Toxicologist, CIR Christina L. Burnett, Senior Scientific Writer/Analyst, CIR Date: May 29, 2020 Subject: Draft Amended Safety Assessment on Methylisothiazolinone – Wave 3 Since the Draft Amended Safety Assessment on Methylisothiazolinone (MI) was prepared by CIR staff, the US Environmental Protection Agency (EPA) has released a draft risk assessment for Methylchloroisothiazolinone (MCI) and MI,1 and a hazard characterization of isothiazolinones2 (MI062020wave3_epa1 and MI062020wave3_epa2, respectively). The documents have been reviewed by CIR staff and the following notes have been prepared for the Panel’s review. 1. The Panel reopened MI based, in-part, upon the adverse effects on the inhalation of humidifier disinfectants containing MCI/MI. The following summaries of inhalation data from the EPA reports are relatively new:1 • Residential and occupational handler risks were assessed using the MI maximum application rate of 400 ppm by weight. The inhalation margins of exposure (MOEs) for residential aerosol exposures range from 15 to 14,000 and are not of concern because they are greater than the level of concern (LOC) of 10. The inhalation MOE of 1.0 for the residential handler applying paint, however, is of toxicological concern (Table 20 in MI062020wave3_epa1). The MOE for post application exposure to the MI vapors is 1.9 on the day after painting and is of concern; the exposures to the paint vapors decline over time, and, by day 12 after painting, the MOE is 11 which is not of concern (Table 21 in MI062020wave3_epa1).
    [Show full text]
  • Mesures De Maîtrise De La Brucellose Chez Les Bouquetins Du Bargy
    Méthylisothiazolinone dansMesures les produits de maîtrise à usage courantde la brucellose et risques chezassociés lesde sensibilisation bouquetins du Bargy cutanée et respiratoire Avis de l’Anses Rapport d’expertise collective FévrierJuillet 2015 2016 Édition scientifique Méthylisothiazolinone dans les produits à usage courant et risques associés de sensibilisation cutanée et respiratoire Avis de l’Anses Rapport d’expertise collective FévrierJuillet 2015 2016 Édition scientifique Avis de l’Anses Autosaisine n° 2014-SA-0186 La direction générale Maisons-Alfort, le 9 février 2016 AVIS de l’Agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail relatif aux usages de la méthylisothiazolinone (MIT) dans les produits à usage courant et aux risques associés de sensibilisations cutanée et respiratoire L’Anses met en œuvre une expertise scientifique indépendante et pluraliste. L’Anses contribue principalement à assurer la sécurité sanitaire dans les domaines de l’environnement, du travail et de l’alimentation et à évaluer les risques sanitaires qu’ils peuvent comporter. Elle contribue également à assurer d’une part la protection de la santé et du bien-être des animaux et de la santé des végétaux et d’autre part l’évaluation des propriétés nutritionnelles des aliments. Elle fournit aux autorités compétentes toutes les informations sur ces risques ainsi que l’expertise et l’appui scientifique technique nécessaires à l’élaboration des dispositions législatives et réglementaires et à la mise en œuvre des mesures de gestion du risque (article L.1313-1 du code de la santé publique). Ses avis sont rendus publics. L’Anses s’est autosaisie le 11 août 2014 pour la réalisation de l’expertise suivante : état des lieux sur les usages de la méthylisothiazolinone (MIT) dans les produits à usage courant et les risques associés de sensibilisations cutanée et respiratoire.
    [Show full text]
  • NAFTA Technical Working Group on Pesticides Quantitative Structure Activity Relationship Guidance Document
    TECHNICAL WORKING GROUP ON PESTICIDES (TWG) (Q)UANTITATIVE STRUCTURE ACTIVITY RELATIONSHIP NAFTA [(Q)SAR] GUIDANCE DOCUMENT Page 1 of 186 North American Free Trade Agreement (NAFTA) Technical Working Group on Pesticides (TWG) (Quantitative) Structure Activity Relationship [(Q)SAR] Guidance Document November, 2012 Contributors Mary Manibusan, US EPA Joel Paterson, PMRA Dr. Ray Kent, US EPA Dr. Jonathan Chen, US EPA Dr. Jenny Tao, US EPA Dr. Edward Scollon, US EPA Christine Olinger, US EPA Dr. Patricia Schmieder, US EPA Dr. Chris Russom, US EPA Dr. Kelly Mayo, US EPA Dr. Yin-tak Woo, US EPA Dr. Thomas Steeger, US EPA Dr. Edwin Matthews, US FDA Dr. Sunil Kulkarni, Health Canada External Peer Reviewers Kirk Arvidson, US FDA Mark Bonnell, Environment Canada Bob Diderich, OECD Terry Schultz, OECD Andrew Worth, European Commission – Joint Research Centre Page 2 of 186 PREFACE Integrated Approaches to Testing and Assessment (IATA) and (Q)SAR Pesticide regulatory agencies have traditionally relied on extensive in vivo and in vitro testing to support regulatory decisions on human health and environmental risks. While this approach has provided strong support for risk management decisions, there is a clear recognition that it can often require a large number of laboratory animal studies which can consume significant amounts of resources in terms of time for testing and evaluation. Even with the significant amounts of information from standard in vivo and in vitro testing, pesticide regulators are often faced with questions and issues relating to modes of action for toxicity, novel toxicities, susceptible populations, and other factors that can be challenging to address using traditional approaches.
    [Show full text]
  • Dictionary of Contact Allergens: Chemical Structures, Sources And
    51_943_1106* 05.11.2005 12:17 Uhr Seite 943 Chapter 51 Dictionary of Contact Allergens: 51 Chemical Structures, Sources and References Christophe J. Le Coz, Jean-Pierre Lepoittevin 51.1 Introduction This chapter has been written in order to familiarize the reader with the chemical structure of chemicals implicated in contact dermatitis, mainly as haptens respon- sible for allergic contact dermatitis. For each molecule, the principal name is used for classification. We have also listed the most important synonym(s), the Chemical Abstract Service (CAS) Registry Number that characterizes the substance, and its chemical structure. The reader will find one or more relevant literature references. As it was not possible to be exhaustive, some allergens have been omitted since they were obsolete, extremely rarely implicated in contact dermatitis, their case reports were too imprecise or they are extensively treated in other chapters of the textbook. From a practical chemical point of view, acrylates, cyanoacrylates and (meth)acry- lates, cephalosporins, and parabens have been grouped together. 1. Abietic acid CAS Registry Number [514–10–3] Abietic acid is probably the major allergen of colophony, along with dehydroabietic acid,by way of oxidation products.Its detection in a material indicates that allergen- ic components of colophony are present. Suggested Reading Bergh M, Menné T, Karlberg AT (1994) Colophony in paper-based surgical clothing. Contact Der- matitis 31 : 332–333 Karlberg AT, Bergstedt E, Boman A, Bohlinder K, Lidén C, Nilsson JLG,Wahlberg JE (1985) Is abiet- ic acid the allergenic component of colophony? Contact Dermatitis 13 : 209–215 Karlberg AT, Bohlinder K, Boman A, Hacksell U, Hermansson J, Jacobsson S, Nilsson JLG (1988) Identification of 15-hydroperoxyabietic acid as a contact allergen in Portuguese colophony.
    [Show full text]
  • Simultaneous Quantitative Analysis of Six Isothiazolinones in Water
    molecules Article Simultaneous Quantitative Analysis of Six Isothiazolinones in Water-Based Adhesive Used for Food Contact Materials by High-Performance Liquid Chromatography–Tandem Mass Spectrometry (HPLC–MS/MS) Huaining Zhong 1,2, Zicheng Li 1,2, Sheng Chen 1,2, Ying Zeng 1,2, Jianguo Zheng 1,2,*, You Zeng 3 and Dan Li 1,2 1 Guangdong Provincial Key Laboratory of import and export technical measures of animal, plant and food, Guangzhou 510623, China; [email protected] (H.Z.); [email protected] (Z.L.); [email protected] (S.C.); [email protected] (Y.Z.); [email protected] (D.L.) 2 Guangzhou Customs District Technology Center, Guangzhou 510623, China 3 Guangzhou Institute for Food Inspection, Guangzhou 511400, China; [email protected] * Correspondence: [email protected]; Tel.: +8620-3829-0382 Academic Editor: Mihai Brebu Received: 3 September 2019; Accepted: 22 October 2019; Published: 29 October 2019 Abstract: In this study, a target analytical approach using high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) was developed to simultaneously determine six isothiazolinones containing 2-Methylisothiazol-3(2H)-one (MI), 5-Chloro-2-methyl- 4-isothiazolin-3-one (CMI), 1,2-benzisothiazolin-3-one (BIT), 2-Octyl-3(2H)-isothiazolinone (OIT), Dichlorooctylisothiazolinone (DCOIT), and 2-methyl-1,2-benzisothiazolin-3-one (MBIT) in water-based adhesive used for food contact materials. The main factors affecting extraction efficiency such as extraction method, extraction time, extraction solvent, and solid–liquid ratio have been evaluated by using real adhesive samples. Multiple-reaction monitoring (MRM) was used for the qualitative and quantitative analyses of targeted isothiazolinones.
    [Show full text]