The Integrated Genomic Architecture and Evolution of Dental Divergence in East African Cichlid Fishes (Haplochromis Chilotes X H

Total Page:16

File Type:pdf, Size:1020Kb

The Integrated Genomic Architecture and Evolution of Dental Divergence in East African Cichlid Fishes (Haplochromis Chilotes X H INVESTIGATION The Integrated Genomic Architecture and Evolution of Dental Divergence in East African Cichlid Fishes (Haplochromis chilotes x H. nyererei) C. Darrin Hulsey,*,1 Gonzalo Machado-Schiaffino,* Lara Keicher,* Diego Ellis-Soto,* Frederico Henning,*,† and Axel Meyer* *Department of Biology, University of Konstanz, 78457, Germany and †Department of Genetics, Federal University of Rio de Janeiro, 21941, Brazil ORCID ID: 0000-0002-9653-6728 (C.D.H.) ABSTRACT The independent evolution of the two toothed jaws of cichlid fishes is thought to have KEYWORDS promoted their unparalleled ecological divergence and species richness. However, dental divergence in adaptive cichlids could exhibit substantial genetic covariance and this could dictate how traits like tooth numbers radiation evolve in different African Lakes and on their two jaws. To test this hypothesis, we used a hybrid mapping key innovation cross of two trophically divergent Lake Victoria species (Haplochromis chilotes · Haplochromis nyererei)to natural selection examine genomic regions associated with cichlid tooth diversity. Surprisingly, a similar genomic region was QTL found to be associated with oral jaw tooth numbers in cichlids from both Lake Malawi and Lake Victoria. trophic evolution Likewise, this same genomic location was associated with variation in pharyngeal jaw tooth numbers. Similar relationships between tooth numbers on the two jaws in both our Victoria hybrid population and across the phylogenetic diversity of Malawi cichlids additionally suggests that tooth numbers on the two jaws of haplochromine cichlids might generally coevolve owing to shared genetic underpinnings. Integrated, rather than independent, genomic architectures could be key to the incomparable evolutionary divergence and convergence in cichlid tooth numbers. The subdivision of organisms into distinct developmental genetic limbs, or vertebrate teeth are able to evolve independently and sub- modules or units greatly influences the evolution of biological diversity. sequently become specialized with respect to other homologous organs, Similar to processes such as speciation (Slowinski and Guyer 1993; this can heavily influence a clade’s evolutionary success (Wagner and Elmer et al. 2014) and gene duplication (Meyer and Schartl 1999; Altenberg 1996; Stock 2001; Edwards and Weinig 2011; Santana and Taylor et al. 2001; Wagner 2008; Ohno 2013) that both increase the Lofgren 2013; Miller et al. 2014). For instance, the capacity of the two particulate nature of biological entities, segmentation of organisms into jaws of cichlid fishes to evolve independently has been commonly in- serially homologous units has been suggested to be a major facilitator of voked as a critical catalyst underlying both the unparalleled trophic diversification (Wagner 1996). When particular plant leaves, arthropod divergence of these fishes and the phenomenal convergence that char- acterizes their adaptive radiations (Liem 1973; Hulsey et al. 2006). Copyright © 2017 Hulsey et al. However, the degree to which particular parts of phenotypes can evolve doi: https://doi.org/10.1534/g3.117.300083 independently and contribute to adaptation might be largely a result of Manuscript received June 30, 2017; accepted for publication July 25, 2017; their underlying genetic architectures (Lande 1984; Albertson and published Early Online July 27, 2017. Kocher 2006; Brakefield 2006; Wilkens 2010; Albertson et al. 2014; This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/ Armbruster et al. 2014; Gross et al. 2016). Structures ranging from licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction flower pistils to snake vertebrae to primate teeth have been suggested in any medium, provided the original work is properly cited. to evolve largely according to their genetic covariance (Schluter 1996; Supplemental material is available online at www.g3journal.org/lookup/suppl/ Hohenlohe and Arnold 2008; Hlusko 2016; Smith 2016). Likewise, doi:10.1534/g3.115.023366/-/DC1. 1Corresponding author: Chair in Zoology and Evolutionary Biology, Department of genomic architecture may have constrained even the astounding phe- Biology, University of Konstanz, Bldg. M, Room M808, Universitatsstrasse 10, notypic diversity of cichlid teeth. To better understand the factors Konstanz 78457, Germany. E-mail: [email protected] structuring trophic evolution in one of the most species-rich vertebrate Volume 7 | September 2017 | 3195 radiations on Earth, we examined the genomic substrate of tooth number therefore, parallelism could be rare in the extraordinarily species-rich divergence on both the oral and pharyngeal jaws of East African cichlids. East African Rift Lakes. Although Lake Malawi and Lake Victoria each Most groups of fish have two toothed jaws (Schaeffer and Rosen contain several hundred species, all of these species have diverged 1961; Figure 1). They have oral jaws that are largely homologous to our extremely rapidly (2 MYA) from a common ancestor (Genner et al. jaws and are used primarily to capture prey, and they also have pha- 2007; Friedman et al. 2013). Interspecificgeneflowamongmanyofthese ryngeal jaws, which are modified gill arches, that are used to macerate recently diverged lineages also still occurs occasionally (Mims et al. 2010; and process prey (Liem 1973). However, unlike any other group of fish, Holzman and Hulsey 2017). These aspects of their evolutionary past cichlids exhibit an incredible amount of diversity in the shape, size, and have likely contributed to the considerable sharing of ancestral molecular number of teeth on both of their jaws (Fryer and Iles 1972). Because polymorphisms observed even among cichlid lineages that are geograph- several lines of evidence have supported the functional as well as the ically separated (Loh et al. 2008; Brawand et al. 2014). However, whether evolutionary independence of the two jaws (Liem 1973; Hulsey et al. or not these shared ancestral polymorphisms contribute to phenotypic 2006), cichlid oral and pharyngeal teeth might commonly change in- divergence or even repeatedly evolved parallel adaptations is not known. dependently to promote the distinct trophic roles of their two jaws. But because our understanding of genomic architecture is rapidly in- Divergence in teeth could most often be the result of genes that are creasing in African cichlid radiations (Brawand et al. 2014; Henning and specifically involved in forming teeth on only one jaw. Yet at least 30% Meyer 2014), we can now begin to compare whether similar genomic of the genes found to be involved in forming mouse teeth are also regions do underlie divergence in similar phenotypes between evolution- expressed in both tooth-bearing jaws of cichlids (Hulsey et al. 2016). arily distinct clades of cichlids. For instance, several quantitative trait loci This suggests that there is likely a substantial degree of developmental (QTL) for oral jaw tooth number were recently identified in a hybrid similarity, or integration at the level of gene expression, in teeth on cross of Lake Malawi cichlids (Bloomquist et al. 2015), and these same these morphologically and evolutionarily distinct jaws. Also, despite the loci might be playing a part in tooth divergence in many closely related distinct evolutionary origin of the two sets of jaws, the evolution of cichlids. To test this idea, additional hybrid crosses of species with dif- tooth number on both the oral and pharyngeal jaws across a diversity of ferent dentitions could be used to determine whether the same genomic Malawi cichlids is highly and positively correlated (Fraser et al. 2009). regions responsible for phenotypic divergence in tooth number are Therefore, the genomic architecture dictating dental divergence on shared across distinct cichlid clades. both cichlid jaws could be highly similar. The genetic underpinnings of traits are often thought to influence or Cichlid fishes are well known for the repeated independent evolution even constrain how they diversify (Lande 1984; Schluter 1996). How- of similar features in different lineages (Fryer and Iles 1972; Rüber et al. ever, there are very few examples where the genetic correlations among 1999; Brawand et al. 2014). Their rampant convergence is also often traits are known in similar taxa in which we understand the degree to used as an iconic example of how natural selection can deterministically which traits coevolve over phylogenetic scales (Brakefield 2006). Yet we shape diversity (Henning and Meyer 2014; Machado-Schiaffino et al. are increasingly dissecting the genomic basis of traits such as flower 2015). For instance, in environments such as Lakes Victoria and pistil and stamen lengths, mammalian limb lengths, and the size of Malawi, phylogenetically distinct lineages of cichlids have colonized different hominid teeth, which have also been examined in a phyloge- each lake independently from riverine environments and then, within netically informed context (Hlusko 2016; Smith 2016). Combining very short timeframes, repeatedly evolved similar feeding specializa- genetic crosses with comparative analyses, should allow us to determine tions (Meyer et al. 1990; Meyer 1993; Genner et al. 2007; Hulsey et al. whether levels of genomic integration can predict the degree to which 2010). These convergent trophic phenotypes such as algae scraping, traits change in concert across their macro-evolutionary history. For
Recommended publications
  • Computer Simulations on the Sympatric Speciation Modes for The
    Computer simulations on the sympatric speciation modes for the Midas cichlid species complex K. Luz-Burgoa,1 S. Moss de Oliveira,1 and J. S. S´aMartins1 1 Instituto de F´ısica, Universidade Federal Fluminense, ∗ Campus da Praia Vermelha, Boa Viagem, Niter´oi, 24210-340, RJ, Brazil. (Dated: October 26, 2018) Cichlid fishes are one of the best model system for the study of evolution of the species. Inspired by them, in this paper we simulated the splitting of a single species into two separate ones via random mutations, with both populations living together in sympatry, sharing the same habitat. We study the ecological, mating and genetic conditions needed to reproduce the polychromatism and polymorphism of three species of the Midas Cichlid species complex. Our results show two scenarios for the A. Citrinellus speciation process, one with and the other without disruptive natural selection. In the first scenario, the ecological and genetic conditions are sufficient to create two new species, while in the second the mating and genetic conditions must be synchronized in order to control the velocity of genetic drift. I. INTRODUCTION jaws of A. citrinellus have been described [9], a papilli- form morph with slender pointed teeth and a mollariform morph with thicker rounded teeth. These previous stud- The evolution of a single population into two or more ies showed that there is a trade-off in performance: the species without prevention of gene flow through geo- mollariform fish are specialized and more efficient at eat- graphic segregation is known as sympatric speciation ing hard diets such as snails, whereas they are less effi- Amphilophus Zaliosus [1, 2, 3].
    [Show full text]
  • Download Press Release 108 KB
    University of Konstanz · PO Box 226 · 78457 Konstanz, GERMANY Communications and Marketing News and media communications Press release no. 55/2018 Universitaetsstr. 10 78464 Konstanz, GERMANY +49 7531 88-3603 Fax +49 7531 88-3766 [email protected] www.uni-konstanz.de 20.06.2018 Data against dogma Biologist from Konstanz, Professor Axel Meyer, receives the Luigi-Tartufari International Prize from the Italian National Academy He has just returned to Konstanz from a sabbatical spent at the Radcliffe Institute for Advanced Study at Harvard University. Now, on 22 June 2018, the professor of zoology and evolutionary biology, Axel Meyer, is awarded the Luigi-Tartufari International Prize from the Italian Academia Nazionale dei Lincei in Rome. One of the first illustrious members of this academy was the Italian polymath Galileo Galilei. Axel Meyer receives the award for his research in the areas of molecular, cell and evolutionary biology. The Italian National Academy honours the biologist from Konstanz for his scientific life's work, for which he already received numerous awards. Axel Meyer is one of the world's leading and most widely cited experts in the field of evolutionary biology. He disproved textbook dogmas that had been thought to be valid for several decades and was one of the pioneers in using genetic data in evolutionary biology. By collecting empirical data, Axel Meyer's laboratory team questioned the doctrine that geographical barriers are the prerequisite for the origin of new species. Carrying out research in the crater lakes in Nicaragua, he was also able to demonstrate that the evolution in certain types of fish repeated itself independently from each other.
    [Show full text]
  • Differentiation in Swimming Performances, Physiology and Gene Expression Between Locally-Adapted Sympatric Cichlid Fishes
    Received: 28 July 2019 | Revised: 24 October 2019 | Accepted: 8 November 2019 DOI: 10.1111/mec.15304 FROM THE COVER Diving into divergence: Differentiation in swimming performances, physiology and gene expression between locally-adapted sympatric cichlid fishes Francesca Raffini1,2,3 | Ralf F. Schneider1,2 | Paolo Franchini1 | Andreas F. Kautt1 | Axel Meyer1,2 1Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, Abstract University of Konstanz, Konstanz, Germany Sympatric speciation occurs without geographical barriers and is thought to often be 2 International Max Planck Research School driven by ecological specialization of individuals that eventually diverge genetically (IMPRS) for Organismal Biology, Max- Planck-Institut für Ornithologie, Radolfzell, and phenotypically. Distinct morphologies between sympatric populations occupy- Germany ing different niches have been interpreted as such differentiating adaptive pheno- 3Max Planck Institute for Ornithology, Radolfzell, Germany types, yet differences in performance and thus likely adaptiveness between them were rarely tested. Here, we investigated if divergent body shapes of two sympatric Correspondence Axel Meyer, Lehrstuhl für Zoologie crater lake cichlid species from Nicaragua, one being a shore-associated (benthic) und Evolutionsbiologie, Department of species while the other prefers the open water zones (limnetic), affect cruising (Ucrit) Biology,University of Konstanz, Konstanz, Germany. and sprinting (Usprint) swimming abilities – performances particularly relevant to their Email: [email protected] respective lifestyles. Furthermore, we investigated species differences in oxygen Present address consumption (MO2) across different swimming speeds and compare gene expression Francesca Raffini, Department of Animal in gills and white muscle at rest and during exercise. We found a superior cruising and Plant Sciences, The University of Sheffield, Sheffield, UK ability in the limnetic Amphilophus zaliosus compared to the benthic Amphilophus as- Ralf F.
    [Show full text]
  • Curriculum Vitae – Shigehiro Kuraku
    1 Shigehiro Kuraku, Ph.D. Unit Leader Laboratory for Phyloinformatics RIKEN Center for Biosystems Dynamics Research Email: [email protected] URL: www.clst.riken.jp/phylo/ GENDER Male YEAR OF BIRTH 1976 NATIONALITY Japanese Ph.D. Department of Biophysics, Graduate School of Science, Kyoto University January 2005 Discipline: Evolutionary Biology Supervisor: Prof. Yoshinori Shichida (after Prof. Takashi Miyata retired) M.Sc. Department of Biophysics, Graduate School of Science, Kyoto University March 2001 Discipline: Molecular Evolutionary Biology Supervisor: Prof. Takashi Miyata B.Sc. Faculty of Science, Kyoto University March 1999 Discipline: Molecular Evolutionary Biology Supervisor: Prof. Takashi Miyata Japanese (native) English (fluent) German (Level 3 – Diplom Deutsch in Japan. 1995) Italian (Diploma elementare di Lingua Italiana Firenze - Accadmia italiana di lingua. 1999) 2 Curriculum vitae – Shigehiro Kuraku Year Appointment 2018- Unit Leader Laboratory for Phyloinformatics RIKEN Center for Biosystems Dynamics Research in Kobe, Japan 2018- Adjunct Associate Professor Graduate School of Science, Kobe University, Japan 2014-2018 Unit Leader Phyloinformatics Unit RIKEN Center for Life Science Technologies in Kobe, Japan 2014- Adjunct Associate Professor Organization of Advanced Science and Technology, Kobe University, Japan 2013- Adjunct Associate Professor Graduate School of Science and Technology, Kwansei Gakuin University, Japan 2012-2014 Unit Leader Genome Resource and Analysis Unit, Center for Developmental Biology, RIKEN
    [Show full text]
  • Evolution of Genomic Structural Variation and Genomic Architecture in the Adaptive Radiations of African Cichlid fishes
    ORIGINAL RESEARCH ARTICLE published: 03 June 2014 doi: 10.3389/fgene.2014.00163 Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes Shaohua Fan and Axel Meyer* Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany Edited by: African cichlid fishes are an ideal system for studying explosive rates of speciation and Philine G. D. Feulner, Max Planck the origin of diversity in adaptive radiation. Within the last few million years, more than Institute for Evolutionary Biology, 2000 species have evolved in the Great Lakes of East Africa, the largest adaptive radiation Germany in vertebrates. These young species show spectacular diversity in their coloration, Reviewed by: Harald Schneider, Natural History morphology and behavior. However, little is known about the genomic basis of this Museum, UK astonishing diversity. Recently, five African cichlid genomes were sequenced, including Feng Zhang, Fudan University, China that of the Nile Tilapia (Oreochromis niloticus), a basal and only relatively moderately Arne W. Nolte, Max Planck Society, diversified lineage, and the genomes of four representative endemic species of the Germany adaptive radiations, Neolamprologus brichardi, Astatotilapia burtoni, Metriaclima zebra, *Correspondence: Axel Meyer, Lehrstuhl für Zoologie and Pundamila nyererei. Using the Tilapia genome as a reference genome, we generated und Evolutionsbiologie, Department a high-resolution genomic variation map, consisting of single nucleotide polymorphisms of Biology, University of Konstanz, (SNPs), short insertions and deletions (indels), inversions and deletions. In total, around Universitätstraße 10, Konstanz 18.8, 17.7, 17.0, and 17.0 million SNPs, 2.3, 2.2, 1.4, and 1.9 million indels, 262, 306, 78464, Germany e-mail: [email protected] 162, and 154 inversions, and 3509, 2705, 2710, and 2634 deletions were inferred to have evolved in N.
    [Show full text]
  • Parsing Parallel Evolution: Ecological Divergence and Differential Gene Expression in the Adaptive Radiations of Thick-Lipped Midas Cichlid fishes from Nicaragua
    Molecular Ecology (2012) doi: 10.1111/mec.12034 Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua TEREZA MANOUSAKI,*†1 PINCELLI M. HULL,*‡1 HENRIK KUSCHE,*§ GONZALO MACHADO-SCHIAFFINO,* PAOLO FRANCHINI,* CHRIS HARROD,¶**†† KATHRYN R. ELMER*‡‡ and AXEL MEYER*†§ *Lehrstuhl fu¨r Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universita¨tsstrasse 10, 78457 Konstanz, Germany, †Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universita¨tsstrasse 10, 78457 Konstanz, Germany, ‡Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, CT, 06520- 8109, USA, §International Max Planck Research School for Organismal Biology, University of Konstanz, Universita¨tsstrasse 10, 78457, Konstanz, Germany, ¶Department of Evolutionary Genetics, Max Planck Institute for Limnology, PO Box 165, 24302 Plo¨n, Germany, **School of Biological Sciences, Queen’s University, Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK, ††Instituto de Investigaciones Oceanolo´gicas, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile Abstract The study of parallel evolution facilitates the discovery of common rules of diversifica- tion. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)—from two Great Lakes and two crater lakes in Nicaragua—to assess whether similar changes in ecology, phenotypic trophic
    [Show full text]
  • Differentiation in Swimming Performances, Physiology and Gene Expression Between Locally-Adapted Sympatric Cichlid Fishes
    Received: 28 July 2019 | Revised: 24 October 2019 | Accepted: 8 November 2019 DOI: 10.1111/mec.15304 FROM THE COVER Diving into divergence: Differentiation in swimming performances, physiology and gene expression between locally-adapted sympatric cichlid fishes Francesca Raffini1,2,3 | Ralf F. Schneider1,2 | Paolo Franchini1 | Andreas F. Kautt1 | Axel Meyer1,2 1Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, Abstract University of Konstanz, Konstanz, Germany Sympatric speciation occurs without geographical barriers and is thought to often be 2 International Max Planck Research School driven by ecological specialization of individuals that eventually diverge genetically (IMPRS) for Organismal Biology, Max- Planck-Institut für Ornithologie, Radolfzell, and phenotypically. Distinct morphologies between sympatric populations occupy- Germany ing different niches have been interpreted as such differentiating adaptive pheno- 3Max Planck Institute for Ornithology, Radolfzell, Germany types, yet differences in performance and thus likely adaptiveness between them were rarely tested. Here, we investigated if divergent body shapes of two sympatric Correspondence Axel Meyer, Lehrstuhl für Zoologie crater lake cichlid species from Nicaragua, one being a shore-associated (benthic) und Evolutionsbiologie, Department of species while the other prefers the open water zones (limnetic), affect cruising (Ucrit) Biology,University of Konstanz, Konstanz, Germany. and sprinting (Usprint) swimming abilities – performances particularly relevant to their Email: [email protected] respective lifestyles. Furthermore, we investigated species differences in oxygen Present address consumption (MO2) across different swimming speeds and compare gene expression Francesca Raffini, Department of Animal in gills and white muscle at rest and during exercise. We found a superior cruising and Plant Sciences, The University of Sheffield, Sheffield, UK ability in the limnetic Amphilophus zaliosus compared to the benthic Amphilophus as- Ralf F.
    [Show full text]
  • Parallel and Non-Parallel Changes of the Gut Microbiota During Trophic Diversifcation in Repeated Young Adaptive Radiations of Sympatric Cichlid Fsh
    Parallel and non-parallel changes of the gut microbiota during trophic diversication in repeated young adaptive radiations of sympatric cichlid sh Andreas Härer Universitat Konstanz https://orcid.org/0000-0003-2894-5041 Julián Torres-Dowdall Universitat Konstanz Sina J. Rometsch Universitat Konstanz Elizabeth Yohannes Universitat Konstanz Gonzalo Machado-Schiano Universidad de Oviedo Axel Meyer ( [email protected] ) https://orcid.org/0000-0002-0888-8193 Research Keywords: Amphilophus citrinellus, trophic ecology, stable isotopes, Neotropical cichlids, rapid adaptation, 16S rRNA gene sequencing, parallel evolution, Nicaragua Posted Date: July 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-20414/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 29th, 2020. See the published version at https://doi.org/10.1186/s40168-020-00897-8. Page 1/25 Abstract Background: Recent increases in understanding the ecological and evolutionary roles of microbial communities has underscored the importance for their hosts’ biology. Yet, little is known about gut microbiota dynamics during early stages of ecological diversication and speciation. We sequenced the V4 region of the 16s rRNA gene to study the gut microbiota of Nicaraguan Midas cichlid sh (Amphilophus cf. citrinellus). Specically, we tested the hypothesis that parallel divergence in trophic ecology in extremely young adaptive radiations from two crater lakes is associated with parallel changes of their gut microbiota. Results: Bacterial communities of sh guts and lake water were highly distinct, indicating that the gut microbiota is shaped by host-specic factors.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Walter Salzburger Zoological Institute, University of Basel Vesalgasse 1, 4051 Basel, Switzerland eMail: [email protected] home: www.evolution.uniBas.ch/salzBurger/ Curriculum Vitae tel.: +41 61.267.0303; fax.: .0301; secretary: .0300 | Walter Salzburger | page 1 PERSONAL INFORMATION Name: Walter SalzBurger Date of birth: January 1st, 1975 (in Wörgl, Austria) Nationality: Austrian Position: Associate Professor Address: Zoological Institute, University of Basel Vesalgasse 1, CH-4051 Basel, Switzerland tel.: +41 61.267.0303; fax.: .0301 Personal Assistant (Brigitte AeschBach): .0300 eMail: [email protected] home: www.evolution.unibas.ch/salzburger/ Private: Saint-Louis-Strasse 26, CH-4055 Basel, Switzerland tel.: +41 78.888.1776 (moBile) EDUCATION 2001 Doctoral degree (Dr. rer. nat.), awarded with distinction 1998-2001 Doctoral thesis work “Speciation in Lake Tanganyika cichlids” at the Department of Zoology and Limnology, University of InnsBruck, Austria; supervisor: Prof. Christian SturmBauer 1998 Master degree (Mag.) in Zoology, awarded with distinction 1997-1998 Master thesis work “Comparative phylogenetic analysis of Lake Tanganyika cichlids using different mitochondrial gene segments” at the Department of Zoology and Limnology, University of InnsBruck, Austria; supervisor: Prof. Christian SturmBauer 1993-1998 Study of Biology/Zoology at the University of InnsBruck, Austria 1993 School leaving examination (Matura), awarded with distinction FURTHER EDUCATION 2004-2006 Applied training courses “Didactics
    [Show full text]
  • Crater Lake Habitat Predicts Morphological Diversity in Adaptive Radiations of Cichlid Fishes
    CRATER LAKE HABITAT PREDICTS MORPHOLOGICAL DIVERSITY IN ADAPTIVE RADIATIONS OF CICHLID FISHES 1 1 Hans Recknagel, •2 Kathryn R. Elmer, •2 and Axel Meyer1.3 1 Lehrstuhl far Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany 2/nstitute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G 12 BQQ, United Kingdom 3 E-mail: axel. meyer@uni-konstanz. de Adaptive radiations provide an excellent opportunity for studying the correlates and causes for the origin of biodiversity. In these radiations, species diversity may be influenced by either the ecological and physical environment. intrinsic lineage effects, or both. Disentangling the relative contributions of these factors in generating biodiversity remains a major challenge in understanding why a lineage does or does not radiate. Here, we examined morphological variation in body shape for replicate flocks of Nicaraguan Midas cichlid fishes and tested its association with biological and physical characteristics of their crater lakes. We found that variability of body elongation, an adaptive trait in freshwater fishes, is mainly predicted by average lake depth (N = 6, P < 0.001, R2 = 0.96). Other factors considered, including lake age, surface area, littoral zone area, number of co-occurring fish species, and genetic diversity of the Midas flock, did not significantly predict morphological variability. We also showed that lakes with a larger littoral zone have on average higher bodied Midas cichlid s, indicating that Midas cichlid flocks are locally adapted to their crater lake habitats. In conclusion, we found that a lake's habitat predicts the magnitude and the diversity of body elongation in repeated cichlid adaptive radiations.
    [Show full text]
  • Evolution of Genomic Structural Variation and Genomic Architecture in the Adaptive Radiations of African Cichlid fishes
    ORIGINAL RESEARCH ARTICLE published: 03 June 2014 doi: 10.3389/fgene.2014.00163 Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes Shaohua Fan and Axel Meyer* Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany Edited by: African cichlid fishes are an ideal system for studying explosive rates of speciation and Philine G. D. Feulner, Max Planck the origin of diversity in adaptive radiation. Within the last few million years, more than Institute for Evolutionary Biology, 2000 species have evolved in the Great Lakes of East Africa, the largest adaptive radiation Germany in vertebrates. These young species show spectacular diversity in their coloration, Reviewed by: Harald Schneider, Natural History morphology and behavior. However, little is known about the genomic basis of this Museum, UK astonishing diversity. Recently, five African cichlid genomes were sequenced, including Feng Zhang, Fudan University, China that of the Nile Tilapia (Oreochromis niloticus), a basal and only relatively moderately Arne W. Nolte, Max Planck Society, diversified lineage, and the genomes of four representative endemic species of the Germany adaptive radiations, Neolamprologus brichardi, Astatotilapia burtoni, Metriaclima zebra, *Correspondence: Axel Meyer, Lehrstuhl für Zoologie and Pundamila nyererei. Using the Tilapia genome as a reference genome, we generated und Evolutionsbiologie, Department a high-resolution genomic variation map, consisting of single nucleotide polymorphisms of Biology, University of Konstanz, (SNPs), short insertions and deletions (indels), inversions and deletions. In total, around Universitätstraße 10, Konstanz 18.8, 17.7, 17.0, and 17.0 million SNPs, 2.3, 2.2, 1.4, and 1.9 million indels, 262, 306, 78464, Germany e-mail: [email protected] 162, and 154 inversions, and 3509, 2705, 2710, and 2634 deletions were inferred to have evolved in N.
    [Show full text]
  • Incipient Sympatric Speciation in Nicaraguan Cichlid Fishes?
    Molecular Ecology (2004) 13, 2061–2076 doi: 10.1111/j.1365-294X.2004.02211.x TheBlackwell Publishing, Ltd. Midas cichlid species complex: incipient sympatric speciation in Nicaraguan cichlid fishes? MARTA BARLUENGA and AXEL MEYER Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany Abstract Sympatric speciation is a contentious concept, although theoretical models as well as empirical evidence support its relevance in evolutionary biology. The Midas cichlid species complex (Amphilophus citrinellus, labiatus, zaliosus) from several crater lakes in Nicaragua fits several of the key characteristics of a sympatric speciation model. In particular, in A. citrinellus (i) strong assortative mating on the basis of colour polymorphism and (ii) ecological differentiation based on morphological polymorphisms involving the feeding apparatus and body shape might both be mechanisms of incipient speciation. Seven microsatellite markers and mtDNA control region sequences [836 base pairs (bp)] were used to study the population genetic structure of 519 specimens of Midas cichlid populations from the two Great Lakes Managua and Nicaragua, and three crater lakes in Nicaragua, Central America. The three named species of the species complex occupy different ecological niches, are mor- phologically distinct and can be distinguished genetically. We uncovered allopatric genetic differentiation of populations of A. citrinellus from different lakes and distant locations within Lake Managua and, more interestingly, incipient genetic differentiation of several sympatric populations based on colouration (in A. citrinellus and A. labiatus) but not on the morphology of the pharyngeal jaws (in A. citrinellus). Sexual selection and assortative mating might be the driven forces of diversification within named species. The Midas cichlid species complex in Nicaragua is an excellent model system for the study of the incipient stages of adaptation, speciation and the formation of species flocks.
    [Show full text]