Parsing Parallel Evolution: Ecological Divergence and Differential Gene Expression in the Adaptive Radiations of Thick-Lipped Midas Cichlid fishes from Nicaragua

Total Page:16

File Type:pdf, Size:1020Kb

Parsing Parallel Evolution: Ecological Divergence and Differential Gene Expression in the Adaptive Radiations of Thick-Lipped Midas Cichlid fishes from Nicaragua Molecular Ecology (2012) doi: 10.1111/mec.12034 Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua TEREZA MANOUSAKI,*†1 PINCELLI M. HULL,*‡1 HENRIK KUSCHE,*§ GONZALO MACHADO-SCHIAFFINO,* PAOLO FRANCHINI,* CHRIS HARROD,¶**†† KATHRYN R. ELMER*‡‡ and AXEL MEYER*†§ *Lehrstuhl fu¨r Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universita¨tsstrasse 10, 78457 Konstanz, Germany, †Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universita¨tsstrasse 10, 78457 Konstanz, Germany, ‡Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, CT, 06520- 8109, USA, §International Max Planck Research School for Organismal Biology, University of Konstanz, Universita¨tsstrasse 10, 78457, Konstanz, Germany, ¶Department of Evolutionary Genetics, Max Planck Institute for Limnology, PO Box 165, 24302 Plo¨n, Germany, **School of Biological Sciences, Queen’s University, Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK, ††Instituto de Investigaciones Oceanolo´gicas, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta, Chile Abstract The study of parallel evolution facilitates the discovery of common rules of diversifica- tion. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)—from two Great Lakes and two crater lakes in Nicaragua—to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expres- sion in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associ- ated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underex- pressed in the thick-lipped morph across all four lakes. However, other aspects of lips’ gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differ- entially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (d13C and d15N) differ between all sympatric morphs, with the greatest differ- entiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution. Keywords: crater lakes, divergent selection, geometric morphometrics, next-generation sequencing, RNA-Seq, sympatric speciation Received 30 March 2012; revision received 11 June 2012; accepted 26 July 2012 Correspondence: Axel Meyer, Fax: +49 7531 883018; Introduction E-mail: [email protected] ‘Parallel phenotypic evolution’ describes the repeated, ‡‡ Present address: College of Medical, Veterinary & Life Sciences, Institute of Biodiversity, Animal Health & Compara- independent evolution of similar phenotypes in tive Medicine, University of Glasgow, Glasgow, UK. closely related lineages (reviewed in Elmer & Meyer 1Co-first authors. 2011). Many classic cases of ecological speciation are, © 2012 Blackwell Publishing Ltd 2 T. MANOUSAKI ET AL. in fact, examples of parallel evolution (Schluter 2000; marine populations in generating repeated, similar Salzburger & Meyer 2004), including the Holarctic mar- phenotypes (Schluter & Conte 2009). How, when and to ine to freshwater invasions of stickleback fishes (Bell & what extent parallel phenotypes evolve under a nonpar- Foster 1994), adaptive radiations such as Darwin’s allel genetic basis may prove as interesting as the paral- finches on the Galapagos Islands (Grant & Grant 2008) or lel examples, because it suggests restricted phenotypic cichlid fishes in African and Central American lakes solutions to ecological problems (Losos 2011; Wake et al. (Meyer 1993; Barlow 2000). Instances of parallel evolution 2011). raise the question, how and why does evolution repeat Recent advances in DNA sequencing technology itself in similar environments? Specifically, we can ask: allow the rapid acquisition of vast, genomic-scale does the repeated evolution of a similar trait coincide resources and permit the collection of transcriptomic with parallel ecological and transcriptomic diversifica- data for ecological as well as evolutionary model tion, or are similar phenotypes evolving by different eco- species (Stapley et al. 2010). Before sequence-based logical and genomic mechanisms? Recent advances on transcriptomics, it was microarrays and qPCR tech- this fundamental topic in evolutionary biology (Meyer niques based on a priori sequence information that 1999; West-Eberhard 2002; Sanetra et al. 2005; Losos 2011) revealed the importance of gene expression differentia- have been aided by comparative developmental analyses tion in the diversification of natural populations and new genomic approaches –including the (Oleksiak et al. 2002; Storey et al. 2007; Pavey et al. transcriptome-wide expression analyses as we use here 2010), particularly in the phenotypic divergence of tele- (Johnson et al. 2010; Mahler et al. 2010; Kolbe et al. 2011; ost populations (e.g. Derome et al. 2006; Kobayashi et al. Kusumi et al. 2011; Losos & Pringle 2011; Eckalbar et al. 2006; St-Cyr et al. 2008). Comparative transcriptomic 2012; Sanger et al. 2012). approaches permit an expanded purview into gene Differences in gene expression or gene sequence can expression by detecting differential expression in novel directly underpin ecologically relevant phenotypic genes and the interaction of many genes of small effect variation in populations (e.g. Oleksiak et al. 2002; (Mackay et al. 2009; Stapley et al. 2010), both of which Whitehead & Crawford 2006; Hoekstra & Coyne 2007), are likely to be important in the evolution of novel phe- thus providing the raw material upon which selection notypes. In short, both the novel genomic tools—and acts (Ellegren & Sheldon 2008). Gene expression and the morphological and ecological tools—now exist to function link the genotype to the phenotype and, in this parse evolutionary events into their repeated vs. unique role, are central to understanding adaptation, pheno- components in cases of repeated evolution of particular typic diversification, repeated evolution and ecological phenotypic traits (e.g. Manceau et al. 2010; Elmer & speciation (e.g. Sanetra et al. 2005; Manceau et al. 2010; Meyer 2011). Here, we leverage these new tools to Pavey et al. 2010). For instance, in Darwin’s finches and investigate the similarity of ecomorphological and tran- African cichlids, it is variation in the expression of bmp4 scriptomic changes accompanying the repeated evolu- that is linked to phenotypic variation in beak and jaw tion of hypertrophied lips in Central American Midas morphology, ecologically relevant morphological traits cichlid fishes (Amphilophus species complex, Gunther essential for each groups’ adaptive radiation (Abzhanov 1864) from the Great Lakes and crater lakes of Nicara- et al. 2004; Albertson et al. 2005). In three-spined gua (Fig. 1). sticklebacks, pelvic reduction repeatedly evolved via a Midas cichlids provide repeated natural experiments reduction of Pitx1 expression, with fixation in popula- in ecological speciation (Barlow & Munsey 1976; Meyer tions dependent on factors such as the presence of 1990a; Elmer et al. 2010a). In Nicaragua, tectonic and gape-limited predators and calcium limitation, among volcanic activity led to the formation of numerous, others (Shapiro et al. 2004; Chan et al. 2010). small crater lakes. At least eight crater lakes were colo- However, parallel phenotypic evolution does not nized by Midas cichlids originating from the Great always arise from parallel genomic and transcriptomic Lakes–Lake (L.) Managua and L. Nicaragua (Wilson changes (reviewed in Elmer & Meyer 2011). At the et al. 2000; Barluenga & Meyer 2004, 2010; Elmer et al. genomic level, either standing genetic variation or new 2010b, 2012). In several isolated crater lakes, similar mutations can be the target of selection (reviewed in morphological types are repeatedly observed, including Barrett & Schluter 2008). For example, the parallel evo- a deep-body benthic morph, an elongate, limnetic lution of cryptic coat coloration in Peromyscus mice is morph and a thick-lipped morph (reviewed in Elmer driven by an assortment of changes in gene function et al. 2010a). Despite the similarity of these repeated and expression, and the fixation of ancestral or, at phenotypes, phylogenetic analyses have shown that times, unique, derived genetic mutations (reviewed in individuals within any given crater lake are more Manceau et al. 2010). In freshwater sticklebacks, selec- closely related to one another than they are to individu- tion repeatedly favours alleles present in the ancestral als in any other lake (Wilson et al. 2000; Barluenga & © 2012 Blackwell Publishing Ltd REPEATED EVOLUTION OF THICK LIPS IN MIDAS CICHLIDS 3 L. Nicaragua L. Apoyeque Managua
Recommended publications
  • Computer Simulations on the Sympatric Speciation Modes for The
    Computer simulations on the sympatric speciation modes for the Midas cichlid species complex K. Luz-Burgoa,1 S. Moss de Oliveira,1 and J. S. S´aMartins1 1 Instituto de F´ısica, Universidade Federal Fluminense, ∗ Campus da Praia Vermelha, Boa Viagem, Niter´oi, 24210-340, RJ, Brazil. (Dated: October 26, 2018) Cichlid fishes are one of the best model system for the study of evolution of the species. Inspired by them, in this paper we simulated the splitting of a single species into two separate ones via random mutations, with both populations living together in sympatry, sharing the same habitat. We study the ecological, mating and genetic conditions needed to reproduce the polychromatism and polymorphism of three species of the Midas Cichlid species complex. Our results show two scenarios for the A. Citrinellus speciation process, one with and the other without disruptive natural selection. In the first scenario, the ecological and genetic conditions are sufficient to create two new species, while in the second the mating and genetic conditions must be synchronized in order to control the velocity of genetic drift. I. INTRODUCTION jaws of A. citrinellus have been described [9], a papilli- form morph with slender pointed teeth and a mollariform morph with thicker rounded teeth. These previous stud- The evolution of a single population into two or more ies showed that there is a trade-off in performance: the species without prevention of gene flow through geo- mollariform fish are specialized and more efficient at eat- graphic segregation is known as sympatric speciation ing hard diets such as snails, whereas they are less effi- Amphilophus Zaliosus [1, 2, 3].
    [Show full text]
  • Download Press Release 108 KB
    University of Konstanz · PO Box 226 · 78457 Konstanz, GERMANY Communications and Marketing News and media communications Press release no. 55/2018 Universitaetsstr. 10 78464 Konstanz, GERMANY +49 7531 88-3603 Fax +49 7531 88-3766 [email protected] www.uni-konstanz.de 20.06.2018 Data against dogma Biologist from Konstanz, Professor Axel Meyer, receives the Luigi-Tartufari International Prize from the Italian National Academy He has just returned to Konstanz from a sabbatical spent at the Radcliffe Institute for Advanced Study at Harvard University. Now, on 22 June 2018, the professor of zoology and evolutionary biology, Axel Meyer, is awarded the Luigi-Tartufari International Prize from the Italian Academia Nazionale dei Lincei in Rome. One of the first illustrious members of this academy was the Italian polymath Galileo Galilei. Axel Meyer receives the award for his research in the areas of molecular, cell and evolutionary biology. The Italian National Academy honours the biologist from Konstanz for his scientific life's work, for which he already received numerous awards. Axel Meyer is one of the world's leading and most widely cited experts in the field of evolutionary biology. He disproved textbook dogmas that had been thought to be valid for several decades and was one of the pioneers in using genetic data in evolutionary biology. By collecting empirical data, Axel Meyer's laboratory team questioned the doctrine that geographical barriers are the prerequisite for the origin of new species. Carrying out research in the crater lakes in Nicaragua, he was also able to demonstrate that the evolution in certain types of fish repeated itself independently from each other.
    [Show full text]
  • Differentiation in Swimming Performances, Physiology and Gene Expression Between Locally-Adapted Sympatric Cichlid Fishes
    Received: 28 July 2019 | Revised: 24 October 2019 | Accepted: 8 November 2019 DOI: 10.1111/mec.15304 FROM THE COVER Diving into divergence: Differentiation in swimming performances, physiology and gene expression between locally-adapted sympatric cichlid fishes Francesca Raffini1,2,3 | Ralf F. Schneider1,2 | Paolo Franchini1 | Andreas F. Kautt1 | Axel Meyer1,2 1Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, Abstract University of Konstanz, Konstanz, Germany Sympatric speciation occurs without geographical barriers and is thought to often be 2 International Max Planck Research School driven by ecological specialization of individuals that eventually diverge genetically (IMPRS) for Organismal Biology, Max- Planck-Institut für Ornithologie, Radolfzell, and phenotypically. Distinct morphologies between sympatric populations occupy- Germany ing different niches have been interpreted as such differentiating adaptive pheno- 3Max Planck Institute for Ornithology, Radolfzell, Germany types, yet differences in performance and thus likely adaptiveness between them were rarely tested. Here, we investigated if divergent body shapes of two sympatric Correspondence Axel Meyer, Lehrstuhl für Zoologie crater lake cichlid species from Nicaragua, one being a shore-associated (benthic) und Evolutionsbiologie, Department of species while the other prefers the open water zones (limnetic), affect cruising (Ucrit) Biology,University of Konstanz, Konstanz, Germany. and sprinting (Usprint) swimming abilities – performances particularly relevant to their Email: [email protected] respective lifestyles. Furthermore, we investigated species differences in oxygen Present address consumption (MO2) across different swimming speeds and compare gene expression Francesca Raffini, Department of Animal in gills and white muscle at rest and during exercise. We found a superior cruising and Plant Sciences, The University of Sheffield, Sheffield, UK ability in the limnetic Amphilophus zaliosus compared to the benthic Amphilophus as- Ralf F.
    [Show full text]
  • Curriculum Vitae – Shigehiro Kuraku
    1 Shigehiro Kuraku, Ph.D. Unit Leader Laboratory for Phyloinformatics RIKEN Center for Biosystems Dynamics Research Email: [email protected] URL: www.clst.riken.jp/phylo/ GENDER Male YEAR OF BIRTH 1976 NATIONALITY Japanese Ph.D. Department of Biophysics, Graduate School of Science, Kyoto University January 2005 Discipline: Evolutionary Biology Supervisor: Prof. Yoshinori Shichida (after Prof. Takashi Miyata retired) M.Sc. Department of Biophysics, Graduate School of Science, Kyoto University March 2001 Discipline: Molecular Evolutionary Biology Supervisor: Prof. Takashi Miyata B.Sc. Faculty of Science, Kyoto University March 1999 Discipline: Molecular Evolutionary Biology Supervisor: Prof. Takashi Miyata Japanese (native) English (fluent) German (Level 3 – Diplom Deutsch in Japan. 1995) Italian (Diploma elementare di Lingua Italiana Firenze - Accadmia italiana di lingua. 1999) 2 Curriculum vitae – Shigehiro Kuraku Year Appointment 2018- Unit Leader Laboratory for Phyloinformatics RIKEN Center for Biosystems Dynamics Research in Kobe, Japan 2018- Adjunct Associate Professor Graduate School of Science, Kobe University, Japan 2014-2018 Unit Leader Phyloinformatics Unit RIKEN Center for Life Science Technologies in Kobe, Japan 2014- Adjunct Associate Professor Organization of Advanced Science and Technology, Kobe University, Japan 2013- Adjunct Associate Professor Graduate School of Science and Technology, Kwansei Gakuin University, Japan 2012-2014 Unit Leader Genome Resource and Analysis Unit, Center for Developmental Biology, RIKEN
    [Show full text]
  • Evolution of Genomic Structural Variation and Genomic Architecture in the Adaptive Radiations of African Cichlid fishes
    ORIGINAL RESEARCH ARTICLE published: 03 June 2014 doi: 10.3389/fgene.2014.00163 Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes Shaohua Fan and Axel Meyer* Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany Edited by: African cichlid fishes are an ideal system for studying explosive rates of speciation and Philine G. D. Feulner, Max Planck the origin of diversity in adaptive radiation. Within the last few million years, more than Institute for Evolutionary Biology, 2000 species have evolved in the Great Lakes of East Africa, the largest adaptive radiation Germany in vertebrates. These young species show spectacular diversity in their coloration, Reviewed by: Harald Schneider, Natural History morphology and behavior. However, little is known about the genomic basis of this Museum, UK astonishing diversity. Recently, five African cichlid genomes were sequenced, including Feng Zhang, Fudan University, China that of the Nile Tilapia (Oreochromis niloticus), a basal and only relatively moderately Arne W. Nolte, Max Planck Society, diversified lineage, and the genomes of four representative endemic species of the Germany adaptive radiations, Neolamprologus brichardi, Astatotilapia burtoni, Metriaclima zebra, *Correspondence: Axel Meyer, Lehrstuhl für Zoologie and Pundamila nyererei. Using the Tilapia genome as a reference genome, we generated und Evolutionsbiologie, Department a high-resolution genomic variation map, consisting of single nucleotide polymorphisms of Biology, University of Konstanz, (SNPs), short insertions and deletions (indels), inversions and deletions. In total, around Universitätstraße 10, Konstanz 18.8, 17.7, 17.0, and 17.0 million SNPs, 2.3, 2.2, 1.4, and 1.9 million indels, 262, 306, 78464, Germany e-mail: [email protected] 162, and 154 inversions, and 3509, 2705, 2710, and 2634 deletions were inferred to have evolved in N.
    [Show full text]
  • Differentiation in Swimming Performances, Physiology and Gene Expression Between Locally-Adapted Sympatric Cichlid Fishes
    Received: 28 July 2019 | Revised: 24 October 2019 | Accepted: 8 November 2019 DOI: 10.1111/mec.15304 FROM THE COVER Diving into divergence: Differentiation in swimming performances, physiology and gene expression between locally-adapted sympatric cichlid fishes Francesca Raffini1,2,3 | Ralf F. Schneider1,2 | Paolo Franchini1 | Andreas F. Kautt1 | Axel Meyer1,2 1Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, Abstract University of Konstanz, Konstanz, Germany Sympatric speciation occurs without geographical barriers and is thought to often be 2 International Max Planck Research School driven by ecological specialization of individuals that eventually diverge genetically (IMPRS) for Organismal Biology, Max- Planck-Institut für Ornithologie, Radolfzell, and phenotypically. Distinct morphologies between sympatric populations occupy- Germany ing different niches have been interpreted as such differentiating adaptive pheno- 3Max Planck Institute for Ornithology, Radolfzell, Germany types, yet differences in performance and thus likely adaptiveness between them were rarely tested. Here, we investigated if divergent body shapes of two sympatric Correspondence Axel Meyer, Lehrstuhl für Zoologie crater lake cichlid species from Nicaragua, one being a shore-associated (benthic) und Evolutionsbiologie, Department of species while the other prefers the open water zones (limnetic), affect cruising (Ucrit) Biology,University of Konstanz, Konstanz, Germany. and sprinting (Usprint) swimming abilities – performances particularly relevant to their Email: [email protected] respective lifestyles. Furthermore, we investigated species differences in oxygen Present address consumption (MO2) across different swimming speeds and compare gene expression Francesca Raffini, Department of Animal in gills and white muscle at rest and during exercise. We found a superior cruising and Plant Sciences, The University of Sheffield, Sheffield, UK ability in the limnetic Amphilophus zaliosus compared to the benthic Amphilophus as- Ralf F.
    [Show full text]
  • Parallel and Non-Parallel Changes of the Gut Microbiota During Trophic Diversifcation in Repeated Young Adaptive Radiations of Sympatric Cichlid Fsh
    Parallel and non-parallel changes of the gut microbiota during trophic diversication in repeated young adaptive radiations of sympatric cichlid sh Andreas Härer Universitat Konstanz https://orcid.org/0000-0003-2894-5041 Julián Torres-Dowdall Universitat Konstanz Sina J. Rometsch Universitat Konstanz Elizabeth Yohannes Universitat Konstanz Gonzalo Machado-Schiano Universidad de Oviedo Axel Meyer ( [email protected] ) https://orcid.org/0000-0002-0888-8193 Research Keywords: Amphilophus citrinellus, trophic ecology, stable isotopes, Neotropical cichlids, rapid adaptation, 16S rRNA gene sequencing, parallel evolution, Nicaragua Posted Date: July 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-20414/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 29th, 2020. See the published version at https://doi.org/10.1186/s40168-020-00897-8. Page 1/25 Abstract Background: Recent increases in understanding the ecological and evolutionary roles of microbial communities has underscored the importance for their hosts’ biology. Yet, little is known about gut microbiota dynamics during early stages of ecological diversication and speciation. We sequenced the V4 region of the 16s rRNA gene to study the gut microbiota of Nicaraguan Midas cichlid sh (Amphilophus cf. citrinellus). Specically, we tested the hypothesis that parallel divergence in trophic ecology in extremely young adaptive radiations from two crater lakes is associated with parallel changes of their gut microbiota. Results: Bacterial communities of sh guts and lake water were highly distinct, indicating that the gut microbiota is shaped by host-specic factors.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Walter Salzburger Zoological Institute, University of Basel Vesalgasse 1, 4051 Basel, Switzerland eMail: [email protected] home: www.evolution.uniBas.ch/salzBurger/ Curriculum Vitae tel.: +41 61.267.0303; fax.: .0301; secretary: .0300 | Walter Salzburger | page 1 PERSONAL INFORMATION Name: Walter SalzBurger Date of birth: January 1st, 1975 (in Wörgl, Austria) Nationality: Austrian Position: Associate Professor Address: Zoological Institute, University of Basel Vesalgasse 1, CH-4051 Basel, Switzerland tel.: +41 61.267.0303; fax.: .0301 Personal Assistant (Brigitte AeschBach): .0300 eMail: [email protected] home: www.evolution.unibas.ch/salzburger/ Private: Saint-Louis-Strasse 26, CH-4055 Basel, Switzerland tel.: +41 78.888.1776 (moBile) EDUCATION 2001 Doctoral degree (Dr. rer. nat.), awarded with distinction 1998-2001 Doctoral thesis work “Speciation in Lake Tanganyika cichlids” at the Department of Zoology and Limnology, University of InnsBruck, Austria; supervisor: Prof. Christian SturmBauer 1998 Master degree (Mag.) in Zoology, awarded with distinction 1997-1998 Master thesis work “Comparative phylogenetic analysis of Lake Tanganyika cichlids using different mitochondrial gene segments” at the Department of Zoology and Limnology, University of InnsBruck, Austria; supervisor: Prof. Christian SturmBauer 1993-1998 Study of Biology/Zoology at the University of InnsBruck, Austria 1993 School leaving examination (Matura), awarded with distinction FURTHER EDUCATION 2004-2006 Applied training courses “Didactics
    [Show full text]
  • Crater Lake Habitat Predicts Morphological Diversity in Adaptive Radiations of Cichlid Fishes
    CRATER LAKE HABITAT PREDICTS MORPHOLOGICAL DIVERSITY IN ADAPTIVE RADIATIONS OF CICHLID FISHES 1 1 Hans Recknagel, •2 Kathryn R. Elmer, •2 and Axel Meyer1.3 1 Lehrstuhl far Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, 78457 Konstanz, Germany 2/nstitute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G 12 BQQ, United Kingdom 3 E-mail: axel. meyer@uni-konstanz. de Adaptive radiations provide an excellent opportunity for studying the correlates and causes for the origin of biodiversity. In these radiations, species diversity may be influenced by either the ecological and physical environment. intrinsic lineage effects, or both. Disentangling the relative contributions of these factors in generating biodiversity remains a major challenge in understanding why a lineage does or does not radiate. Here, we examined morphological variation in body shape for replicate flocks of Nicaraguan Midas cichlid fishes and tested its association with biological and physical characteristics of their crater lakes. We found that variability of body elongation, an adaptive trait in freshwater fishes, is mainly predicted by average lake depth (N = 6, P < 0.001, R2 = 0.96). Other factors considered, including lake age, surface area, littoral zone area, number of co-occurring fish species, and genetic diversity of the Midas flock, did not significantly predict morphological variability. We also showed that lakes with a larger littoral zone have on average higher bodied Midas cichlid s, indicating that Midas cichlid flocks are locally adapted to their crater lake habitats. In conclusion, we found that a lake's habitat predicts the magnitude and the diversity of body elongation in repeated cichlid adaptive radiations.
    [Show full text]
  • Evolution of Genomic Structural Variation and Genomic Architecture in the Adaptive Radiations of African Cichlid fishes
    ORIGINAL RESEARCH ARTICLE published: 03 June 2014 doi: 10.3389/fgene.2014.00163 Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes Shaohua Fan and Axel Meyer* Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany Edited by: African cichlid fishes are an ideal system for studying explosive rates of speciation and Philine G. D. Feulner, Max Planck the origin of diversity in adaptive radiation. Within the last few million years, more than Institute for Evolutionary Biology, 2000 species have evolved in the Great Lakes of East Africa, the largest adaptive radiation Germany in vertebrates. These young species show spectacular diversity in their coloration, Reviewed by: Harald Schneider, Natural History morphology and behavior. However, little is known about the genomic basis of this Museum, UK astonishing diversity. Recently, five African cichlid genomes were sequenced, including Feng Zhang, Fudan University, China that of the Nile Tilapia (Oreochromis niloticus), a basal and only relatively moderately Arne W. Nolte, Max Planck Society, diversified lineage, and the genomes of four representative endemic species of the Germany adaptive radiations, Neolamprologus brichardi, Astatotilapia burtoni, Metriaclima zebra, *Correspondence: Axel Meyer, Lehrstuhl für Zoologie and Pundamila nyererei. Using the Tilapia genome as a reference genome, we generated und Evolutionsbiologie, Department a high-resolution genomic variation map, consisting of single nucleotide polymorphisms of Biology, University of Konstanz, (SNPs), short insertions and deletions (indels), inversions and deletions. In total, around Universitätstraße 10, Konstanz 18.8, 17.7, 17.0, and 17.0 million SNPs, 2.3, 2.2, 1.4, and 1.9 million indels, 262, 306, 78464, Germany e-mail: [email protected] 162, and 154 inversions, and 3509, 2705, 2710, and 2634 deletions were inferred to have evolved in N.
    [Show full text]
  • Incipient Sympatric Speciation in Nicaraguan Cichlid Fishes?
    Molecular Ecology (2004) 13, 2061–2076 doi: 10.1111/j.1365-294X.2004.02211.x TheBlackwell Publishing, Ltd. Midas cichlid species complex: incipient sympatric speciation in Nicaraguan cichlid fishes? MARTA BARLUENGA and AXEL MEYER Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany Abstract Sympatric speciation is a contentious concept, although theoretical models as well as empirical evidence support its relevance in evolutionary biology. The Midas cichlid species complex (Amphilophus citrinellus, labiatus, zaliosus) from several crater lakes in Nicaragua fits several of the key characteristics of a sympatric speciation model. In particular, in A. citrinellus (i) strong assortative mating on the basis of colour polymorphism and (ii) ecological differentiation based on morphological polymorphisms involving the feeding apparatus and body shape might both be mechanisms of incipient speciation. Seven microsatellite markers and mtDNA control region sequences [836 base pairs (bp)] were used to study the population genetic structure of 519 specimens of Midas cichlid populations from the two Great Lakes Managua and Nicaragua, and three crater lakes in Nicaragua, Central America. The three named species of the species complex occupy different ecological niches, are mor- phologically distinct and can be distinguished genetically. We uncovered allopatric genetic differentiation of populations of A. citrinellus from different lakes and distant locations within Lake Managua and, more interestingly, incipient genetic differentiation of several sympatric populations based on colouration (in A. citrinellus and A. labiatus) but not on the morphology of the pharyngeal jaws (in A. citrinellus). Sexual selection and assortative mating might be the driven forces of diversification within named species. The Midas cichlid species complex in Nicaragua is an excellent model system for the study of the incipient stages of adaptation, speciation and the formation of species flocks.
    [Show full text]
  • George C. Williams (1926–2010) Incisive Thinker Who Influenced a Generation of Evolutionary Biologists
    COMMENT OBITUARY George C. Williams (1926–2010) Incisive thinker who influenced a generation of evolutionary biologists. n 1978, at the age of 52, the great genetics in social behaviour, even of humans. evolutionary theorist George C. Williams And Richard Dawkins’s 1976 book The Selfish began to chronicle his own senescence, Gene popularized some of Williams’s ideas. Irecording once a year how long it took to That said, gene-level selection and inclusive run 1,700 metres round a track in Stony fitness were not universally accepted then, , STONY BROOK UNIV. BROOK STONY , Brook, New York. Williams presented the and still meet with occasional criticism — S graph of his 12 years of slowing speed at his notably from researchers trying to explain acceptance speech for the Crafoord Prize in altruism and eusociality, for example. These Bioscience that he shared with Ernst Mayr ideas remain, nonetheless, cornerstones of SERVICE MEDIA and John Maynard Smith in 1999. He later modern biological theory. published it in The Quarterly Review of Biol- ogy, with which he was involved for 32 years. COMPETITION NOT COOPERATION The plot encapsulated his lifelong fascina- Williams made further influential tion: why do we decline with age? contributions. With his 1975 book Sex and Williams died on 8 September, aged 84. Evolution, he was among the first to offer Little known to the public, this tall, reserved explanations for the puzzling prevalence of man with an Abraham Lincoln beard will sexual reproduction. He pointed out that it be remembered by evolutionary biologists is yet another example of competition, not as one of the most incisive thinkers of the cooperation, being the dominant force in twentieth century.
    [Show full text]