Yellow Anaconda
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Epicrates Maurus (Rainbow Boa Or Velvet Mapepire)
UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Epicrates maurus (Rainbow Boa or Velvet Mapepire) Family: Boidae (Boas and Pythons) Order: Squamata (Lizards and Snakes) Class: Reptilia (Reptiles) Fig. 1. Rainbow boa, Epicrates maurus. [http://squamates.blogspot.com/2010/10/declines-in-snake-and-lizard.html, Downloaded 10 November, 2011] . TRAITS. The rainbow boa, also known as the velvet mapepire, is a snake that grows to a maximum length of 4 feet in males and 4.5 to 5 feet in females. The life span of this species of snake is an average of 20 years if held in captivity and 10 years in the wild. Their name, rainbow boa, originated from their appearance because of an iridescent shine emanating from microscopic ridges on their scales that refract light to produce all the colours of the rainbow. These boas are generally brownish red in colour associated with dark marking during their juvenile life, however this coloration becomes subdued as they get older (Underwood 2009). These snakes are mainly nocturnal and also terrestrial, they have a small head with a narrow neck and a thick body (Boos 2001). Boas are considered primitive snakes and this is supported by the presence of two vestigal, hind limbs which appers as spurs on either side of the cloaca (Conrad 2009). ECOLOGY. Rainbow boas occupy a variety of habitats in Trinidad and Tobago, they can be found in dry tropical forest, rainforest clearings or even close to human settlements such as agricultural communities. Like all boas, they are excellent swimmers, however they restrain from being in contact with water as much as possible. -
Liasis Fuscus) in Tropical Australia
University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 1-1-2009 Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia Richard Shine University of Sydney Thomas R. Madsen University of Wollongong, [email protected] Ligia Pizzatto University of Sydney Gregory P. Brown University of Sydney Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Shine, Richard; Madsen, Thomas R.; Pizzatto, Ligia; and Brown, Gregory P.: Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia 2009, 181-191. https://ro.uow.edu.au/scipapers/380 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia Abstract Young snakes are rarely seen in the field and little is known about their habits. mostly because they are too small for radio-telemetry (the primary method for Studying snake spatial ecology). However, the offspring or some larger species can be fitted with transmitters and we investigated the spatial ecology and habitat use of ten hatchling water pythons (Liasis fuscus: Pythonidae) in the floodplain of the Adelaide River, tropical Australia. Patterns of habitat use in the late wet season and during the dry season were similar to those of adults tracked in the same vicinity in an earlier study. Soon after release the young snakes moved to the floodplain, va oiding pasture areas. -
Problems of Python Classification and Hybrid Pythons
PROBLEMS OF PYTHON CLASSIFICATION AND HYBRID PYTHONS. By: Raymond Hoser, 170 Lawson Street, Redfern, NSW, 2016, Australia. Contents: Introduction - Summary of the problems in classifying Australia's pythons - Hybrids between species - Acknowledge ments - References. INTRODUCTION Australasia's pythons attract disproportionate in terest from herpetologists within Australia and elsewhere. There is also considerable debate in relation to the relationships between species, with various arrangements being proposed. Authors including Cogger (1986), Schmida (1985), and Stafford (1986), have tended to follow 'con sensus opinion' when assigning generic names to Australasian pythons. References in relation to general and more specific aspects of Australian pythons can be found in Haser (1981 a , 1981 b, 1981 c and 1982), and elsewhere. This short paper gives a summary of the problems facing Australian python taxonomists and gives details of an unusual captive breeding that resulted in hybrids between species being produced. SUMMARY OF THE PROBLEMS IN CLASSIFYING AUSTRALIA'S PYTHONS With the exception of the Black headed python and Woma (Genus Aspidites), all other Australian py thons have at various times been assigned to a number of different genera. Numerous schemes of 134 classification for the rema1n1ng Australian spe cies of python have been proposed. These include Hoser (1982), McDowell (1975), and Stull (1935). The schemes range from the placing of all species in the genus Python shared with other non Austra lian species, to placing the species in question in up to seven genera. Namely Bot"h:PochiZus3 Chon dropython3 Liasis3 LisaZia3 Liasis3 MoreZia3 and Python. The assignment of given species within a particular genus is also a matter of conflict. -
On the Presence of Eunectes Murinus (Squamata, Serpentes) from the Late Pleistocene of Northern Brazil
Rev. bras. paleontol. 16(1):77-82, Janeiro/Abril 2013 © 2013 by the Sociedade Brasileira de Paleontologia doi:10.4072/rbp.2013.1.06 ON THE PRESENCE OF EUNECTES MURINUS (SQUAMATA, SERPENTES) FROM THE LATE PLEISTOCENE OF NORTHERN BRAZIL ANNIE SCHMALTZ HSIOU Departamento de Biologia, FFCLRP, USP, Av. Bandeirantes 3900, Ribeirão Preto, SP, Brazil. [email protected] GISELE R. WINCK Departamento de Ecologia, Instituto de Biologia Roberto de Alcântara Gomes, Rua São Francisco Xavier 524, 20550-013, Rio de Janeiro, RJ, Brazil. [email protected] BLAINE W. SCHUBERT Don Sundquist Center of Excellence in Paleontology and Department of Geosciences, East Tennessee State University, Box 70636, 37614-1709, Johnson City, TN, USA. [email protected] LEONARDO ÁVILLA Departamento de Zoologia, UNIRIO, Av. Pasteur 458, sala 501, 22290-240, Rio de Janeiro, RJ, Brazil. [email protected] ABSTRACT – Brazilian late Pleistocene snakes have an extensive fossil record and are recognized for southern, northeastern and northern regions of this country. This fossil record is represented by the families Boidae, ‘Colubridae’, Viperidae and Elapidae. Here is presented the fi rst record for Eunectes Wagler for the late Pleistocene of the Brazilian northern region. The material described is a single incomplete dorsal vertebra, and although it shares several vertebral features with most Boidae taxa, it can be distinguished from all other boids because is a robust and wide vertebra with a slightly depressed neural arch, relatively thick and robust zygosphene with a prominent median turbercle. The taxonomic allocation to E. murinus (Linnaeus) is based on the exceptionally large size of the vertebra. -
First Lizard Remains (Teiidae) from the Miocene of Brazil (Solimões Formation)
Rev. bras. paleontol. 12(3):225-230, Setembro/Dezembro 2009 © 2009 by the Sociedade Brasileira de Paleontologia doi:10.4072/rbp.2009.3.05 FIRST LIZARD REMAINS (TEIIDAE) FROM THE MIOCENE OF BRAZIL (SOLIMÕES FORMATION) ANNIE SCHMALTZ HSIOU Seção de Paleontologia, Museu de Ciências Naturais, FZB-RS, Av. Salvador França, 1427, 90690-000, Porto Alegre, RS, Brasil. [email protected] ADRIANA MARIA ALBINO CONICET, Departamento de Biología, Universidad Nacional de Mar del Plata, Funes 3250, 7600 Mar del Plata, Argentina. [email protected] JORGE FERIGOLO Seção de Paleontologia, Museu de Ciências Naturais, FZB-RS, Av. Salvador França, 1427, 90690-000, Porto Alegre, RS, Brasil. [email protected] ABSTRACT – The South American Teiidae fossil record is restricted to the Cenozoic, and the most conspicuous remains were found in Early to Late Miocene of Argentina and Middle Miocene of Colombia and Peru, all represented by Tupinambinae lizards. Here, we describe a right fragmentary dentary and one dorsal vertebra collected in the Solimões Formation at the Talismã locality, situated on the Purus River, in the southwestern Brazilian Amazonia (Late Miocene). The material is tentatively conferred to the extinct genus Paradracaena. It represents the first record of lizards for the Neogene southwestern Brazilian Amazonia. Key words: Teiidae, Tupinambinae, Solimões Formation, Miocene, southwestern Brazilian Amazonia. RESUMO – O registro fóssil de Teiidae para a América do Sul é restrito ao Cenozóico. Os fósseis mais significantes são encontrados a partir do Mioceno inferior ao superior da Argentina e Mioceno médio da Colômbia e Peru, principalmente representados pelos Tupinambinae. Neste trabalho descreve-se um fragmento de dentário direito e uma vértebra dorsal coletados em sedimentos da Formação Solimões, na localidade Talismã, alto rio Purus, sudoeste da Amazônia brasileira. -
Amazon Alive: a Decade of Discoveries 1999-2009
Amazon Alive! A decade of discovery 1999-2009 The Amazon is the planet’s largest rainforest and river basin. It supports countless thousands of species, as well as 30 million people. © Brent Stirton / Getty Images / WWF-UK © Brent Stirton / Getty Images The Amazon is the largest rainforest on Earth. It’s famed for its unrivalled biological diversity, with wildlife that includes jaguars, river dolphins, manatees, giant otters, capybaras, harpy eagles, anacondas and piranhas. The many unique habitats in this globally significant region conceal a wealth of hidden species, which scientists continue to discover at an incredible rate. Between 1999 and 2009, at least 1,200 new species of plants and vertebrates have been discovered in the Amazon biome (see page 6 for a map showing the extent of the region that this spans). The new species include 637 plants, 257 fish, 216 amphibians, 55 reptiles, 16 birds and 39 mammals. In addition, thousands of new invertebrate species have been uncovered. Owing to the sheer number of the latter, these are not covered in detail by this report. This report has tried to be comprehensive in its listing of new plants and vertebrates described from the Amazon biome in the last decade. But for the largest groups of life on Earth, such as invertebrates, such lists do not exist – so the number of new species presented here is no doubt an underestimate. Cover image: Ranitomeya benedicta, new poison frog species © Evan Twomey amazon alive! i a decade of discovery 1999-2009 1 Ahmed Djoghlaf, Executive Secretary, Foreword Convention on Biological Diversity The vital importance of the Amazon rainforest is very basic work on the natural history of the well known. -
Opinion No. 82-811
TO BE PUBLISHED IN THE OFFICIAL REPORTS OFFICE OF THE ATTORNEY GENERAL State of California JOHN K. VAN DE KAMP Attorney General _________________________ : OPINION : No. 82-811 : of : APRI 28, 1983 : JOHN K. VAN DE KAMP : Attorney General : : JOHN T. MURPHY : Deputy Attorney General : : ________________________________________________________________________ THE HONORABLE ROBERT W. NAYLOR, A MEMBER OF THE CALIFORNIA ASSEMBLY, has requested an opinion on the following question: Does "python" as used in Penal Code section 653o to identify an endangered snake include "anaconda"? CONCLUSION As used in Penal Code section 653o to identify an endangered snake, "python" does not include "anaconda." 1 82-811 ANALYSIS Penal Code section 653o, subd. (a), provides as follows: "It is unlawful to import into this state for commercial purposes, to possess with intent to sell, or to sell within the state, the dead body, or any part or product thereof, of any alligator, crocodile, polar bear, leopard, ocelot, tiger, cheetah, jaguar, sable antelope, wolf (Canis lupus), zebra, whale, cobra, python, sea turtle, colobus monkey, kangaroo, vicuna, sea otter, free-roaming feral horse, dolphin or porpoise (Delphinidae), Spanish lynx, or elephant." "Any person who violates any provision of this section is guilty of a misdemeanor and shall be subject to a fine of not less than one thousand dollars ($1,000) and not to exceed five thousand dollars ($5,000) or imprisonment in the county jail for not to exceed six months, or both such fine and imprisonment, for each violation." (Emphasis added.) We are asked whether or not the term "python" in this statute includes "anaconda." Section 653o was enacted in 1970 (Stats. -
East Indian Leopard Gecko
...pg24 ...pg34 ( Reptile Nutrition UVB and Reptiles Vol. 13 | No. 06 | November/December 2019 the #1 reptile and exotic pet website Ultimate East Indian .co.za exotics Leopard Gecko Eublepharis hardwickii Ball Python Humidity & Temperature The Speckled Kingsnake (Lampropeltis getula holbrooki) Brazilian Rainbow Boa (Epicrates cenchria) Pg. 30 The Pink Toe Tarantula (Avicularia avicularia) Pg. 38 www.ultimateexotics.co.za | november/december 2019 | ultimate exotics 1 Contents Volume 13 | Number 06 | 2019 Nov/Dec 19 South Africa’s only Reptile and Exotic Pet Magazine! features 04 THE SPECKLED KINGSNAKE There is something very special about this species of Kingsnake and although their body shape may be similar to that of a Florida Kingsnake there is something about their colouring and patterning that is truly mesmerizing. TEMPERATURE & HUMIDITY FOR 10 BALL PYTHONS Ball pythons are ectotherms that are native to the tropics. Not surprisingly, they have precise humidity and temperature requirements inside their enclosure. 04 16 EAST INDIAN LEOPARD GECKO The East Indian Leopard Gecko (Eublepharis hardwickii), also known commonly as Hardwicke’s gecko, is a species of gecko in the family Eublepharidae. This species is endemic to India and Bangladesh and in this article we learn all about them. 24 REPTILE NUTRITION Some reptiles make it easy to provide optimum nutrition. Snakes, for example, swallow whole prey that contains all of the nutrients they need to survive and thrive. Provided, of course, that the prey was also fed properly and doesn’t suffer from parasites or deficiencies. 16 38 HANDLING TARANTULAS Seasoned keepers often enjoy handling their calmer animals (and sometimes, the not so calm ones) as a way to feel more bonded to these amazing creatures. -
Boidae, Boinae): a Rare Snake from the Vale Do Ribeira, State of São Paulo, Brazil
SALAMANDRA 47(2) 112–115 20 May 2011 ISSNCorrespondence 0036–3375 Correspondence New record of Corallus cropanii (Boidae, Boinae): a rare snake from the Vale do Ribeira, State of São Paulo, Brazil Paulo R. Machado-Filho 1, Marcelo R. Duarte 1, Leandro F. do Carmo 2 & Francisco L. Franco 1 1) Laboratório de Herpetologia, Instituto Butantan, Av. Vital Brazil, 1500, São Paulo, SP, CEP: 05503-900, Brazil 2) Departamento de Agroindústria, Alimentos e Nutrição. Escola Superior de Agronomia “Luiz de Queiroz” – ESALQ/USP, Av. Pádua Dias, 11 C.P.: 9, Piracicaba, SP, CEP: 13418-900, Brazil Correspondig author: Francisco L. Franco, e-mail: [email protected] Manuscript received: 9 December 2010 The boid genusCorallus Daudin, 1803 is comprised of nine Until recently, only four specimens (including the above Neotropical species (Henderson et al. 2009): Corallus an mentioned holotype) of C. cropanii were deposited in her- nulatus (Cope, 1876), Corallus batesii (Gray, 1860), Co petological collections: three in the Coleção Herpetológica rallus blombergi (Rendahl & Vestergren, 1941), Coral “Alphonse Richard Hoge”, Instituto Butantan, São Paulo, lus caninus (Linnaeus, 1758), Corallus cookii Gray, 1842, Corallus cropanii (Hoge, 1954), Corallus grenadensis (Bar- bour, 1914), Corallus hortulanus (Linnaeus, 1758), and Corallus ruschenbergerii (Cope, 1876). The most conspic- uous morphological attributes of representatives of these species are the laterally compressed body, robust head, slim neck, and the presence of deep pits in some of the la- bial scales (Henderson 1993a, 1997). Species of Corallus are distributed from northern Central American to south- ern Brazil, including Trinidad and Tobago and islands of the south Caribbean. Four species occur in Brazil: Corallus batesii, C. -
Steve Irwin Herpetology
Stephen Robert "Steve" Irwin (born February 22, 1962 – died September 4, 2006), nicknamed "The Crocodile Hunter" Steve Irwin was (among other things) a herpetologist. He was a scientist who studied and took care of reptiles and amphibians. Irwin was born and raised in Australia where his mother and father started the Australia Zoo. He grew up around reptiles and took over the management of the zoo as an adult. Even as a child he was involved in the care and feeding of animals and taking care of the zoo. He is best known for a successful television series called “Crocodile Hunter” in which he wrestled crocodiles. Irwin loved nature and animals. By teaching people about animals he wanted to protect them and the habitats they live in. He wanted to share his excitement about the natural world with people and make them aware of endangered animals, or animals with low populations, and land clearing leading to loss of habitat. Irwin died on September 4, 2006 after being pierced in the chest by a stingray barb while filming an underwater film titled “Ocean's Deadliest”. What does a herpetologist do? A herpetologist is a scientist who studies amphibians and reptiles. They encounter many interesting and potentially dangerous animals. There are many tools a herpetologist can use to handle, observe and assist amphibians and reptiles. A herpetologist can use a snake hook to safely pick up snakes. If a herpetologist is working with snakes, they may keep antivenom close by in case they get bitten. Gloves are important to protect a herpetologist against bites by a lizard or snake. -
In the Matobo National Park, Zimbabwe
CHIPANGALI WILDLIFE TRUST CARNIVORE RESEARCH INSTITUTE (CRI) Up-date of all Research Projects September 2005 CONTENTS Description Page No Project No 1 : The food and feeding habits of the leopard 1 (Panthera pardus) in the Matobo National Park, Zimbabwe. Project No 2 : The home range and movements of radio-collared 1 leopards (Panthera pardus) in the Matobo National Park, Zimbabwe. Project No 3 : Capture and translocation of problem cheetahs, 3 leopards and brown hyaenas found killing domestic livestock and the monitoring of their movements after release back into the wild. Project No 4 : The home range and movements of a radio-collared 4 brown hyaena (Hyaena brunnea) in the Matobo Hills World Heritage Site. Project No 5 : Check-list and Atlas of the Carnivores of Matabeleland. 4 Project No 6 : Field Survey and Captive Breeding Programme of the 6 Southern African Python (Python natalensis). Project No 7 : Biodiversity of the Matobo Hills World Heritage Site. 7 Acknowledgements. 9 PROJECT NO 1: THE FOOD AND FEEDING Leopard Kills Serval (Matopos National Park) HABITS OF THE LEOPARD (Panthera pardus) IN THE MATOBO NATIONAL PARK, ZIMBABWE On Tuesday 14th September, 2004 at 6:30am we were on our way to Maleme Vlei to catch This project commenced in January 2002 and after a invertebrates as part of our biodiversity survey of period of 4 years it will finally come to an end in the Matobo Hills World Heritage Site. December 2005. Up until the end of 2004 we had already collected 2630 different piles of droppings as At less than 20 metres from our tented camp at follows: Maleme Dam we came across signs of a kill that had taken place during the night. -
Volume 2. Animals
AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.