Problems of Python Classification and Hybrid Pythons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Liasis Fuscus) in Tropical Australia
University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 1-1-2009 Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia Richard Shine University of Sydney Thomas R. Madsen University of Wollongong, [email protected] Ligia Pizzatto University of Sydney Gregory P. Brown University of Sydney Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Shine, Richard; Madsen, Thomas R.; Pizzatto, Ligia; and Brown, Gregory P.: Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia 2009, 181-191. https://ro.uow.edu.au/scipapers/380 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia Abstract Young snakes are rarely seen in the field and little is known about their habits. mostly because they are too small for radio-telemetry (the primary method for Studying snake spatial ecology). However, the offspring or some larger species can be fitted with transmitters and we investigated the spatial ecology and habitat use of ten hatchling water pythons (Liasis fuscus: Pythonidae) in the floodplain of the Adelaide River, tropical Australia. Patterns of habitat use in the late wet season and during the dry season were similar to those of adults tracked in the same vicinity in an earlier study. Soon after release the young snakes moved to the floodplain, va oiding pasture areas. -
Koolan Island Quoll Demographics & Genetics
Running head: Conservation status of the Olive Python Final report GENETIC SURVEY OF THE PILBARA OLIVE PYTHON (Liasis olivaceaus barroni) David Pearson1, Peter Spencer2 Mia Hillyer2 and Ric A. How3 1Science Division, Department of Parks and Wildlife PO Box 51, Wannerooo, WA 6946 2School of Veterinary and Life Sciences, Murdoch University 90 South St, Murdoch, WA 6150 3Department of Terrestrial Zoology (Vertebrates), Western Australian Museum, 49 Kew St, Welshpool, WA 6986 September, 2013 Olive python – final report 1 Running head: Conservation status of the Olive Python Summary • The study used genetic information to investigate differences between and within populations of olive pythons in the Pilbara. This information was compared with genetic profiles from olive pythons form the Kimberley and carpet pythons. • Genetic variation was examined at eight nuclear genes (microsatellite) from 47 individual olive pythons. • Genetic analyses of nuclear markers show that the Pilbara olive python contains low levels of diversity, compared with its Kimberley counterpart. • The Pilbara population also had a low effective population size, but showed no signatures of a genetic bottleneck as a result of a population crash. • Nuclear DNA markers identified two distinct olive python populations. One in the Pilbara and the other in the Kimberley. • Mitochondrial analysis at three diagnostic regions showed two distinct clades representing Pilbara and Kimberley olive pythons, exclusively, consistent with results from nuclear markers. • Overall olive pythons appear to have two Evolutionary Significant Units. The Pilbara unit appear to be less genetically diverse than Kimberley one and shows little phylogeographic structure within the Pilbara. • There is sufficient evidence from the data that the taxonomy of the two groups should be subject to a re-appraisal, the Kimberley and Pilbara Olive pythons sufficiently different to be considered as different species. -
Raymond T. Hoser
32 Australasian Journal of Herpetology Australasian Journal of herpetology 11:32-50. Published 8 April 2012. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) THE DESCRIPTION OF A NEW GENUS OF WEST AUSTRALIAN SNAKE AND EIGHT NEW TAXA IN THE GENERA PSEUDONAJA GUNTHER, 1858, OXYURANUS KINGHORN, 1923 AND PANACEDECHIS WELLS AND WELLINGTON, 1985 (SERPENTES: ELAPIDAE) RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: [email protected] Submitted 20 March 2012, Accepted 30 March 2012, Published 8 April 2012. ABSTRACT This paper defines and names new taxa from Australasia. The taxon Denisonia fasciata Rosen 1905, placed most recently by most authors in the genus Suta, is formally removed from that genus and placed in a monotypic genus formally named and described herein. Other taxa formally named and described for the first time include subspecies of the following; the broadly recognized species Pseudonaja textilis (known as the Eastern Brown Snake), P. guttata (Speckled Brown Snake) and P. affinis (Dugite), Oxyuranus scutellatus (Taipan) from Irian Jaya and western Papua as well as a second subspecies from north-west Australia and a hitherto unnamed subspecies of Panacedechis papuanus (Papuan Blacksnake) from the same general region. The newly named taxa are: Hulimkai gen. nov., Pseudonaja textilis cliveevatti subsp. nov., Pseudonaja textilis leswilliamsi subsp. nov., Pseudonaja textilis rollinsoni subsp. nov., Pseudonaja textilis jackyhoserae subsp. nov., Pseudonaja guttata -
Eastern Snake-Necked Turtle
Husbandry Manual for Eastern Snake-Necked Turtle Chelodina longicollis Reptilia: Chelidae Image Courtesy of Jacki Salkeld Author: Brendan Mark Host Date of Preparation: 04/06/06 Western Sydney Institute of TAFE - Richmond Course Name and Number: 1068 Certificate 3 - Captive Animals Lecturers: Graeme Phipps/Andrew Titmuss/ Jacki Salkeld CONTENTS 1. Introduction 4 2. Taxonomy 5 2.1 Nomenclature 5 2.2 Subspecies 5 2.3 Synonyms 5 2.4 Other Common Names 5 3. Natural History 6 3.1 Morphometrics 6 3.1.1 Mass and Basic Body Measurements 6 3.1.2 Sexual Dimorphism 6 3.1.3 Distinguishing Features 7 3.2 Distribution and Habitat 7 3.3 Conservation Status 8 3.4 Diet in the Wild 8 3.5 Longevity 8 3.5.1 In the Wild 8 3.5.2 In Captivity 8 3.5.3 Techniques Used to Determine Age in Adults 9 4. Housing Requirements 10 4.1 Exhibit/Enclosure Design 10 4.2 Holding Area Design 10 4.3 Spatial Requirements 11 4.4 Position of Enclosures 11 4.5 Weather Protection 11 4.6 Temperature Requirements 12 4.7 Substrate 12 4.8 Nestboxes and/or Bedding Material 12 4.9 Enclosure Furnishings 12 5. General Husbandry 13 5.1 Hygiene and Cleaning 13 5.2 Record Keeping 13 5.3 Methods of Identification 13 5.4 Routine Data Collection 13 6. Feeding Requirements 14 6.1 Captive Diet 14 6.2 Supplements 15 6.3 Presentation of Food 15 1 7. Handling and Transport 16 7.1 Timing of Capture and Handling 16 7.2 Capture and Restraint Techniques 16 7.3 Weighing and Examination 17 7.4 Release 17 7.5 Transport Requirements 18 7.5.1 Box Design 18 7.5.2 Furnishings 19 7.5.3 Water and Food 19 7.5.4 Animals Per Box 19 7.5.5 Timing of Transportation 19 7.5.6 Release from Box 19 8. -
Prevent Problems with Large Boas & Pythons
Client Education—Snake Safety Tips Prevent Problems with Large Boas & Pythons ! According to the Humane Society of the United States,17 deaths and many more injuries have been related to large constrictors since 1978. Given the tens of thousands of large constrictors sold, the incidence of fatalities and injuries is relatively low, however every incident—including the death of four babies in their cribs and three additional children— is particularly tragic since such cases are completely preventable. So called “giant snakes” regularly exceed 8 feet (2.4 m) in length, potentially making them difficult or even unsafe to handle. Large constrictor species include the green anaconda (Eunectes murinus), Indian python (Python molurus), African rock python (Python sebae), amethystine python (Morelia amethistina), reticulated python (Python reticulatus), and Burmese python (Python molurus bivittatus). Only the latter two species, reticulated and Burmese pythons, are regularly found in the pet trade, however these species can exceed 20 feet (6.1 m) and are not recommended for casual hobbyists. One real life tragedy: In 2011, a Florida mother and her boyfriend were found guilty of the murder of her 2-year old daughter, strangled by her 8-foot 6- “The baby’s dead. inch pet Burmese python. The child was found in her crib, with the Our stupid snake snake coiled tightly around her neck and numerous bite marks on got out in the middle her face. of the night and strangled the Evaluation of the albino python named “Gypsy” found her to be baby”.—Florida man underweight, and the snake's enclosure had only a quilt for a lid. -
Investigations Into the Presence of Nidoviruses in Pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2*
Blahak et al. Virology Journal (2020) 17:6 https://doi.org/10.1186/s12985-020-1279-5 RESEARCH Open Access Investigations into the presence of nidoviruses in pythons Silvia Blahak1, Maria Jenckel2,3, Dirk Höper2, Martin Beer2, Bernd Hoffmann2 and Kore Schlottau2* Abstract Background: Pneumonia and stomatitis represent severe and often fatal diseases in different captive snakes. Apart from bacterial infections, paramyxo-, adeno-, reo- and arenaviruses cause these diseases. In 2014, new viruses emerged as the cause of pneumonia in pythons. In a few publications, nidoviruses have been reported in association with pneumonia in ball pythons and a tiger python. The viruses were found using new sequencing methods from the organ tissue of dead animals. Methods: Severe pneumonia and stomatitis resulted in a high mortality rate in a captive breeding collection of green tree pythons. Unbiased deep sequencing lead to the detection of nidoviral sequences. A developed RT-qPCR was used to confirm the metagenome results and to determine the importance of this virus. A total of 1554 different boid snakes, including animals suffering from respiratory diseases as well as healthy controls, were screened for nidoviruses. Furthermore, in addition to two full-length sequences, partial sequences were generated from different snake species. Results: The assembled full-length snake nidovirus genomes share only an overall genome sequence identity of less than 66.9% to other published snake nidoviruses and new partial sequences vary between 99.89 and 79.4%. Highest viral loads were detected in lung samples. The snake nidovirus was not only present in diseased animals, but also in snakes showing no typical clinical signs. -
Carpet Python Morelia Spilota (Lacépède, 1804) Including Undisturbed Remnant Bushland Near Perth and the Darling Size Ranges, Yanchep National Park, and Garden Island
Carpet Python Morelia spilota (Lacépède, 1804) including undisturbed remnant bushland near Perth and the Darling Size Ranges, Yanchep National Park, and Garden Island. Populations also occur on St Francis Island (South Australia), and islands of the Averages 2.0 m total length, though individuals have been reported Archipelago of the Recherche (Western Australia). to 4.0 m in length. Morelia spilota variegata Weight Distributed across South Australia, Victoria, inland NSW, Morelia spilota imbricata Queensland, Northern Territory, and the Kimberley region of Western Australia. Males For further information regarding the distribution of this species Up to 1.1 kg please refer to www.naturemap.dec.wa.gov.au Females Up to 4.5 kg Habitat Subspecies Photo: Babs & Bert Wells/DEC Morelia spilota variegata Occurs in mesic (areas with moderate amounts of moisture) to semi- Three subspecies are currently recognised: arid habitats, from the Kimberley region to northern Victoria. • Morelia spilota imbricata (southern Western Australia and eastern South Australia) Morelia spilota imbricata • Morelia spilota spilota (eastern NSW and lowland New Guinea) This subspecies has been recorded in semi-arid coastal and inland habitats consisting of Banksia woodland, eucalypt woodlands, and • Morelia spilota variegata (remainder of range including northern grasslands. Western Australia) Behaviour Description In the summer months, the Carpet Python is active either at night, or Colour patterns vary across their geographic range. In Western at dawn and dusk. In cooler months it may be active during the Australia, the colour varies from pale to dark brown, with blackish daytime and occasionally has been seen to bask in the sun on cool blotches or variegations, which may form cross bands. -
Notes on a Captive Scrub Python Morel/A Amethistina Kinghorn
78 / Litteralura Serpentium, 1992, Vol. 12, No. 4 NOTES ON A CAPTIVE SCRUB PYTHON MOREL/A AMETHISTINA KINGHORN/ By: Raymond T. Haser, 41 Village Avenue, Doncaster, Victoria 3108, Australia. Contents: Introduction - Initial details of the snake - Further notes - Feeding - Head-body temperature differences - Swollen heart - References. * * * INTRODUCTION The author held an adult male Australian Scrub python Morelia amethistina kinghomi between 13/01/79 and 08/05/81 (Day/Month/Year), when it along with 14 other snakes was stolen from the author's facility (Cumming, 1981; Haser, 1989). For the period it was held by the author it was subjected to relatively detailed study. Like all reptiles held by the author the snake had relevant notes taken with regards to its feeding ( every item taken), sloughing, regular body measurements and all other activity deemed noteworthy. The system used for taking notes was essentially that documented by the author in 'Notes from NOAH' (Haser, 1984). A reference to the feeding habits of this snake, in particular its feeding on 'size 14 (1.4 kg) supermarket chickens' in the book 'Australian Reptiles and frogs' (Haser, 1989), seems to have drawn a number of comments of surprise and suspicion. Harry Ehmann when reviewing 'Australian Reptiles and Frogs' stated I roared with laughter wizen reading ofcaptive Scntb pythons diet... (Ehmann, 1990). It is because the keeping of the male Scrub python Morelia amethistina has attracted a disproportionate amount of questions that many of the notes taken in relation to this snake are reported here. A study of different temperatures between the head and body was also undertaken as a result of a peculiar pattern of behaviour exhibited by this snake. -
Diamond Python Morelia Spilota Spilota
Action Statement FloraFlora and and Fauna Fauna Guarantee Guarantee Act Act 1988 1988 No. No. ### 104 Diamond Python Morelia spilota spilota Description and Distribution The Diamond Python Morelia spilota spilota (Lacépède 1804) is a colourful and distinctive python distributed along the eastern coast of Australia from East Gippsland north to near Coffs Harbour in NSW. One of only two pythons occurring in Victoria (the other is the closely related Carpet Python Morelia spilota variegata), it has the most southerly distribution of all Australian pythons and, in East Gippsland, occurs at the highest latitudes of any python in the world (Slip & Shine 1988d). Average adult length is about 2m, with a maximum of 4m. Diamond Python Morelia spilota spilota Typical colouration above is a glossy olive-black, (photograph by Ian McCann) with cream or yellow spots on most scales, with some of these spots occurring as groups, sometimes in a diamond shape, giving a patterned effect. The lower body is cream or yellow, patterned with dark grey. The lips are cream, barred with black (Cogger 1996). Hatchlings and juveniles are mottled brown, and appear very similar to young Carpet Pythons, changing to adult colouration in the first few years of life (Shine 1991). The Diamond Python is restricted in Victoria to far East Gippsland (Coventry & Robertson 1991), with few confirmed records, most from within the area bounded by the Cann River, the Princes Highway and the coast. In NSW, the python occurs only east of the Great Dividing Range, but it is not entirely coastal, extending inland along some of the larger Distribution in Victoria river systems north of Sydney. -
Aspidites Melanocephalus
Husbandry Manual For Black Headed Python Aspidites melanocephalus (Reptilia: Boidae) Compiler: Chris Mann Date of Preparation: Western Sydney Institute of TAFE, Richmond Course Name and Number: Lecturer: Graeme Phipps/Andrew Titmuss/Jacki Salkeld TABLE OF CONTENTS 1 INTRODUCTION............................................................................................................................... 5 2 TAXONOMY ...................................................................................................................................... 6 2.1 NOMENCLATURE .......................................................................................................................... 6 2.2 SUBSPECIES .................................................................................................................................. 6 2.3 RECENT SYNONYMS ..................................................................................................................... 6 2.4 OTHER COMMON NAMES ............................................................................................................. 6 3 NATURAL HISTORY ....................................................................................................................... 7 3.1 MORPHOMETRICS ......................................................................................................................... 7 3.1.1 Mass And Basic Body Measurements ..................................................................................... 7 3.1.2 Sexual Dimorphism ................................................................................................................ -
Spatial Ecology of a Threatened Python (Morelia Spilota Imbricata) and the Effects of Anthropogenic Habitat Change
Austral Ecology (2005) 30, 261–274 Spatial ecology of a threatened python (Morelia spilota imbricata) and the effects of anthropogenic habitat change D. PEARSON,1 R. SHINE2* AND A. WILLIAMS1 1Department of Conservation and Land Management, Wanneroo, Western Australia, Australia and 2School of Biological Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia (Email: [email protected]) Abstract Large predators play important ecological roles, but often are sensitive to habitat changes and thus are early casualties of habitat perturbation. Pythons are among the largest predators in many Australian environments, and hence warrant conservation-orientated research. Carpet pythons (Morelia spilota imbricata) have declined across much of south-western Australia presumably because of habitat clearance and degradation. Information on habitat use, home range sizes and movements is needed to plan for the conservation of this important predator. We studied pythons at two study sites (Garden Island and Dryandra Woodland) with markedly different climates, habitat types and disturbance histories. We surgically implanted radio-transmitters in 91 pythons and tracked them for periods of 1 month to 4 years. Dryandra pythons remained inactive inside tree hollows during cooler months (May–September), whereas some (especially small) pythons on Garden Island continued to move and feed. Overall weekly displacements (mean = 100–150 m) were similar at the two study sites and among sex/ age classes, except that reproductive females were sedentary during summer while they were incubating eggs. Home ranges averaged 15–20 ha. Adult male pythons had larger home ranges than adult females at Dryandra, but not at Garden Island. Radio-tracked snakes at Dryandra exhibited high site fidelity, returning to previously occupied logs after long absences and reusing tree hollows for winter shelter. -
Inclusion Body Disease in Australian Snakes Jun 2013
Inclusion body disease in Australian snakes Fact sheet Introductory statement Inclusion body disease (IBD) is an important disease of snakes because of its 100% mortality rate and lack of definite knowledge regarding epidemiology, diagnosis, treatment and prevention. While IBD appears to be present in captive Australian snakes its diagnosis is still extremely problematic. Until recently diagnosis was purely histological, determined by the presence of inclusion bodies. However, inclusion bodies are not specific to IBD and are found in many viral infections. It seems entirely plausible that at least some of the snakes diagnosed with IBD were infected with a different virus. Recently arenavirus has been identified in snakes with IBD. A diagnostic test is now available in Australia. The effect of IBD on wild Australian snake populations is unknown as the IBD status of Australia’s snakes, captive and free living, is also unknown. Aetiology Previously it was thought that IBD may be caused by a virus of the family Retroviridae (Schumacher et al. 1994). Although retroviruses have been isolated from affected snakes it has not been shown definitely that they were the cause of the disease (Jacobson et al. 2001). More recently researchers have found arenaviruses in six out of eight snakes diagnosed with IBD in the USA and eight IBD positive snakes examined in The Netherlands. These findings led the authors to speculate that arenavirus may be the causative agent of IBD (Stenglein et al. 2012; Bodewes et al. 2013). Natural hosts IBD is mainly a disease of the family Boidae (boas and pythons) but cases have also been described in an eastern kingsnake (Lampropeltis getulus), and a collection of palm vipers (Bothriechis marchi) (Raymond et al.