The Friends of the Waite Arboretum Inc

Total Page:16

File Type:pdf, Size:1020Kb

The Friends of the Waite Arboretum Inc THE FRIENDS OF THE WAITE ARBORETUM INC. NEWSLETTER NO 71 THE FRIENDS OF THE WAITE ARBORETUM INC. NEWSLETTER NO. 71 Autumn 2012 Secretary Editor Mrs Norma Lee Mrs Jean Bird 8379 4237 8276 1439 SEVENTEENTH ANNUAL GENERAL MEETING The Vice-President, Beth Johnstone, opened the meetinG by welcoming all Friends present. She then called upon the Secretary, Norma Lee, to read the minutes of the sixteenth Annual General Meeting which were duly confirmed. PRESIDENT’S ANNUAL REPORT Since the President’s Annual Report was circulated with the notice of the AGM, it will not be repeated here. The Treasurer, Peter Nicholls, then presented his report. TREASURER’S ANNUAL REPORT 16th April 2012 Mr. Chairman, I present the audited Statement of Receipts and Payments for 2011, a copy of which was sent out with the Notice of the Annual General Meeting, to all current members. I trust you have all taken the opportunity to read it. In doinG so, I express my real sense of gratitude, and a very big thank you to all members and volunteers who have contributed Generously to the activities of The Friends of the Waite Arboretum Inc. during 2011. Everyone’s efforts have resulted in the generation of a surplus of $10,969.14 for 2011. I have orGanized the Annual Statement of Receipts and Payments into distinct groupings which reflect the activities of the members and volunteers and on the front paGe are summarized the receipts from these activities and the payments for the costs associated with them. On the second paGe the details of receipts and payments associated with each event are itemized. In contrast to the previous year, the Friends did not have any major events other than the TreeNet Symposium. Consequently our Receipts were much lower and also our overall costs, which amounted to $893.90, were lower. The TreeNet symposium was our most siGnificant effort this year and Beth Johnstone and all her assistants are to be thanked for the well organized handling of this event. THE FRIENDS OF THE WAITE ARBORETUM INC. NEWSLETTER NO. 71 2 We were deliGhted with the success that Les and Faye Loffler had during the TreeNet Symposium in selling their excellent wood carvings and their consequential support of the Friends. Sales of Pat HaGen jewellery and Beryl Martin Prints continue to be a valuable contributor to our efforts as well as the booked Groups who take tours of the Arboretum. Finally I thank all members who have remained loyal to The Friends for their contributions, which enable Dr Jennifer Gardner to continue to enhance the ambience of the Arboretum. A number of our members are also Garden volunteers and they are to be specially thanked for their continued work in the Gardens and the rehabilitation of the North West corner area of the Arboretum. Funds were committed during the year to enable purchase of a ride on mower unit and also to support the construction of a storage shed in that portion of the Arboretum. It is with mixed feelings that I announce my retirement as Treasurer as of this niGht as a result of serving my 10 years on the committee. In doing so, I am happy that there is a healthy cash balance available for the continued support of the activities of The Friends of the Waite Arboretum Inc over the next years. I wish my successor all the best. Mr. Chairman, I move the adoption of the Annual Statement of Receipts and Payments of the Friends of the Waite Arboretum for 2011. Peter B. Nicholls RED DOT NOTICE Dear valued member please note that if you have a RED DOT on the front of your latest newsletter, this is to alert you to the inclusion of a Reminder Notice of your overdue membership subscription and a Membership Renewal Form for 2012. Please send us your membership subscription as soon as possible, so that you will continue to receive your Newsletter, or advise us that you do not wish to renew your membership of the Friends of The Waite Arboretum. You may renew your membership by using EFTPOS. If you decide to do so, please use your name as the reference. Otherwise I am NOT able to identify you for recordinG your payment. Yours Peter Nicholls. Hon Treasurer FWA. The Vice-President then announced the following nominations for the new Committee: Beth Johnstone, Prof. Mark Tester, Norma Lee, Henry Krichauff, Eileen Harvey, Andrew Walters, Marilyn Gilbertson, Dr Jennifer Gardner (ex officio). As there were no further nominations those named were elected. This concluded the AGM and Beth then introduced the Guest Speaker, Dr Suzanne Miller, Director of the SA Museum Subsequent to the AGM, the new Committee met to elect the office Bearers – Henry Krichauff, (President), Beth Johnstone (Vice-President), Norma Lee (Secretary), Andrew Walters (Treasurer). Eileen Harvey was elected Editor with Mark Tester and Marilyn Gilbertson forminG the rest of the Committee. THE FRIENDS OF THE WAITE ARBORETUM INC. NEWSLETTER NO. 71 3 GUEST SPEAKER Our Guest speaker, Professor Suzanne Miller, Director of the SA Museum, was born in EdinburGh and studied Geology Honours at the University of St Andrews before completing her PhD in Marine Geology at Imperial College, London. She spent 12 years with the National Museum of Scotland, latterly as Keeper of Natural Sciences. She was Honorary Research Fellow in Earth Sciences with the University of Aberdeen and Lecturer in Earth Sciences with the Open University. She is a Fellow of rhe Geological Society of London, a Fellow of the Mineralogical Society, a Fellow of the Royal Society of South Australia, a Fellow of the Australian Institute of Mining and Metallurgy and a Member of the GeoloGical Society of Australia and was appointed Director of the South Australian Museum in 2007 Dr Miller, presented a most interesting illustrated talk on the subject of ‘Ancient Continents – A Dynamic Earth’. She began by explaining that the earth’s crust is a relatively thin layer on top of the very much thicker non-riGid mantle which surrounds the core. The crust is broken into a number of riGid plates which move aGainst each other in different directions and at different speeds (from 2 to 10cm per year). Molten material penetrates the crust at the plate boundaries. The nature of the rock formed varies accordinG to the type of movement (spreading, sliding or converGing) and whether the plate boundaries are beneath the ocean or on land. UsinG this and other information, earth scientists have determined how the plates have separated and joined and how they have miGrated over the surface of the earth from earliest times until the present. In Australia you can see rocks from 4,400 million years ago to the present and fossils from the earliest time when life appeared on earth. Dr Miller said that this was one of the reasons she was keen to come to the SA Museum. The fossil record in Australia stretches from the sinGle-celled fossil stromatolites of about 3,500 million ago throuGh the multi-celled animals of the Ediacaran period, the explosion of multi- celled marine animals in the Cambrian period, further diversification of marine creatures in the Ordovician period and then to the development of vascular plants on the fringes of continents in the Silurian period about 440 million years aGo. The type specimens of Baragwanathia longifolia, one of the earliest vascular plants, were found in Victoria. The first trees appeared in the Devonian period. Then in the Carboniferous period trees beGan to develop strong root systems that allowed them to grow larger and occupy drier land. The Giant club-mosses were Giving way to seed ferns. The fossils of a true fern, Zeilleria, look just like ferns you can see today. As the climate became drier in the Permian (299-251 million years aGo), plants such as conifers, cycads and Ginkgos evolved. Fossils of Glossopteris, a seed fern, have been found in India, South America, Australia, Africa, Madagascar and Antarctica, providing evidence that these continents were once amalGamated into a single supercontinent - Gondwana. The Triassic was a period of conifer forests with a fern understorey. In the Jurassic the climate was warmer and wetter and the land was covered with forests of tropical conifers, podocarps and cycads. Fossil evidence suGGests that Agathis jurassica was widespread. Coincidentally the Wollemi pines, Wollemia nobilis, whose foliage is very similar, were found only 100km from an Agathis jurassica location. The flowerinG plants evolved and spread in the Cretaceous period. Tropical and temperate forests covered larGe areas of Australia in the Tertiary period. In the Quaternary period (2.6 million years ago to the present), the climate was warmer and drier and hard-leaved plants such as eucalypts, spinifex, banksias and wattles were common and the landscape beGan to chanGe to what we know today. Dr Miller finished her presentation with a series of slides which showed the amazing journey of our wandering continents as they moved toGether then split apart and Australia moved from one side of the Globe to the other, from the equator almost to the south pole and back aGain. At the conclusion there were numerous questions from the floor until eventually Beth called a halt, thanked Dr Miller for a very entertaining and enliGhtening talk and presented her with a wooden tree THE FRIENDS OF THE WAITE ARBORETUM INC. NEWSLETTER NO. 71 4 sculpture made by Les Loffler usinG a hand scroll saw. The timber is azarole Crataegus azarolus from the Waite Arboretum. Les makes his exquisite silhouettes to match the species of timber he is carving. Eileen Harvey IN THE ARBORETUM FROM THE DIRECTOR Andrew Walters has settled in as Arboretum Grounds person and has been kept busy with summer watering of new plantings, weed control, pruninG, installing new donated seats and assisting the Tuesday morninG volunteers in the Urrbrae House Gardens.
Recommended publications
  • Plant Mobility in the Mesozoic Disseminule Dispersal Strategies Of
    Palaeogeography, Palaeoclimatology, Palaeoecology 515 (2019) 47–69 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants T ⁎ Stephen McLoughlina, , Christian Potta,b a Palaeobiology Department, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden b LWL - Museum für Naturkunde, Westfälisches Landesmuseum mit Planetarium, Sentruper Straße 285, D-48161 Münster, Germany ARTICLE INFO ABSTRACT Keywords: Four upper Middle Jurassic to Lower Cretaceous lacustrine Lagerstätten in China and Australia (the Daohugou, Seed dispersal Talbragar, Jehol, and Koonwarra biotas) offer glimpses into the representation of plant disseminule strategies Zoochory during that phase of Earth history in which flowering plants, birds, mammals, and modern insect faunas began to Anemochory diversify. No seed or foliage species is shared between the Northern and Southern Hemisphere fossil sites and Hydrochory only a few species are shared between the Jurassic and Cretaceous assemblages in the respective regions. Free- Angiosperms sporing plants, including a broad range of bryophytes, are major components of the studied assemblages and Conifers attest to similar moist growth habitats adjacent to all four preservational sites. Both simple unadorned seeds and winged seeds constitute significant proportions of the disseminule diversity in each assemblage. Anemochory, evidenced by the development of seed wings or a pappus, remained a key seed dispersal strategy through the studied interval. Despite the rise of feathered birds and fur-covered mammals, evidence for epizoochory is minimal in the studied assemblages. Those Early Cretaceous seeds or detached reproductive structures bearing spines were probably adapted for anchoring to aquatic debris or to soft lacustrine substrates.
    [Show full text]
  • Late Jurassic) Near Gulgong, New South Wales
    DOI: 10.18195/issn.0312-3162.23(1).2006.043-076 Records of the Western Australian Museum 23: 43-76 (2006). The leptolepid fish Cavenderichthys talbragarensis (Woodward, 1895) from the Talbragar Fish Bed (Late Jurassic) near Gulgong, New South Wales 1. B. Bean Dept of Earth and Marine Sciences, The Australian National University, Canberra, ACT 0200, Australia e-mail: [email protected] Abstract - "Leptolepis" talbragarensis Woodward, 1895, is the most common fish species in the Talbragar Fish Bed near Gulgong, New South Wales. The genus Cavenderichthys Arratia, 1997, has this species as its type. The three species originally proposed by Woodward (1895) for "Leptolepis" are a single species. A detailed comparison of Cavenderichthys talbragarensis with members of the genus Leptolepis, and also with the Late Jurassic forms Tharsis dubius and Leptolepides sprattiformis, indicates that Cavenderichthys talbragarensis is most closely related to Late Jurassic members of the Family Leptolepididae. Analysis of zircons for geochronology showed that the sediment just below the richest fish layer has a youngest component of 151.55 ± 4.27 Ma, corresponding to the Kimmeridgian Stage of the Late Jurassic. Thin sections of the upper prolific fish layer show preservation in tuffaceous sediments, indicating that the fish population was killed by ash falls of felsic tuff that filled the pond they inhabited. INTRODUCTION partly on his own observations, but also on the Fossil fishes were first discovered at Talbragar work of Cavender (1970) who compared about 30 km northeast of Gulgong by Arthur Lowe coregonines and other salmonids with some of the of Wilbertree, NSW in 1889 (Woodward 1895).
    [Show full text]
  • Wollemia Nobilis Wollemi Pine
    MULCH Much Useful Learning Concerning Horticulture VOL.22 No.1, January, 2016 Castlemaine & District Garden Club Inc. Wollemia nobilis Wollemi pine Castlemaine & District Garden Club P.O. Box 758, Castlemaine 3450 [email protected] http://castlemainegardenclub.wordpress.com COMMITTEE Wollemia nobilis President Judy Uren 5470 6462 Vice-president Judy Eastwood 0417 149 251 Secretary Sally Leversha 0437 683 469 [email protected] Treasurer Alan Isaacs 5473 3143 Committee Members Marion Cooke Jan Gower Heather Spicer Sue Spacey Wollemi Pine: Kew Gardens Newsletter Editor Tom Comerford 5470 6230 Wollemia nobilis is a conifer in the [email protected] plant family Araucariaceae. The Webmaster discovery of the Wollemi Pine in Judy Hopley 5472 1156 1994 created great excitement in the [email protected] botanical community due to its resemblance to conifer fossils like Dillwynites and Agathis jurassica. Wollemi Pines are restricted to approximately 40 adult and 200 juvenile Wollemi Pines growing in the Wollemi National Park of New South Wales, 200 km north-west of Sydney. The rare nature of the I really look forward to Monday Wollemi Pine has seen it listed as morning—it gets me back to work endangered. The Wollemi Pine is a tree, which about striking the Wollemi Pine is can grow up to 40 m in the wild with that cuttings taken from the top of a trunk diameter reaching up to one the tree will produce a vertical metre. The bark of the tree is bubbly growing plant, whilst cuttings taken in appearance, chocolate brown from the bottom of the tree will colour in colour.
    [Show full text]
  • Revision of the Talbragar Fish Bed Flor (Jurassic)
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS White, Mary E., 1981. Revision of the Talbragar Fish Bed Flora (Jurassic) of New South Wales. Records of the Australian Museum 33(15): 695–721. [31 July 1981]. doi:10.3853/j.0067-1975.33.1981.269 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia REVISION OF THE TALBRAGAR FISH BED FLORA (jURASSiC) OF NEW SOUTH WALES MARY E. WH ITE The Australian Museum, Sydney. SUMMARY The three well known form-species of the Talbragar Fish Bed Flora-Podozamites lanceolatus, Elatocladus planus and Taeniopteris spa tu lata - are redescribed as Agathis jurassica sp. nov., Rissikia talbragarensis sp. novo and Pentoxylon australica sp. novo respectively. The minor components of the assemblage are described and illustrated, and in some cases, reclassified. Additions are made to the list of plants recorded from the horizon. INTRODUCTION The Talbragar Fish Beds are characterised by their beautifully preserved fish and plant remains which occur in great profusion throughout the shale lens which comprises the Beds. The ochre-coloured shale is ferruginous, with impressions of plants and fish, white in colour, standing out dramatically. The weathering of the outer layers of blocks of the shale has resulted in contrasting bands of iron-rich stain framing many of the specimens and enhancing their appearance. Specimens are much prized by collectors. The fossil locality is the valley ofthe Talbragar River, about twenty miles due North of Home Rule Mine in the Cassilis District, "on the southern boundary of Boyce's selection" (Anderson 1889).
    [Show full text]
  • Vanuata Vegetation
    Plant Formations in the Vanuatu BioProvince Peter Martin Rhind Vanuatu Mixed Lowland Rain Forest Up to about 600 m altitude lowland rain forest is the natural vegetation on the southeastern, windward sides of all Vanuatu islands. Important trees are Antiaris toxicaria, Castanospermum australe, Intsia bijuga and Kleinhovia hospitat. Endemic species include Alangium vitense (Cornaceae). On old volcanic ash, rich in plant nutrients, trees can reach more than 30 m in height with large crowns. Typical sub canopy trees include Diospyros acris, Garcinia pancheri and Syzygium species, while endemic small trees include various Veitchia palms, Calophyllum inophyllum (Clusiaceae) and Trilocularia pedicellata (Balanopsidaceae). These forests are best developed on the northern islands of Malakula and Espiritu Santo, and are structurally similar to forests on the Solomon Islands. However, many are in various stages of recovery following disturbance from hurricanes. Vines and epiphytes are numerous and certain areas are covered with lianas. The undergrowth includes various shrubs, and typically there is an herbaceous ground layer comprising genera such as Geophila and Homalomena and ferns like Asplenium, Microsorium and Pteris, but tree ferns are usually absent. Of endemic species, however, many seem to be specific to certain islands or island groups. On Aneityum, for example, there are endemic trees such as Boehmeria anisoneura (Urticaceae), Canarium aneityensis (Burseraceae), Couthovia neo-ebudica (Loganiaceae), Cryptocarya wilsonii (Lauraceae), Cupaniopsis
    [Show full text]
  • A Living Fossil and Evolutionary Enigma Andrew A
    “VITAL ARTICLES ON SCIENCE/CREATION” April 2006 Impact #394 Wollemia nobilis: A Living Fossil and Evolutionary Enigma Andrew A. Snelling, Ph.D.* When discovered in August 1994, the Wollemi pine was hailed as the “botanical find of the century,” like “finding a small dinosaur still alive on earth.” It was found by New South Wales National Parks and Wildlife Service ranger David Noble during a weekend bushwalk into a remote 500–600 meter deep narrow sandstone canyon in the rugged and densely forested Wollemi National Park only 200 kilometers (125 miles) northwest of downtown Sydney, Australia (figure 1). Thus this strange tree from the “ancient” past, a new genus, was formally named Wollemia nobilis (figure 2). Features of the Trees In the first grove discovered there were only 40 trees in a 5,000 square meter area—23 adults, 16 juveniles, and the largest, a fallen tree 40 meters long with a girth of three meters. Botanists were at first puzzled by the strange features of this pine, a unique member of the *UHDW “monkey puzzle tree” family $UWHVLDQ %DVLQ . Araucariaceae. Conifers have dark :ROOHPL 3LQHV green foliage, but the Wollemi pine OLYLQJ has bright lime green fern-like 7DOEUDJDU leaves on younger foliage varying )LVK to a yellow-olive green on mature %HG NP IRVVLOV PLOHV trees. The mature, dense, waxy foliage is arranged in rows of four. %OXH 0RXQWDLQV 6\GQH\ GRZQWRZQ The tree trunks have a distinct 3ODWHDX GLVVHFWHG 6\GQH\%DVLQ knobby, spongy, cork-like bark that makes them look like they are coated with bubbly brown $XVWUDOLD *UHDW $UWHVLDQ chocolate.
    [Show full text]
  • Underground Signals Carried Through Common Mycelial Networks Warn Neighbouring Plants of Aphid Attack
    Ecology Letters, (2013) doi: 10.1111/ele.12115 LETTER Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack Abstract Zdenka Babikova,1,2,3 Lucy The roots of most land plants are colonised by mycorrhizal fungi that provide mineral nutrients in Gilbert,2 Toby J. A. Bruce,3 Michael exchange for carbon. Here, we show that mycorrhizal mycelia can also act as a conduit for signalling Birkett,3 John C. Caulfield,3 between plants, acting as an early warning system for herbivore attack. Insect herbivory causes systemic Christine Woodcock,3 John A. changes in the production of plant volatiles, particularly methyl salicylate, making bean plants, Vicia faba, Pickett3 and David Johnson1* repellent to aphids but attractive to aphid enemies such as parasitoids. We demonstrate that these effects can also occur in aphid-free plants but only when they are connected to aphid-infested plants via a com- mon mycorrhizal mycelial network. This underground messaging system allows neighbouring plants to invoke herbivore defences before attack. Our findings demonstrate that common mycorrhizal mycelial networks can determine the outcome of multitrophic interactions by communicating information on herbi- vore attack between plants, thereby influencing the behaviour of both herbivores and their natural enemies. Keywords Arbuscular mycorrhizal fungi, broad bean (Vicia faba), common mycelial networks, induced defence, multi- trophic interactions, parasitoid wasp (Aphidius ervi), pea aphid (Acyrthosiphon pisum), plant volatiles, plant-to- plant communication. Ecology Letters (2013) gene expression in healthy tomato plants (Lycopersicon esculentum Mill) INTRODUCTION connected to plants infected with leaf early blight (Alternaria solani). Arbuscular mycorrhizal (AM) fungi form symbioses with many her- This finding suggests that interplant transfer of pathogenic fungal baceous plants, including important crop species, have a near global disease resistance signals via these networks could be occurring.
    [Show full text]
  • Section II: Periodic Report on the State of Conservation of Fraser Island
    --------------------------------------------------------------------------------------------------------------------------------------- AUSTRALIAN NATIONAL PERIODIC REPORT SECTION II Report on the State of Conservation of Fraser Island --------------------------------------------------------------------------------------------------------------------------------------- Periodic Report 2002 - Section II Fraser Island 1 --------------------------------------------------------------------------------------------------------------------------------------- I.1. INTRODUCTION a. State Party Australia. b. Name of World Heritage property Fraser Island. c. Geographical coordinates to the nearest second Between latitudes in the Southern Hemisphere 24 degrees 41 minutes 39 seconds South and 25 degrees 48 minutes 12 seconds South, and longitudes 152 degrees 55 minutes 54 seconds East and 153 degrees 21 minutes 42 seconds East. These coordinates are based on Fraser Island plus a 500m buffer seaward of the high water mark. The Fraser Island World Heritage Area covers approximately 184,000 hectares in total and also includes a number of small islands off its west coast including Stewart, Dream and small un-named islands between Dream Island and the mouth of Yankee Jack Creek and including Boonlye Point. The boundary on these smaller islands also includes 500 metres seaward of the high water mark on these smaller islands. d. Date of inscription on the World Heritage List Inscribed at the Sixteenth Session at Santa Fe, USA, 7–14 December 1992. e. Organisation(s)
    [Show full text]
  • The Egg and the Nest: Obtaining Information About the Reproductive Biology of Apteryx Spp
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Egg and the Nest: Obtaining information about the reproductive biology of Apteryx spp. (Family: Apterygidae), a cryptic avian taxon, through eggshells A Thesis is partial fulfilment of the requirement for the degree of Doctor of Philosophy in Ecology At Massey University, Palmerston North, New Zealand David Vieco Gálvez 2019 Cover painting: The Haywain Triptych by Hieronymus Bosch. Circa 1516 Museo del Prado, Madrid. Back painting: The Concert in the Egg by a follower of Bosch. Circa 1561. Palais des Beaux-Arts, Lille. Engraving from Stultitia Laus by Hans Holbein, 1511 Abstract The amniotic eggshell is a bioceramic that can endure the passing of time without major alteration to its physical structure. Not surprisingly eggshells have been found in numerous paleontological excavations around the world and have been used to identify the presence of major taxa and furthermore, to propose hypotheses on how extinct amniotes lived and nested. In the past decades the information that has been obtained solely through eggshells, ranges from inferences of a specie’s habitat, to diet, and nesting behaviours. This information can be obtained using techniques such as microscopy, stable isotopes, ancient DNA, allometry, physics and biochemistry. The possibility of making inferences about an organism’s biology using its eggshells make them an invaluable asset in biological research, as we can obtain information about species that are difficult to observe otherwise, that are endangered, or that are not even alive anymore.
    [Show full text]
  • Chapter 3: the Age of the Earth, the Fossil Record and Noah's Flood
    Chapter 3: The age of the earth, the fossil record and Noah’s flood. A week later, Xiao Wang and Xiao Li returned to Professor Ho‘s office, arguing heatedly as they entered. ―Good afternoon boys!‖ Professor Ho greeted them happily, standing up behind his desk, which was strewn with books as always. ―What is it you‘re discussing?‖ Xiao Wang nodded in greeting and launched in: ―Professor Ho, I‘ve been researching what you‘ve discussed with us. I have to admit, I‘m something of an ‗intelligent design‘ theorist now. But I still have a big problem with your Bible cr- eationism. Scientists have found fossils in rock layers which show evolution happened for millions of years—‖ Xiao Li cut in: ―I already told him, Professor Ho, that that just means God used evolution! Evolution is God‘s tool- box.‖ Xiao Wang shook his head. ―That‘s ridiculous! I‘ve read the book of Genesis and it doesn‘t look in the least bit like evolution. The fossil record of evolution is a long, bloody process of struggle, death and change. If there was evolution, you don‘t need a God as a Creator!‖ ―You‘d still need a Creator!‖ countered Xiao Li. ―Life didn‘t start by itself, and animals wouldn‘t change into new forms by themselves by accident. Professor Ho proved that to us already. You still need God to drive evolution for- ward.‖ ―If there‘s a ‗god,‘ behind evolution, then he‘s sloppy and cruel. The fossil record looks nothing like the story of the Garden of Eden!‖ Xiao Li forced a look of patient wisdom onto his face.
    [Show full text]
  • Evolution of Australian Biota Study Day
    Evolution of Australian Biota Study Day 2013 The Australian Botanic Garden, Mount Annan session Evolution and adaptation of Australian natives Student Activities Illustration: Southern conifer forests, Royal Botanic Gardens & Domain Trust. Evolution of Australian Biota List of plants Wollemi Pine Wollemi nobilis Podocarp (Mt Spurgeon Black Pine) Prumnopitys ladei Kauri Pine Agathis robusta Bunya Pine Araucaria bidwillii Hoop pine Araucaria cunninghamii Cycads Cycas revolta, Zamia integrifolia Ginkgo Ginkgo biloba Tree fern Dicksonia antarctica Skeleton Forked-Fern Psilotum nudum Ferns, Mosses, Liverworts, Algae various Wait-a-while Palm Calamus muelleri Tree waratah Alloxylon flammeum Rose silky oak Darlingia ferruginea Sandpaper Fig Ficus coronata Macadamia Macadamia integrifolia Magnolia Magnolia grandiflora Ribbonwood Idiospermum australiense Bolwarra Eupomatia laurina Grevillea Grevillea spp. Coastal Banksia Banksia integrifolia Kangaroo grass Themeda australis Community Education Unit Living fossils – Australian native plants past and present This exercise requires you to measure and record your observations of the following parts of Australian conifers to compare the extinct Agathis jurassica with its modern relatives. Fill in the table using the words below. plant part Ancient Kauri Pine Modern Kauri Pine Wollemi Pine Agathis jurassica Agathis robusta Wollemia nobilis leaves cone other features of interest habitat: distribution: long and narrow not evident 40 m tall sedimentary rock Gondwana fossil fish “chocolate crackle” bark male and female widespread warm – cool temperate rainforest shallow lake parallel veins warm and wet 100 trees smooth bark protected environment coppicing Community Education Unit Landscapes of Gondwana Jurassic Period 165mya • Great southern continent of Gondwana formed as it separates from the north • Climate warm and wet • Even climate across Gondwana with no dramatic seasonal changes • Vegetation lush.
    [Show full text]
  • Living Fossil’
    In 1941, Chinese botanists collected specimens of the Dawn Redwood, Metasequoia glyptostroboides, growing in the mountains of Sichuan and Hubei Provinces of China. This species had previously only been known from the fossil record, so you can imagine the excitement at the discovery of this ‘living fossil’. However, in Australia in 1994, David Noble, a field officer from the NSW National Parks and Wildlife Service, and two companions, on a lonely trek through the wilderness of steep canyons of Wollemi National Park, north-west of Sydney, discovered yet another ‘living fossil’, the tree we now know as the Wollemi Pine, Wollemia nobilis (Wollemia after Wollemi National Park, nobilis after David Noble). Noble’s discovery was not initially met with enthusiasm. In fact, it was dismissed as a garden escape – a conifer from China and Myanmar, Cephalotaxus fortunei – common in parks and gardens of the upper Blue Cephalotaxus fortunei Mountains. However, two determined Wollemia nobilis botanists, Wyn Jones and Jan Allen, were sure that this was a new – and unique – species. They set about a careful, detailed review and after months of work even the sceptics agreed that this was not only an extraordinary discovery of a new genus and species Wollemia nobilis, but the discovery of yet another living fossil. The Wollemi Pine bore a remarkable resemblance to fossils of Agathis jurassica (Araucariaceae) which had long been known from the Jurassic Talbragar Fish Beds¸ north-east of Gulgong. Moreover, here at Macquarie University, the fossils have been used for decades for teaching palaeontology and plant evolution. Now, before we get carried away, we should reconsider the term living fossil and remember that the Wollemi Pine is not a fossil, rather a modern day descendent of those ancient trees.
    [Show full text]