Hdl 80041.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Hdl 80041.Pdf PUBLISHED VERSION Macphail, Michael Keith; Carpenter, Raymond John; Iglesias, Ari; Wilf, Peter First evidence for Wollemi Pine-type pollen (Dilwynites: Araucariaceae) in South America, PLoS One, 2013; 8(7):e69281. © 2013 Macphail et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. PERMISSIONS http://www.plosone.org/static/license Open-Access License No Permission Required PLOS applies the Creative Commons Attribution License (CCAL) to all works we publish (read the human-readable summary or the full license legal code). Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in PLOS journals, so long as the original authors and source are cited. No permission is required from the authors or the publishers. In most cases, appropriate attribution can be provided by simply citing the original article (e.g., Kaltenbach LS et al. (2007) Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration. PLOS Genet 3(5): e82. doi:10.1371/journal.pgen.0030082). If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published. This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. Learn more about open access. For queries about the license, please contact us. 1st October 2013 http://hdl.handle.net/2440/80041 First Evidence for Wollemi Pine-type Pollen (Dilwynites: Araucariaceae) in South America Mike Macphail1*, Raymond J. Carpenter2, Ari Iglesias3,4, Peter Wilf5 1 Department of Archaeology and Natural History, College of Asia and the Pacific, Australian National University, Canberra, Australian Capital Territory, Australia, 2 School of Earth and Environmental Sciences, University of Adelaide, South Australia, Australia, 3 Divisio´n Palaeobota´nica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, La Plata, Argentina, 4 Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Argentina, 5 Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, United States of America Abstract We report the first fossil pollen from South America of the lineage that includes the recently discovered, extremely rare Australian Wollemi Pine, Wollemia nobilis (Araucariaceae). The grains are from the late Paleocene to early middle Eocene Ligorio Ma´rquez Formation of Santa Cruz, Patagonia, Argentina, and are assigned to Dilwynites, the fossil pollen type that closely resembles the pollen of modern Wollemia and some species of its Australasian sister genus, Agathis. Dilwynites was formerly known only from Australia, New Zealand, and East Antarctica. The Patagonian Dilwynites occurs with several taxa of Podocarpaceae and a diverse range of cryptogams and angiosperms, but not Nothofagus. The fossils greatly extend the known geographic range of Dilwynites and provide important new evidence for the Antarctic region as an early Paleogene portal for biotic interchange between Australasia and South America. Citation: Macphail M, Carpenter RJ, Iglesias A, Wilf P (2013) First Evidence for Wollemi Pine-type Pollen (Dilwynites: Araucariaceae) in South America. PLoS ONE 8(7): e69281. doi:10.1371/journal.pone.0069281 Editor: Lee A. Newsom, The Pennsylvania State University, United States of America Received March 13, 2013; Accepted June 7, 2013; Published July 19, 2013 Copyright: ß 2013 Macphail et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: Funding provided by NSF DEB-0919071 to PW and AI. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction the morphospecies that most closely resembles modern Wollemia pollen, can be traced back as far as the Turonian Age (89.8 to The Southern Hemisphere monkey-puzzle tree family, Arau- 93.9 Ma) of the Late Cretaceous [11–13]. So far, Dilwynites has cariaceae, was long believed to comprise two living genera: been identified in Paleogene to Neogene deposits of western, Araucaria Juss., with about 19 species endemic to the southwest central, and northern Australia (references in [14]), in Cretaceous Pacific and South America, and Agathis Salisb., with about 20 to Neogene deposits of New Zealand [15], and in late Eocene species distributed from Sumatra to New Zealand but absent in deposits of East Antarctica [16]. However, apart from a possible South America. Remarkably, a third araucarian genus was record from the Paleogene of Seymour Island [17], no Dilwynites discovered in 1994 in New South Wales, Australia, whose sole pollen has previously been recognized from West Gondwana. species is Wollemia nobilis W.G. Jones, K.D. Hill & J.M. Allen, Since 2000, the first author has also recognized that at least one common name Wollemi Pine [1]. species of Agathis produces pollen that is morphologically consistent With fewer than 40 adult specimens known to survive in the with Dilwynites, and thus the nearest extant relatives of the plants wild, W. nobilis is one of the world’s rarest trees. Adding to the that produced Dilwynites pollen are best regarded as both Wollemia spectacular nature of the discovery was the location of the stands, and Agathis (e.g., [14]). This observation is consistent with the in a remote gorge within 150 km of Sydney, Australia’s largest results of many recent molecular studies indicating that Wollemia city; the large stature of the trees (up to 40 m tall); and the and Agathis are sister taxa [18–23], along with several character- apparent similarity of the foliage to that of the Jurassic species istics of the seed cones of the two genera that may be ‘‘Agathis’’ jurassica M.E. White [2] and the Cretaceous to early Cenozoic genus Araucarioides [3–6]. So far, none of the similar synapomorphic, especially the condition of the seeds being winged macrofossils has been convincingly demonstrated to belong to and nearly free from the fused bract and scale [24]. By contrast, in Wollemia [6,7], and indeed ‘‘A.’’ jurassica differs from foliage of Araucaria, the seeds are embedded in the bract/scale complex. Wollemia in details of venation, leaf arrangement and leaf shape We here present microfossil evidence that araucarians produc- [8]. However, the presumed close relationship quickly led to W. ing Dilwynites pollen were growing in southern Patagonia during nobilis being given the status of a ‘‘living fossil from the age of the late Paleocene to early middle Eocene. This discovery greatly dinosaurs’’ in the popular press (e.g. [9]). augments evidence for the past range of Wollemia and/or Agathis In contrast, once pollen was made available, it was quickly conifers that produce this pollen type and adds to the growing recognized that the Wollemia clade had a well-established fossil paleobotanical evidence for extensive trans-Antarctic interchange history provided by the morphogenus Dilwynites W.K. Harris [10], between Patagonia and Australia during the globally warm early comprising D. granulatus W.K. Harris and D. tuberculatus W.K. Paleogene. Harris [6,11,12]. For example, in southern Australia, D. granulatus, PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e69281 South American Dilwynites Figure 1. Map of study area. The new fossil plant locality occurs along the Rı´o Zeballos (arrow, star) in Santa Cruz Province, Argentina. Also shown is the previously reported type locality of the Ligorio Ma´rquez Formation [26], the Ligorio Ma´rquez coal mine in XI Regio´n, Chile. doi:10.1371/journal.pone.0069281.g001 Geological Setting and Age Control Ligorio Ma´rquez Basin) that subsequently was uplifted by compressional Andean tectonic activity during and since the early Ethics Statement Miocene [28,29]. The material studied here was derived from a All necessary permits were obtained for the described study, ,0.5 m thick carbonaceous shale bed containing abundant fossil which complied with all relevant regulations. Permits were issued leaves (under separate study), from a probable coastal swamp. by the Secretarı´a de Estado de Cultura de la Provincia de Santa The local exposure of the Ligorio Ma´rquez Formation lies Cruz, Argentina. unconformably above the Cretaceous Rı´o Tarde Formation and is The Dilwynites specimens reported here came from an isolated, itself overlain unconformably by marine rocks of the Centinela newly recognized, streamcut outcrop of the Ligorio Ma´rquez Formation [30–32]. Stratigraphic correlation of the fossil locality is Formation in Santa Cruz Province, Patagonia, Argentina, located extremely difficult due to limited outcrop area and local cover. All along the Rı´o Zeballos and 36 km south-southwest of the town of radioisotopic ages listed below are as originally reported and Los Antiguos (Fig. 1). Precise locality data are available on request would need recalibration with new constants and reanalyses with from AI, PW, or Museo Padre Jesu´s Molina, Rı´o Gallegos, Santa updated methods for any detailed analysis. Cruz, Argentina (MPM), where material is stored. The Ligorio 40K/39Ar dates derived from ash beds at the top of the Rı´o Ma´rquez Formation, previously studied only on the Chilean side Tarde Formation at Lago Posadas (100 km south of our study of the nearby border [25–27], comprises a sequence of coastal area) were 97.163.8 and 99.165.6 Ma [33].
Recommended publications
  • Plant Mobility in the Mesozoic Disseminule Dispersal Strategies Of
    Palaeogeography, Palaeoclimatology, Palaeoecology 515 (2019) 47–69 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Plant mobility in the Mesozoic: Disseminule dispersal strategies of Chinese and Australian Middle Jurassic to Early Cretaceous plants T ⁎ Stephen McLoughlina, , Christian Potta,b a Palaeobiology Department, Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden b LWL - Museum für Naturkunde, Westfälisches Landesmuseum mit Planetarium, Sentruper Straße 285, D-48161 Münster, Germany ARTICLE INFO ABSTRACT Keywords: Four upper Middle Jurassic to Lower Cretaceous lacustrine Lagerstätten in China and Australia (the Daohugou, Seed dispersal Talbragar, Jehol, and Koonwarra biotas) offer glimpses into the representation of plant disseminule strategies Zoochory during that phase of Earth history in which flowering plants, birds, mammals, and modern insect faunas began to Anemochory diversify. No seed or foliage species is shared between the Northern and Southern Hemisphere fossil sites and Hydrochory only a few species are shared between the Jurassic and Cretaceous assemblages in the respective regions. Free- Angiosperms sporing plants, including a broad range of bryophytes, are major components of the studied assemblages and Conifers attest to similar moist growth habitats adjacent to all four preservational sites. Both simple unadorned seeds and winged seeds constitute significant proportions of the disseminule diversity in each assemblage. Anemochory, evidenced by the development of seed wings or a pappus, remained a key seed dispersal strategy through the studied interval. Despite the rise of feathered birds and fur-covered mammals, evidence for epizoochory is minimal in the studied assemblages. Those Early Cretaceous seeds or detached reproductive structures bearing spines were probably adapted for anchoring to aquatic debris or to soft lacustrine substrates.
    [Show full text]
  • Fossil History of Curculionoidea (Coleoptera) from the Paleogene
    geosciences Review Fossil History of Curculionoidea (Coleoptera) from the Paleogene Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Ulitsa Frunze, 11, 630091 Novosibirsk, Novosibirsk Oblast, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia Received: 23 June 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Currently, some 564 species of Curculionoidea from nine families (Nemonychidae—4, Anthribidae—33, Ithyceridae—3, Belidae—9, Rhynchitidae—41, Attelabidae—3, Brentidae—47, Curculionidae—384, Platypodidae—2, Scolytidae—37) are known from the Paleogene. Twenty-seven species are found in the Paleocene, 442 in the Eocene and 94 in the Oligocene. The greatest diversity of Curculionoidea is described from the Eocene of Europe and North America. The richest faunas are known from Eocene localities, Florissant (177 species), Baltic amber (124 species) and Green River formation (75 species). The family Curculionidae dominates in all Paleogene localities. Weevil species associated with herbaceous vegetation are present in most localities since the middle Paleocene. A list of Curculionoidea species and their distribution by location is presented. Keywords: Coleoptera; Curculionoidea; fossil weevil; faunal structure; Paleocene; Eocene; Oligocene 1. Introduction Research into the biodiversity of the past is very important for understanding the development of life on our planet. Insects are one of the Main components of both extinct and recent ecosystems. Coleoptera occupied a special place in the terrestrial animal biotas of the Mesozoic and Cenozoics, as they are characterized by not only great diversity but also by their ecological specialization.
    [Show full text]
  • Baez NHM 1997.Pdf (3.622Mb)
    HERP QL 668 B33 l':iif;,O0i.U'.Z06l("'^ ocxentxpc Papers Natural History Museum The University of Kansas 29 October 1997 Number 4:1^1 Redescription of the Paleogene Shelania pascuali from Patagonia and Its Bearing on the Relationships of Fossil and Recent Pipoid Frogs >. By o O Ana Maria BAez^ and Linda Trueb- o ^Departamento de Geologia, FacuUad de Ciencias Exactas, Universidad de 0) w >. > t- Buenos Aires, Pabellon II, Ciudad Universitaria, 1428 Buenos Aires, Argentina CO !-> >^ ^ £ -^ '^Division of Herpetology, Natural Histoiy Museum, and Department of P Kansas 66045-2454, J3 o, Systematics and Ecology, The University of Kansas, Lawrence, USA a o t3 o CO ^ t. CONTENTS ° CO I ABSTRACT 2 « RESUMEN 2 5S INTRODUCTION 2 Previous Paleontological Work 4 Acknowledgments 4 MATERIALS AND METHODS 5 General Methodology 5 Cladistic Methodology 5 Specimens Examined 6 STRATIGRAPHIC PROVENANCE AND AGE OF MATERIAL 6 REDESCRIPTION OF SHELANIA 8 ANALYSIS OF CHARACTERS 16 RESULTS 31 DISCUSSION 35 Taxonomic Considerations 35 Characters 36 LITERATURE CITED 37 APPENDIX 40 © Natural History Museum, The University of Kansas ISSN No. 1094-0782 — 2 Scientific Papers, Natural History Museum, The University of Kansas 1960, is redescribed on the basis of a series of 30 recently I ABSTIMCT Shdania pascuali Casamiquela, .'-\ ' . discovered specimens, which range in estimated snout-vent length from 30-100 mm, from the Paleo- y ' gene of Patagonia. This large pipoid anuran is distinguished by possessing a long, narrow braincase; an hourglass-shaped frontoparietal; a robust antorbital process on the edentate maxilla; long, straight {/) '/^ I ilia that describe a V-shape in dorsal profile; and a trunk that is long relative to the lengths of the head and limbs.
    [Show full text]
  • Changes of the Palynobiotas in the Mesozoic and Cenozoic of Patagonia: a Review
    Biological Journal of the Linnean Society, 2011, 103, 380–396. With 6 figures Changes of the palynobiotas in the Mesozoic and Cenozoic of Patagonia: a review MIRTA E. QUATTROCCHIO1,2*, WOLFGANG VOLKHEIMER3, ANA MARÍA BORRROMEI1 and MARCELO A. MARTÍNEZ1,2 1INGEOSUR, CONICET, San Juan 670, (8000), Bahía Blanca, Argentina 2Departamento de Geología, Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina 3IANIGLA, CCT-CONICET, CC330 (5500) Mendoza, Argentina Received 22 February 2011; accepted for publication 22 February 2011bij_1652 380..396 This study describes the compositional changes of Mesozoic–Cenozoic palynologic assemblages in Patagonia, the succession of phytogeographic scenarios and some evolutionary key events. The Triassic ‘Ipswich Microflora’, characterized by bisaccate pollen and high frequencies of trilete spores, represents the warm–temperate province of south-western Gondwana (Dicroidium Flora), followed in time, in Patagonia, near the Triassic/Jurassic bound- ary, by the ‘Classopollis Microflora’, indicating warm and (seasonal) arid conditions. Araucariaceans and podocar- paceans grew on Jurassic uplands. The exclusively Early Cretaceous taxa Cyclusphaera and Balmeiopsis (Coniferae) appeared in the Valanginian. The oldest angiospermous pollen types of Argentina appear in the Barremian–Aptian of southern Patagonia. During the Maastrichtian, the Nothofagaceae and Myrtaceae are incoming. In the Palaeocene, a vegetation dominated by tropical elements would have developed in Patagonia. Increasing Nothofagidites frequency in northern Patagonia during the Middle to Late Eocene indicates climatic change from warm to temperate. Of three Early to Middle Miocene phytogeographic provinces (Neotropical– Transitional and Austral), the Transitional one was replaced during the Late Miocene–Pliocene by the xerophytic Proto Espinal/Steppe with a shrubby–herbaceous vegetation.
    [Show full text]
  • Geologica Acta, Vol.4, N°4, 2006, 409-438 |415| Ce
    'geológica FOmS^Y ACTA GEOLÓGICA HISPAfilCA Geológica acta: an international earth science journal Universidad de Barcelona [email protected] ISSN (Versión impresa): 1695-6133 ESPAÑA 2006 C.C. Labandeira THE FOUR PHASES OF PLANT-ARTHROPOD ASSOCIATIONS IN DEEP TIME Geológica acta: an international earth science journal, december, año/vol. 4, número 004 Universidad de Barcelona Barcelona, España pp. 409-438 Red de Revistas Científicas de América Latina y el Caribe, España y Portugal ®re¿!alyc^ Universidad Autónoma del Estado de México http://redalyc.uaemex.mx Geológica Acta, Vol.4, N° 4, 2006, 409-438 Appendix l-IX geología acta Available online at www.geologica-acta.com The Four Phases of Plant-Arthropod Associations in Deep Time C.C. LABANDEIRA |1||2| 111 Smithsonian Institution, National Museum of Natural History P.O. Box 37012, MRC-121 Department of Paleobiology, Washington, D.C., USA 200137012. E-mail: [email protected] 121 University of Maryland, Department of Entomology College Park, Maryland, USA 20742 1 ABSTRACT I Vascular-plant hosts, their arthropod herbivores, and associated functional feeding groups are distributed spa- tiotemporally into four major herbivore expansions during the past 420 m.y. They are: (1) a Late Silurian to Late Devonian (60 m.y.) phase of myriapod and apterygote, hexapod (perhaps pterygote) herbivores on several clades of primitive vascular-plant hosts and a prototaxalean fungus; (2) a Late Mississippian to end-Permian (85 m.y.) phase of mites and apterygote and basal pterygote herbivores on pteridophyte and basal gymnospermous plant hosts; (3) a Middle Triassic to Recent (245 m.y.) phase of mites, orthopteroids (in the broadest sense) and hemipteroid and basal holometabolan herbivores on pteridophyte and gymnospermous plant hosts; and (4) a mid Early Cretaceous to Recent (115 m.y.) phase of modern-aspect orthopteroids and derived hemipteroid and holometabolous herbivores on angiospermous plant hosts.
    [Show full text]
  • Late Jurassic) Near Gulgong, New South Wales
    DOI: 10.18195/issn.0312-3162.23(1).2006.043-076 Records of the Western Australian Museum 23: 43-76 (2006). The leptolepid fish Cavenderichthys talbragarensis (Woodward, 1895) from the Talbragar Fish Bed (Late Jurassic) near Gulgong, New South Wales 1. B. Bean Dept of Earth and Marine Sciences, The Australian National University, Canberra, ACT 0200, Australia e-mail: [email protected] Abstract - "Leptolepis" talbragarensis Woodward, 1895, is the most common fish species in the Talbragar Fish Bed near Gulgong, New South Wales. The genus Cavenderichthys Arratia, 1997, has this species as its type. The three species originally proposed by Woodward (1895) for "Leptolepis" are a single species. A detailed comparison of Cavenderichthys talbragarensis with members of the genus Leptolepis, and also with the Late Jurassic forms Tharsis dubius and Leptolepides sprattiformis, indicates that Cavenderichthys talbragarensis is most closely related to Late Jurassic members of the Family Leptolepididae. Analysis of zircons for geochronology showed that the sediment just below the richest fish layer has a youngest component of 151.55 ± 4.27 Ma, corresponding to the Kimmeridgian Stage of the Late Jurassic. Thin sections of the upper prolific fish layer show preservation in tuffaceous sediments, indicating that the fish population was killed by ash falls of felsic tuff that filled the pond they inhabited. INTRODUCTION partly on his own observations, but also on the Fossil fishes were first discovered at Talbragar work of Cavender (1970) who compared about 30 km northeast of Gulgong by Arthur Lowe coregonines and other salmonids with some of the of Wilbertree, NSW in 1889 (Woodward 1895).
    [Show full text]
  • Wollemia Nobilis Wollemi Pine
    MULCH Much Useful Learning Concerning Horticulture VOL.22 No.1, January, 2016 Castlemaine & District Garden Club Inc. Wollemia nobilis Wollemi pine Castlemaine & District Garden Club P.O. Box 758, Castlemaine 3450 [email protected] http://castlemainegardenclub.wordpress.com COMMITTEE Wollemia nobilis President Judy Uren 5470 6462 Vice-president Judy Eastwood 0417 149 251 Secretary Sally Leversha 0437 683 469 [email protected] Treasurer Alan Isaacs 5473 3143 Committee Members Marion Cooke Jan Gower Heather Spicer Sue Spacey Wollemi Pine: Kew Gardens Newsletter Editor Tom Comerford 5470 6230 Wollemia nobilis is a conifer in the [email protected] plant family Araucariaceae. The Webmaster discovery of the Wollemi Pine in Judy Hopley 5472 1156 1994 created great excitement in the [email protected] botanical community due to its resemblance to conifer fossils like Dillwynites and Agathis jurassica. Wollemi Pines are restricted to approximately 40 adult and 200 juvenile Wollemi Pines growing in the Wollemi National Park of New South Wales, 200 km north-west of Sydney. The rare nature of the I really look forward to Monday Wollemi Pine has seen it listed as morning—it gets me back to work endangered. The Wollemi Pine is a tree, which about striking the Wollemi Pine is can grow up to 40 m in the wild with that cuttings taken from the top of a trunk diameter reaching up to one the tree will produce a vertical metre. The bark of the tree is bubbly growing plant, whilst cuttings taken in appearance, chocolate brown from the bottom of the tree will colour in colour.
    [Show full text]
  • An Extinct Eocene Taxon of the Daisy Family (Asteraceae): Evolutionary, Ecological and Biogeographical Implications
    Annals of Botany 109: 127–134, 2012 doi:10.1093/aob/mcr240, available online at www.aob.oxfordjournals.org An extinct Eocene taxon of the daisy family (Asteraceae): evolutionary, ecological and biogeographical implications Viviana D. Barreda1,9,*, Luis Palazzesi1,9, Liliana Katinas2,9, Jorge V. Crisci2,3,9, Marı´a C. Tellerı´a3,4,9, Ka˚re Bremer5, Mauro G. Passala6,9, Florencia Bechis7,9 and Rodolfo Corsolini8 1Seccio´n Paleopalinologı´a, Divisio´n Paleobota´nica, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. A´ ngel Gallardo 470, C1405DJR, Buenos Aires, Argentina, 2Divisio´n Plantas Vasculares, Museo de La Plata, Paseo del Bosque s/n, Downloaded from https://academic.oup.com/aob/article-abstract/109/1/127/151831 by guest on 09 October 2019 1900 La Plata, Argentina, 3Laboratorio de Sistema´tica y Biologı´a Evolutiva, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina, 4Laboratorio de Actuopalinologı´a, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. A´ ngel Gallardo 470, C1405DJR, Buenos Aires, Argentina, 5Blom’s House, Stockholm University, SE-10691 Stockholm, Sweden, 6Laboratorio de Palinologı´a y Paleobota´nica, Instituto de Investigaciones en Biodiversidad y Medioambiente, Quintral 1250, San Carlos de Bariloche, Argentina, 7Instituto de Investigaciones en Diversidad Cultural y Procesos de Cambio, Universidad Nacional de Rı´o Negro, Sarmiento Inferior 3974, San Carlos de Bariloche, Argentina, 8Museo del Lago Gutie´rrez ‘Dr. Rosendo Pascual’ de Geologı´a y Paleontologı´a, Villa Los
    [Show full text]
  • Revision of the Talbragar Fish Bed Flor (Jurassic)
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS White, Mary E., 1981. Revision of the Talbragar Fish Bed Flora (Jurassic) of New South Wales. Records of the Australian Museum 33(15): 695–721. [31 July 1981]. doi:10.3853/j.0067-1975.33.1981.269 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia REVISION OF THE TALBRAGAR FISH BED FLORA (jURASSiC) OF NEW SOUTH WALES MARY E. WH ITE The Australian Museum, Sydney. SUMMARY The three well known form-species of the Talbragar Fish Bed Flora-Podozamites lanceolatus, Elatocladus planus and Taeniopteris spa tu lata - are redescribed as Agathis jurassica sp. nov., Rissikia talbragarensis sp. novo and Pentoxylon australica sp. novo respectively. The minor components of the assemblage are described and illustrated, and in some cases, reclassified. Additions are made to the list of plants recorded from the horizon. INTRODUCTION The Talbragar Fish Beds are characterised by their beautifully preserved fish and plant remains which occur in great profusion throughout the shale lens which comprises the Beds. The ochre-coloured shale is ferruginous, with impressions of plants and fish, white in colour, standing out dramatically. The weathering of the outer layers of blocks of the shale has resulted in contrasting bands of iron-rich stain framing many of the specimens and enhancing their appearance. Specimens are much prized by collectors. The fossil locality is the valley ofthe Talbragar River, about twenty miles due North of Home Rule Mine in the Cassilis District, "on the southern boundary of Boyce's selection" (Anderson 1889).
    [Show full text]
  • The Last Patagonian Cycad, Austrozamia Stockeyi Gen. Et Sp
    Botany The last Patagonian cycad, Austrozamia stockeyi gen. et sp. nov., early Eocene of Laguna del Hunco, Chubut, Argentina Journal: Botany Manuscript ID cjb-2016-0038.R1 Manuscript Type: Article Date Submitted by the Author: 19-May-2016 Complete List of Authors: Wilf, Peter; Pennsylvania State University, Geosciences Stevenson, Dennis; New York Botanical Garden Cuneo, N.;Draft CONICET, Museo Paleontológico Egidio Feruglio Keyword: cycads, Eocene, <i>Encephalartos</i>, <i>Lepidozamia</i>, Patagonia https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 36 Botany The last Patagonian cycad, Austrozamia stockeyi gen. et sp. nov., early Eocene of Laguna del Hunco, Chubut, Argentina Peter Wilf, Dennis Wm. Stevenson, and N. Rubén Cúneo P. Wilf. Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA. D. Wm. Stevenson. New York Botanical Garden, Bronx, NY 10458, USA N.R. Cúneo. CONICET, Museo PaleontológicoDraft Egidio Feruglio, Avenida Fontana 140, 9100 Trelew, Chubut, Argentina. Corresponding author: Peter Wilf (e-mail: [email protected]) 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 36 Abstract: The cycads pose classic problems in evolutionary biogeography due to their far-flung extant distributions and the sparse fossil records of living genera. A noteworthy example is Tribe Encephalarteae of Family Zamiaceae, today consisting of Encephalartos (Africa) and the Australian genera Lepidozamia and Macrozamia . Numerous petrified trunks of Encephalarteae described from the Cretaceous of Patagonia, Antarctica, and India indicate far larger past distributions across Gondwana and subsequent extinctions. The only fossils close to the current range are Paleogene leaf fragments from Australia assigned to Lepidozamia and Macrozamia . Here, we report a large frond piece and several isolated leaflets of a compressed cycad, along with an associated spiny petiole, from the late-Gondwanan, 52.2 Ma Laguna del Hunco flora of Patagonia, Argentina.
    [Show full text]
  • Vanuata Vegetation
    Plant Formations in the Vanuatu BioProvince Peter Martin Rhind Vanuatu Mixed Lowland Rain Forest Up to about 600 m altitude lowland rain forest is the natural vegetation on the southeastern, windward sides of all Vanuatu islands. Important trees are Antiaris toxicaria, Castanospermum australe, Intsia bijuga and Kleinhovia hospitat. Endemic species include Alangium vitense (Cornaceae). On old volcanic ash, rich in plant nutrients, trees can reach more than 30 m in height with large crowns. Typical sub canopy trees include Diospyros acris, Garcinia pancheri and Syzygium species, while endemic small trees include various Veitchia palms, Calophyllum inophyllum (Clusiaceae) and Trilocularia pedicellata (Balanopsidaceae). These forests are best developed on the northern islands of Malakula and Espiritu Santo, and are structurally similar to forests on the Solomon Islands. However, many are in various stages of recovery following disturbance from hurricanes. Vines and epiphytes are numerous and certain areas are covered with lianas. The undergrowth includes various shrubs, and typically there is an herbaceous ground layer comprising genera such as Geophila and Homalomena and ferns like Asplenium, Microsorium and Pteris, but tree ferns are usually absent. Of endemic species, however, many seem to be specific to certain islands or island groups. On Aneityum, for example, there are endemic trees such as Boehmeria anisoneura (Urticaceae), Canarium aneityensis (Burseraceae), Couthovia neo-ebudica (Loganiaceae), Cryptocarya wilsonii (Lauraceae), Cupaniopsis
    [Show full text]
  • Redalyc.Onset of the Middle Eocene Global Cooling and Expansion Of
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Bellosi, Eduardo S.; Krause, J. Marcelo Onset of the Middle Eocene global cooling and expansion of open-vegetation habitats in central Patagonia Andean Geology, vol. 41, núm. 1, enero-, 2014, pp. 29-48 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173929668002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (1): 29-48. January, 2014 Andean Geology doi: 10.5027/andgeoV41n1-a02 formerly Revista Geológica de Chile www.andeangeology.cl Onset of the Middle Eocene global cooling and expansion of open-vegetation habitats in central Patagonia Eduardo S. Bellosi1, J. Marcelo Krause2 1 Museo Argentino de Ciencias Naturales, Ángel Gallardo 470, 1405 Buenos Aires, Argentina. [email protected] 2 Museo Paleontológico Egidio Feruglio, Fontana 140, 9100 Trelew, Argentina. [email protected] ABSTRACT. Climate-driven changes in terrestrial environments and biomes after the Early Eocene Climatic Optimum are poorly documented from southern continents. Particularly, Middle Eocene-Early Oligocene leaf and pollen data from Central Patagonia (46oS, Argentina) are not sufficient to characterize floristic paleocommunities. Paleosols of the Cañadón Vaca (~45-42 Ma) and Gran Barranca (42-38.5 Ma) members (Sarmiento Formation), studied at Cañadón Vaca, solve such deficiency and help to reconstruct Middle Eocene landscapes in the beginning of the Cenozoic cooling-drying trend.
    [Show full text]