APPLE VARIETIES 2020 Variety Bloom Approx
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Apples Catalogue 2019
ADAMS PEARMAIN Herefordshire, England 1862 Oct 15 Nov Mar 14 Adams Pearmain is a an old-fashioned late dessert apple, one of the most popular varieties in Victorian England. It has an attractive 'pearmain' shape. This is a fairly dry apple - which is perhaps not regarded as a desirable attribute today. In spite of this it is actually a very enjoyable apple, with a rich aromatic flavour which in apple terms is usually described as Although it had 'shelf appeal' for the Victorian housewife, its autumnal colouring is probably too subdued to compete with the bright young things of the modern supermarket shelves. Perhaps this is part of its appeal; it recalls a bygone era where subtlety of flavour was appreciated - a lovely apple to savour in front of an open fire on a cold winter's day. Tree hardy. Does will in all soils, even clay. AERLIE RED FLESH (Hidden Rose, Mountain Rose) California 1930’s 19 20 20 Cook Oct 20 15 An amazing red fleshed apple, discovered in Aerlie, Oregon, which may be the best of all red fleshed varieties and indeed would be an outstandingly delicious apple no matter what color the flesh is. A choice seedling, Aerlie Red Flesh has a beautiful yellow skin with pale whitish dots, but it is inside that it excels. Deep rose red flesh, juicy, crisp, hard, sugary and richly flavored, ripening late (October) and keeping throughout the winter. The late Conrad Gemmer, an astute observer of apples with 500 varieties in his collection, rated Hidden Rose an outstanding variety of top quality. -
APPLE (Fruit Varieties)
E TG/14/9 ORIGINAL: English DATE: 2005-04-06 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA * APPLE (Fruit Varieties) UPOV Code: MALUS_DOM (Malus domestica Borkh.) GUIDELINES FOR THE CONDUCT OF TESTS FOR DISTINCTNESS, UNIFORMITY AND STABILITY Alternative Names:* Botanical name English French German Spanish Malus domestica Apple Pommier Apfel Manzano Borkh. The purpose of these guidelines (“Test Guidelines”) is to elaborate the principles contained in the General Introduction (document TG/1/3), and its associated TGP documents, into detailed practical guidance for the harmonized examination of distinctness, uniformity and stability (DUS) and, in particular, to identify appropriate characteristics for the examination of DUS and production of harmonized variety descriptions. ASSOCIATED DOCUMENTS These Test Guidelines should be read in conjunction with the General Introduction and its associated TGP documents. Other associated UPOV documents: TG/163/3 Apple Rootstocks TG/192/1 Ornamental Apple * These names were correct at the time of the introduction of these Test Guidelines but may be revised or updated. [Readers are advised to consult the UPOV Code, which can be found on the UPOV Website (www.upov.int), for the latest information.] i:\orgupov\shared\tg\applefru\tg 14 9 e.doc TG/14/9 Apple, 2005-04-06 - 2 - TABLE OF CONTENTS PAGE 1. SUBJECT OF THESE TEST GUIDELINES..................................................................................................3 2. MATERIAL REQUIRED ...............................................................................................................................3 -
Diseases of Tree Fruit Apple: Diagnosis and Management
1 Diseases of Tree Fruit Apple: Diagnosis and Management Sara M. Villani June 22, 2017 Department of Entomology and Plant Pathology, NCSU [email protected] 2 Apple Disease Challenges in the S.E. • Several apple diseases to contend with Apple Disease Challenges in the S.E. 3 • Paucity of disease resistant cultivars – Breeding efforts focus on consumer preference – Usually single-disease resistance ‘Enterprise’ ‘Prima’ ‘Goldrush’ http://www.eatlikenoone.com/prima-apples.htm http://www.eatlikenoone.com/enterpris-apples.htm http://kuffelcreek.wordpress.com/ ‘William’s Pride’ ‘Liberty’ ‘Pristine’ http://www.eatlikenoone.com/pristine-apples.htm http://www.plant.photos.net/index.php?title=File:Apple_williams_pride.jpg http://www.plant.photos.net/index.php?title=File:Apple_libertye.jpg Apple Disease Challenges in the S.E. 4 • Warm, humid climate – Favorable for pathogen infection and disease development – Inadequate chilling hours: longer period of susceptibility to blossom infection Susceptible Host Biology and Conducive availability of Environment pathogen Apple Disease Challenges in the S.E. 5 • Maintaining practices of fungicide resistance management and maximum annual applications – Commercial apple growers in Hendersonville NC: Up to 24 fungicide applications in 2017! Multi-site Single-site Biologicals Protectants Fungicides Mancozeb Group 3: S.I.’s Bacillus spp. Captan Group 11: “Strobys” A. pullulans Copper Group 7: SDHIs Sulfur Group 1: “T-Methyl” ziram U12: Dodine Phosphorous Acid Confusing Fungicide Jargon 6 Fungicides are classified in a number of ways: 1. Chemical Group – e.g. triazoles, benzimidazoles 2. Biochemical Mode of Action (my preference, common in academia) – e.g. Demethylation inhibitor (DMI); Quinone-outside inhibitor (QoI) 3. Physical Mode of Action – e.g. -
Variety Description Origin Approximate Ripening Uses
Approximate Variety Description Origin Ripening Uses Yellow Transparent Tart, crisp Imported from Russia by USDA in 1870s Early July All-purpose Lodi Tart, somewhat firm New York, Early 1900s. Montgomery x Transparent. Early July Baking, sauce Pristine Sweet-tart PRI (Purdue Rutgers Illinois) release, 1994. Mid-late July All-purpose Dandee Red Sweet-tart, semi-tender New Ohio variety. An improved PaulaRed type. Early August Eating, cooking Redfree Mildly tart and crunchy PRI release, 1981. Early-mid August Eating Sansa Sweet, crunchy, juicy Japan, 1988. Akane x Gala. Mid August Eating Ginger Gold G. Delicious type, tangier G Delicious seedling found in Virginia, late 1960s. Mid August All-purpose Zestar! Sweet-tart, crunchy, juicy U Minn, 1999. State Fair x MN 1691. Mid August Eating, cooking St Edmund's Pippin Juicy, crisp, rich flavor From Bury St Edmunds, 1870. Mid August Eating, cider Chenango Strawberry Mildly tart, berry flavors 1850s, Chenango County, NY Mid August Eating, cooking Summer Rambo Juicy, tart, aromatic 16th century, Rambure, France. Mid-late August Eating, sauce Honeycrisp Sweet, very crunchy, juicy U Minn, 1991. Unknown parentage. Late Aug.-early Sept. Eating Burgundy Tart, crisp 1974, from NY state Late Aug.-early Sept. All-purpose Blondee Sweet, crunchy, juicy New Ohio apple. Related to Gala. Late Aug.-early Sept. Eating Gala Sweet, crisp New Zealand, 1934. Golden Delicious x Cox Orange. Late Aug.-early Sept. Eating Swiss Gourmet Sweet-tart, juicy Switzerland. Golden x Idared. Late Aug.-early Sept. All-purpose Golden Supreme Sweet, Golden Delcious type Idaho, 1960. Golden Delicious seedling Early September Eating, cooking Pink Pearl Sweet-tart, bright pink flesh California, 1944, developed from Surprise Early September All-purpose Autumn Crisp Juicy, slow to brown Golden Delicious x Monroe. -
Germplasm Sets and Standardized Phenotyping Protocols for Fruit Quality Traits in Rosbreed
Germplasm Sets and Standardized Phenotyping Protocols for Fruit Quality Traits in RosBREED Jim Luby, Breeding Team Leader Outline of Presentation RosBREED Demonstration Breeding Programs Standardized Phenotyping Protocols Reference Germplasm Sets SNP Detection Panels Crop Reference Set Breeding Pedigree Set RosBREED Demonstration Breeding Programs Clemson U WSU Texas A&M UC Davis U Minn U Arkansas Rosaceae Cornell U WSU MSU MSU Phenotyping Affiliates USDA-ARS Driscolls Corvallis Univ of Florida UNH Standardized Phenotyping Protocols Traits and Standardized Phenotyping Protocols • Identify critical fruit quality traits and other important traits • Develop standardized phenotyping protocols to enable data pooling across locations/institutions • Protocols available at www.RosBREED.org Apple Standardized Phenotyping Firmness, Crispness – Instrumental, Sensory Sweetness, Acidity – Intstrumental, Sensory Color, Appearance, Juiciness, Aroma – Sensory At harvest Cracking, Russet, Sunburn Storage 10w+7d Storage 20w+7d Maturity Fruit size 5 fruit (reps) per evaluation Postharvest disorders Harvest date, Crop, Dropping RosBREED Apple Phenotyping Locations Wenatchee, WA St Paul, MN Geneva, NY • One location for all evaluations would reduce variation among instruments and evaluators • Local evaluations more sustainable and relevant for future efforts at each institution • Conduct standardized phenotyping of Germplasm Sets at respective sites over multiple (2-3) seasons • Collate data in PBA format, conduct quality control, archive Reference -
New Apple Cultivars with Resistance to Multiple Diseases on the Way
NEW APPLE CULTIVARS WITH RESISTANCE TO MULTIPLE DISEASES ON THE WAY New apple cultivar development is well underway for RosBREED, thanks to a cutting-edge rapid breeding technique and application of DNA information generated in the project. Dr. Jay Norelli at the USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV, is breeding apple trees with genetic resistance to scab and fire blight, two major challenges for U.S. apple growers. Apple scab is a common fungal disease managed by pesticide sprays and clearing leaf debris at season’s end. Fire blight is a bacterial disease difficult to prevent and even harder to control once an orchard is infected. Fortunately, we have sources of genetic resistance to the two diseases for breeders to use as parents. ‘Enterprise’ carries genetic resistance to both scab (Rvi6 resistance factor originally from the wild species Malus floribunda) and fire blight (FB7 source from heritage cultivar Cox’s Orange Pippin), and ‘Splendour’ carries resistance to fire blight at another genetic location (FB5, original source still under investigation). ‘Honeycrisp’ carries another resistance factor for scab (RviHC) and an allele for its characteristic crisp fruit texture, for which RosBREED has developed a DNA test (Ma-Indel). Using traditional selective breeding strategies to combine all these resistance alleles into a single Norelli’s breeding scheme for combining scab resistance, fire blight individual would take decades, even enhanced with resistance, and fruit quality traits into one apple cultivar. DNA tests. Apple trees generally don’t bloom until they’re around four years old. Even if a breeder knows a young tree would make a good parent, they must wait years to cross it. -
Cedar-Apple Rust
DIVISION OF AGRICULTURE RESEARCH & EXTENSION Agriculture and Natural Resources University of Arkansas System FSA7538 Cedar-Apple Rust Stephen Vann Introduction Assistant Professor One of the most spectacular Extension Urban Plant Pathologist diseases to appear in spring is cedar- apple rust. This disease is caused by the fungus Gymnosporangium juniperi-virginianae and requires both cedar and apple trees to survive each year. It is mainly a problem in the eastern portion of North America and is most important on apple or crab Figure 2. Cedar-apple rust on crabapple apple (Malus sp), but can also affect foliage. quince and hawthorn. yellow-orange color (Figures 1 and 2). Symptoms On the upper leaf surface of these spots, the fungus produces specialized The chief damage by this disease fruiting bodies called spermagonia. On occurs on apple trees, causing early the lower leaf surface (and sometimes leaf drop and poor quality fruit. This on fruit), raised hair-like fruiting bod can be a significant problem to com ies called aecia (Figure 3) appear as mercial apple growers but also harms microscopic cup-shaped structures. the appearance of ornamental crab Wet, rainy weather conditions favor apples in the home landscape. On severe infection of the apple. The apple, symptoms first appear as fungus forms large galls on cedar trees small green-yellow leaf or fruit spots in the spring (see next section), but that gradually enlarge to become a these structures do not greatly harm Arkansas Is Our Campus Visit our web site at: Figure 1. Cedar-apple rust (leaf spot) on Figure 3. Aecia of cedar-apple rust on https://www.uaex.uada.edu apple (courtesy J. -
Apples: Organic Production Guide
A project of the National Center for Appropriate Technology 1-800-346-9140 • www.attra.ncat.org Apples: Organic Production Guide By Tammy Hinman This publication provides information on organic apple production from recent research and producer and Guy Ames, NCAT experience. Many aspects of apple production are the same whether the grower uses low-spray, organic, Agriculture Specialists or conventional management. Accordingly, this publication focuses on the aspects that differ from Published nonorganic practices—primarily pest and disease control, marketing, and economics. (Information on March 2011 organic weed control and fertility management in orchards is presented in a separate ATTRA publica- © NCAT tion, Tree Fruits: Organic Production Overview.) This publication introduces the major apple insect pests IP020 and diseases and the most effective organic management methods. It also includes farmer profiles of working orchards and a section dealing with economic and marketing considerations. There is an exten- sive list of resources for information and supplies and an appendix on disease-resistant apple varieties. Contents Introduction ......................1 Geographical Factors Affecting Disease and Pest Management ...........3 Insect and Mite Pests .....3 Insect IPM in Apples - Kaolin Clay ........6 Diseases ........................... 14 Mammal and Bird Pests .........................20 Thinning ..........................20 Weed and Orchard Floor Management ......20 Economics and Marketing ........................22 Conclusion -
Treeid Variety Run 2 DNA Milb005 American Summer Pearmain
TreeID Variety Run 2 DNA Run 1 DNA DNA Sa… Sourc… Field Notes milb005 American Summer Pearmain/ "Sara's Polka American Summer Pearmain we2g016 AmericanDot" Summer Pearmain/ "Sara's Polka American Summer Pearmain we2f017 AmericanDot" Summer Pearmain/ "Sara's Polka American Summer Pearmain we2f018 AmericanDot" Summer Pearmain/ "Sara's Polka American Summer Pearmain eckh001 BaldwinDot" Baldwin-SSE6 eckh008 Baldwin Baldwin-SSE6 2lwt007 Baldwin Baldwin-SSE6 2lwt011 Baldwin Baldwin-SSE6 schd019 Ben Davis Ben Davis mild006 Ben Davis Ben Davis wayb004 Ben Davis Ben Davis andt019 Ben Davis Ben Davis ostt014 Ben Davis Ben Davis watt008 Ben Davis Ben Davis wida036 Ben Davis Ben Davis eckg002 Ben Davis Ben Davis frea009 Ben Davis Ben Davis frei009 Ben Davis Ben Davis frem009 Ben Davis Ben Davis fres009 Ben Davis Ben Davis wedg004 Ben Davis Ben Davis frai006 Ben Davis Ben Davis frag004 Ben Davis Ben Davis frai004 Ben Davis Ben Davis fram006 Ben Davis Ben Davis spor004 Ben Davis Ben Davis coue002 Ben Davis Ben Davis couf001 Ben Davis Ben Davis coug008 Ben Davis Ben Davis, error on DNA sample list, listed as we2a023 Ben Davis Bencoug006 Davis cria001 Ben Davis Ben Davis cria008 Ben Davis Ben Davis we2v002 Ben Davis Ben Davis we2z007 Ben Davis Ben Davis rilcolo Ben Davis Ben Davis koct004 Ben Davis Ben Davis koct005 Ben Davis Ben Davis mush002 Ben Davis Ben Davis sc3b005-gan Ben Davis Ben Davis sche019 Ben Davis, poss Black Ben Ben Davis sche020 Ben Davis, poss Gano Ben Davis schi020 Ben Davis, poss Gano Ben Davis ca2e001 Bietigheimer Bietigheimer/Sweet -
Handling of Apple Transport Techniques and Efficiency Vibration, Damage and Bruising Texture, Firmness and Quality
Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences Centre of Excellence AGROPHYSICS for Applied Physics in Sustainable Agriculture Handling of Apple transport techniques and efficiency vibration, damage and bruising texture, firmness and quality Bohdan Dobrzañski, jr. Jacek Rabcewicz Rafa³ Rybczyñski B. Dobrzañski Institute of Agrophysics Polish Academy of Sciences PUBLISHED BY: B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ACTIVITIES OF WP9 IN THE CENTRE OF EXCELLENCE AGROPHYSICS CONTRACT NO: QLAM-2001-00428 CENTRE OF EXCELLENCE FOR APPLIED PHYSICS IN SUSTAINABLE AGRICULTURE WITH THE th ACRONYM AGROPHYSICS IS FOUNDED UNDER 5 EU FRAMEWORK FOR RESEARCH, TECHNOLOGICAL DEVELOPMENT AND DEMONSTRATION ACTIVITIES GENERAL SUPERVISOR OF THE CENTRE: PROF. DR. RYSZARD T. WALCZAK, MEMBER OF POLISH ACADEMY OF SCIENCES PROJECT COORDINATOR: DR. ENG. ANDRZEJ STĘPNIEWSKI WP9: PHYSICAL METHODS OF EVALUATION OF FRUIT AND VEGETABLE QUALITY LEADER OF WP9: PROF. DR. ENG. BOHDAN DOBRZAŃSKI, JR. REVIEWED BY PROF. DR. ENG. JÓZEF KOWALCZUK TRANSLATED (EXCEPT CHAPTERS: 1, 2, 6-9) BY M.SC. TOMASZ BYLICA THE RESULTS OF STUDY PRESENTED IN THE MONOGRAPH ARE SUPPORTED BY: THE STATE COMMITTEE FOR SCIENTIFIC RESEARCH UNDER GRANT NO. 5 P06F 012 19 AND ORDERED PROJECT NO. PBZ-51-02 RESEARCH INSTITUTE OF POMOLOGY AND FLORICULTURE B. DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES ©Copyright by BOHDAN DOBRZAŃSKI INSTITUTE OF AGROPHYSICS OF POLISH ACADEMY OF SCIENCES LUBLIN 2006 ISBN 83-89969-55-6 ST 1 EDITION - ISBN 83-89969-55-6 (IN ENGLISH) 180 COPIES, PRINTED SHEETS (16.8) PRINTED ON ACID-FREE PAPER IN POLAND BY: ALF-GRAF, UL. -
Know Your · a S
MAGR Extension Folder 177 GOVS Revised October 1957 MN 2000 EF-no.177 (Rev.1957:0ct.) Know Your · A s by ELEANOR LOOMIS .,~I UNIVERSITY OF MINNESOTA Agricultural Extension Service U. S. DEPARTMENT OF AGRICULTURE Know Your Minnesota Apples Variety Season of use Characteristics Use Oriole August Large summer apple, orange-yellow, striped with Dessert, pie, sauce, freezing red. Very good eating and cooking quality. Duchess August-September Early, cooking apple. Medium size, striped with Pie, sauce, jelly, freezing red. Too tart for good eating. Beacon August-September Medium size, very attractive red. Mild subacid. Dessert, pie, sauce, freezing Better for eating than Duchess; keeps longer. Wealthy September-November Long a favorite in Minnesota for eating and cook Dessert, baking, pie, sauce, ing. Medium size, striped red. jelly, freezing Lakeland September-December Medium size, solid red color, pleasant flavor. Slices Dessert, pie, baking, sauce, hold shape when cooked. freezing Minjon September-December Below medium size, very attractive red. Flesh Dessert, pie, baking, sauce, somewhat tart, stained with red. freezing McIntosh October-January Medium size, nearly solid bright red. High quality Dessert, pie, sauce, jelly, for eating. Rich flavor, but soft when cooked. freezing Cortland October-January Medium size, attractive red; white flesh similar Dessert, pie, baking, sauce, to McIntosh. Holds fresh color well in salad. jelly, salad, freezing Redwell October-January Large size, attractive red. Pleasant flavor, subacid. Dessert, baking, sauce Jonathan October-February Below medium size, solid bright red. A favorite Dessert, pie, baking, sauce, variety for all uses. jelly, canning, freezing Haralson October-March Medium size, attractive red. -
Factors Associated with Spartan Breakdown of Apple
FACTORS ASSOCIATED WITH SPARTAN BREAKDOWN OF APPLE by Raymond Laurent Granger A thesis submitted to the Faculty of Graduate Studies and Research of McGill University in partial fulfilment of the requirements for the degree of Doctor of Philosophy Department of Plant Science, Macdonald College of McGill University, c Montreal• March, 1979 iii - • I dedicate this thesis to my wife UIREILLE ABSTRACT FACTORS ASSOCIATED HITH SPARTAN BREAKDOWN OF APPLE DEPARTMENT OF PLANT SCIENCE RAYMOND LAURENT GRANGER Quebec-grown Spartan apples were compared with those from British Columbia in an effort to explain why B.C. fruits are more susceptible to the Spartan breakdown storage disorder. Based on fruit diameter apples were sized into small, medium and lar~e categories from Quebec and medium, large and extra large from British Columbia. Peel and flesh tissues of individual apples from each category were analysed for total N, P, K, Ca, Mg and Zn. Firmness, percent red colour, specific gravity, moisture content, titrateable acidity and percent soluble solids along with and release rates also were determined on co2 c2n4 individual fruits in every category. Large fruit size, decreasin~ firmness and high or H release co2 c2 4 rates expressed on a fruit basis were associated with Spartan breakdown development in cold storage. The predictive values of the various mineral analyses for Spartan breakdown were in the following order: peel Mg > flesh K > flesh P > flesh Mg > flesh Ca > peel K > peel Ca. The British Columbia apples contained significantly higher levels of all elements except those of N and Ca which were not significantly different in the fruit from both pr.ovinces.