True False Questions from 4,5,6

Total Page:16

File Type:pdf, Size:1020Kb

True False Questions from 4,5,6 (c)2015 UM Math Dept licensed under a Creative Commons By-NC-SA 4.0 International License. Math 217: True False Practice Professor Karen Smith 1. For every 2 × 2 matrix A, there exists a 2 × 2 matrix B such that det(A + B) 6= det A + det B. Solution note: False! Take A to be the zero matrix for a counterexample. 2. If the change of basis matrix SA!B = ~e4 ~e3 ~e2 ~e1 , then the elements of A are the same as the element of B, but in a different order. Solution note: True. The matrix tells us that the first element of A is the fourth element of B, the second element of basis A is the third element of B, the third element of basis A is the second element of B, and the the fourth element of basis A is the first element of B. 6 6 3. Every linear transformation R ! R is an isomorphism. Solution note: False. The zero map is a a counter example. 4. If matrix B is obtained from A by swapping two rows and det A < det B, then A is invertible. Solution note: True: we only need to know det A 6= 0. But if det A = 0, then det B = − det A = 0, so det A < det B does not hold. 5. If two n × n matrices have the same determinant, they are similar. Solution note: False: The only matrix similar to the zero matrix is itself. But many 1 0 matrices besides the zero matrix have determinant zero, such as : 0 0 6. If all the entries of an invertible square matrix A are integers, the same is true for A−1. 1 0 Solution note: False: Take : 0 2 7. There is no square A such that det(7A) = 7 det(A). Solution note: False: the zero matrix is a counter example 8. If hx; yi = hx; zi for vectors x; y; z in an inner product space, then y − z is orthogonal to x. Solution note: True: 0 = hx; yi−hx; zi = hx; y−zi; so the x and y−z are orthogonal. m ? 9. Suppose A is a m × n matrix whose columns span a subspace V of R . If ~b 2 V , then A~x = ~b has a unique least squares solution. 1 0 0 Solution note: False. Let A be any matrix with a non-trivial kernel, such as : 0 1 0 3 Its columns span the xy plane in R and the ? The vector ~e3 is in V . 10. If the columns of a matrix A are orthonormal, then A is orthogonal. Solution note: False. Take the 3 × 2 matrix whose first two columns are ~e1;~e2. Orthogonal matrices are SQUARE. 11. In any inner product space, jjfjj2 = hf; fi for all f. Solution note: True. Definition. 12. In any inner product space, if jjfjj = jjgjj, then f = g. 2 Solution note: False! Take ~e1 and ~e2 in R with the standard inner (dot) product. 13. If f and g are elements in an inner product space satisfying jjfjj = 2; jjgjj = 4 and jjf +gjj = 5, then it is possible to find the exact value of hf; gi Solution note: True: 52 = jjf + gjj2 = hf + g; if + g = jjfjj2 + 2hf; gi + jjgjj2 = 22 + 2(hf; gi) + 42. This can be solved for hf; gi; which is 5=2. 14. If for some vectors y; z in an inner product space, hx; yi = hx; zi for all x, then y = z. Solution note: True. hx; yi = hx; zi implies hx; y−zi = 0 for all x. Now take x = y−z. So hy − z; y − zi = 0, which means y − z = 0. 15. There is no invertible 5 × 5 matrix such that A such that det(5A) = 5 det(A). Solution note: TRUE: det(5A) = 55 det(A). This is never equal to 5 det(A) because det A 6= 0. 213 2 1 3 5 3 16. There is a linear transformation R ! R sending ~e1 and ~e2 to 405 ; and ~e3 to 4−15 : 2 2 Solution note: True. Take any 3×5 matrix whose first three columns are the specified vectors. 17. There exist vectors ~x;~y in an inner product space such that jj~xjj = 1, jj~yjj = 2, and jj~x+~yjj = 3 and hx; yi = 0. 3×3 3 18. There exists a 3 × 3 matrix P such that the linear transformation T : R ! R defined by T (M) = MP − PM is an isomorphism. Solution note: False: the matrix I3 is in the kernel for any choice of P . 19. If A is a n × d matrix with factorization A = QR, then the columns of A and of Q span the n same subspace of R : Solution note: True: the columns of Q are an orthonormal basis for the space spanned by the columns of A. 20. If A has orthogonal columns, and A = QR is its QR-factorization, then R is diagonal. Solution note: True: When doing Gram-Schmidt, we only wind up scaling each col- umn of A by its length to make it unit length|the columns are already perpendicular. 1 So if v1; : : : ; v are the columns of A, then each column of Q is u1 = vi: So the d jjvijj i-th column of the change of basis matrix R is vi written in the orthonormal basis of u1; : : : ; ud. Obviously, this is a 0u1 + ··· + jjvijjui + 0ui+1 + ::: 0ud, so R is diagonal: the only non-zero entries are in the spots ii. n ~ 21. If (~v1; : : : ; vd) is a basis for the subspace V of R and b 2 V , then the least squares solutions ~ ~ of ~v1 ~v2 : : : ~vd ~x = b are exact solutions to ~v1 ~v2 : : : ~vd ~x = b. ~ Solution note: True: since b 2 V , it is in the span of the columns of ~v1 ~v2 : : : ~vd : So it is consistent, so the least squares solutions are actual solutions. n ~ ? 22. If (~v1; : : : ; vd) is a basis for the subspace V of R and b 2 V , then the only least squares ~ solutions of ~v1 ~v2 : : : ~vd ~x = b is the zero vector. Solution note: TRUE. Because ~b 2 V ?, the projection of ~b to V is zero. This means that the least squares solutions are the actual solutions to A~x = ~0. But any such solution ~x is a linear relation on the columns on A. We assumed these columns are linearly independent, so the only such solution is the trivial solution ~x = 0 . If the rank of A were LESS than d, then the claim would have been FALSE because the kernel would have been of dimension at least 1. 23. If all entries of a 7 × 7 matrix A are 7, then det A = 77. Solution note: False! The columns are linearly dependent, so the determinant is 0. 24. If all the entries of an invertible square matrix A are integers, the same is true for A−1. 1 0 Solution note: False: Take : 0 2 25. Every surjective linear transformation V ! V is an isomorphism. Solution note: False. The derivative map on R[x] is a counterexample. If V is finite dimensional, the statement is true by rank-nullity. T 26. A matrix A is orthogonal if and only if A A = In. 21 03 Solution note: FALSE: A = 40 15 is a counterexample. The statement would be 0 0 true if A were square. 27. If a matrix A is orthogonal, then A is invertible. Solution note: True. Theorem in the book 28. If A and B are orthogonal matrices of the same size, then AB = BA. 1 0 0 −1 Solution note: False. Let A = and B = . 0 −1 1 0 7 ? 29. There exists a subspace V of R such that V and V have the same dimension. Solution note: False! V and V ? have dimensions which add up to 7. So they can't be equal or the sum would be even. 20 1 −b3 30. The matrix 40 b 1 5 has rank 3 for every value of b. 1 0 0 Solution note: True. The determinant is b2 + 1, which can never be 0. 31. There is a linear transformation V !T V satisfying T (x) 6= x for every non-zero vector x and 21 0 1 −73 60 0 13 1 7 whose B-matrix [T ]B in some basis is 6 7 : 40 1 0 0 5 0 −3 5 6 Solution note: False! The first vector in the basis B is taken to itself, as one look at the first column of [T ]B will tell you. 32. If A is a B-matrix for a linear transformation, then A is invertible. Solution note: False. The zero matrix of size 2 × 2 is a the matrix of the zero transformation in any basis, but not invertible. 33. If the image of a linear transformation is infinite dimensional, then the source is also infinite dimension. Solution note: True. We give a proof by contradiction. If the source were finite dimensional, then rank-nullity says that the dimension of the image is at most the dimension of the source, hence also finite dimensional. 34. The differentiation map from the space R[x] of all polynomials to itself is an isomorphism. Solution note: False: The kernel is non-zero since it includes all constant functions. 35. The map of R[x] to itself defined by f 7! xf is an injective linear transformation. Solution note: True: Say f and g have the same image.
Recommended publications
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Orthonormal Bases in Hilbert Space APPM 5440 Fall 2017 Applied Analysis
    Orthonormal Bases in Hilbert Space APPM 5440 Fall 2017 Applied Analysis Stephen Becker November 18, 2017(v4); v1 Nov 17 2014 and v2 Jan 21 2016 Supplementary notes to our textbook (Hunter and Nachtergaele). These notes generally follow Kreyszig’s book. The reason for these notes is that this is a simpler treatment that is easier to follow; the simplicity is because we generally do not consider uncountable nets, but rather only sequences (which are countable). I have tried to identify the theorems from both books; theorems/lemmas with numbers like 3.3-7 are from Kreyszig. Note: there are two versions of these notes, with and without proofs. The version without proofs will be distributed to the class initially, and the version with proofs will be distributed later (after any potential homework assignments, since some of the proofs maybe assigned as homework). This version does not have proofs. 1 Basic Definitions NOTE: Kreyszig defines inner products to be linear in the first term, and conjugate linear in the second term, so hαx, yi = αhx, yi = hx, αy¯ i. In contrast, Hunter and Nachtergaele define the inner product to be linear in the second term, and conjugate linear in the first term, so hαx,¯ yi = αhx, yi = hx, αyi. We will follow the convention of Hunter and Nachtergaele, so I have re-written the theorems from Kreyszig accordingly whenever the order is important. Of course when working with the real field, order is completely unimportant. Let X be an inner product space. Then we can define a norm on X by kxk = phx, xi, x ∈ X.
    [Show full text]
  • Lecture 4: April 8, 2021 1 Orthogonality and Orthonormality
    Mathematical Toolkit Spring 2021 Lecture 4: April 8, 2021 Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani) 1 Orthogonality and orthonormality Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if hu, vi = 0. A set of vectors S ⊆ V is said to consist of mutually orthogonal vectors if hu, vi = 0 for all u 6= v, u, v 2 S. A set of S ⊆ V is said to be orthonormal if hu, vi = 0 for all u 6= v, u, v 2 S and kuk = 1 for all u 2 S. Proposition 1.2 A set S ⊆ V n f0V g consisting of mutually orthogonal vectors is linearly inde- pendent. Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set fv1,..., vng of linearly independent vectors, there exists a set of orthonormal vectors fw1,..., wng such that Span (fw1,..., wng) = Span (fv1,..., vng) . Proof: By induction. The case with one vector is trivial. Given the statement for k vectors and orthonormal fw1,..., wkg such that Span (fw1,..., wkg) = Span (fv1,..., vkg) , define k u + u = v − hw , v i · w and w = k 1 . k+1 k+1 ∑ i k+1 i k+1 k k i=1 uk+1 We can now check that the set fw1,..., wk+1g satisfies the required conditions. Unit length is clear, so let’s check orthogonality: k uk+1, wj = vk+1, wj − ∑ hwi, vk+1i · wi, wj = vk+1, wj − wj, vk+1 = 0. i=1 Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis.
    [Show full text]
  • Ch 5: ORTHOGONALITY
    Ch 5: ORTHOGONALITY 5.5 Orthonormal Sets 1. a set fv1; v2; : : : ; vng is an orthogonal set if hvi; vji = 0, 81 ≤ i 6= j; ≤ n (note that orthogonality only makes sense in an inner product space since you need to inner product to check hvi; vji = 0. n For example fe1; e2; : : : ; eng is an orthogonal set in R . 2. fv1; v2; : : : ; vng is an orthogonal set =) v1; v2; : : : ; vn are linearly independent. 3. a set fv1; v2; : : : ; vng is an orthonormal set if hvi; vji = 0 and jjvijj = 1, 81 ≤ i 6= j; ≤ n (i.e. orthogonal and unit length). n For example fe1; e2; : : : ; eng is an orthonormal set in R . 4. given an orthogonal basis for a vector space V , we can always find an orthonormal basis for V by dividing each vector by its length (see Example 2 and 3 page 256) n 5. a space with an orthonormal basis behaves like the euclidean space R with the standard basis (it is easier to work with basis that are orthonormal, just like it is n easier to work with the standard basis versus other bases for R ) 6. if v is a vector in a inner product space V with fu1; u2; : : : ; ung an orthonormal basis, Pn Pn then we can write v = i=1 ciui = i=1hv; uiiui Pn 7. an easy way to find the inner product of two vectors: if u = i=1 aiui and v = Pn i=1 biui, where fu1; u2; : : : ; ung is an orthonormal basis for an inner product space Pn V , then hu; vi = i=1 aibi Pn 8.
    [Show full text]
  • Math 2331 – Linear Algebra 6.2 Orthogonal Sets
    6.2 Orthogonal Sets Math 2331 { Linear Algebra 6.2 Orthogonal Sets Jiwen He Department of Mathematics, University of Houston [email protected] math.uh.edu/∼jiwenhe/math2331 Jiwen He, University of Houston Math 2331, Linear Algebra 1 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix 6.2 Orthogonal Sets Orthogonal Sets: Examples Orthogonal Sets: Theorem Orthogonal Basis: Examples Orthogonal Basis: Theorem Orthogonal Projections Orthonormal Sets Orthonormal Matrix: Examples Orthonormal Matrix: Theorems Jiwen He, University of Houston Math 2331, Linear Algebra 2 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix Orthogonal Sets Orthogonal Sets n A set of vectors fu1; u2;:::; upg in R is called an orthogonal set if ui · uj = 0 whenever i 6= j. Example 82 3 2 3 2 39 < 1 1 0 = Is 4 −1 5 ; 4 1 5 ; 4 0 5 an orthogonal set? : 0 0 1 ; Solution: Label the vectors u1; u2; and u3 respectively. Then u1 · u2 = u1 · u3 = u2 · u3 = Therefore, fu1; u2; u3g is an orthogonal set. Jiwen He, University of Houston Math 2331, Linear Algebra 3 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix Orthogonal Sets: Theorem Theorem (4) Suppose S = fu1; u2;:::; upg is an orthogonal set of nonzero n vectors in R and W =spanfu1; u2;:::; upg. Then S is a linearly independent set and is therefore a basis for W . Partial Proof: Suppose c1u1 + c2u2 + ··· + cpup = 0 (c1u1 + c2u2 + ··· + cpup) · = 0· (c1u1) · u1 + (c2u2) · u1 + ··· + (cpup) · u1 = 0 c1 (u1 · u1) + c2 (u2 · u1) + ··· + cp (up · u1) = 0 c1 (u1 · u1) = 0 Since u1 6= 0, u1 · u1 > 0 which means c1 = : In a similar manner, c2,:::,cp can be shown to by all 0.
    [Show full text]
  • Introduction to Clifford's Geometric Algebra
    解説:特集 コンピューテーショナル・インテリジェンスの新展開 —クリフォード代数表現など高次元表現を中心として— Introduction to Clifford’s Geometric Algebra Eckhard HITZER* *Department of Applied Physics, University of Fukui, Fukui, Japan *E-mail: [email protected] Key Words:hypercomplex algebra, hypercomplex analysis, geometry, science, engineering. JL 0004/12/5104–0338 C 2012 SICE erty 15), 21) that any isometry4 from the vector space V Abstract into an inner-product algebra5 A over the field6 K can Geometric algebra was initiated by W.K. Clifford over be uniquely extended to an isometry7 from the Clifford 130 years ago. It unifies all branches of physics, and algebra Cl(V )intoA. The Clifford algebra Cl(V )is has found rich applications in robotics, signal process- the unique associative and multilinear algebra with this ing, ray tracing, virtual reality, computer vision, vec- property. Thus if we wish to generalize methods from tor field processing, tracking, geographic information algebra, analysis, calculus, differential geometry (etc.) systems and neural computing. This tutorial explains of real numbers, complex numbers, and quaternion al- the basics of geometric algebra, with concrete exam- gebra to vector spaces and multivector spaces (which ples of the plane, of 3D space, of spacetime, and the include additional elements representing 2D up to nD popular conformal model. Geometric algebras are ideal subspaces, i.e. plane elements up to hypervolume ele- to represent geometric transformations in the general ments), the study of Clifford algebras becomes unavoid- framework of Clifford groups (also called versor or Lip- able. Indeed repeatedly and independently a long list of schitz groups). Geometric (algebra based) calculus al- Clifford algebras, their subalgebras and in Clifford al- lows e.g., to optimize learning algorithms of Clifford gebras embedded algebras (like octonions 17))ofmany neurons, etc.
    [Show full text]
  • A Bit About Hilbert Spaces
    A Bit About Hilbert Spaces David Rosenberg New York University October 29, 2016 David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 1 / 9 Inner Product Space (or “Pre-Hilbert” Spaces) An inner product space (over reals) is a vector space V and an inner product, which is a mapping h·,·i : V × V ! R that has the following properties 8x,y,z 2 V and a,b 2 R: Symmetry: hx,yi = hy,xi Linearity: hax + by,zi = ahx,zi + b hy,zi Postive-definiteness: hx,xi > 0 and hx,xi = 0 () x = 0. David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 2 / 9 Norm from Inner Product For an inner product space, we define a norm as p kxk = hx,xi. Example Rd with standard Euclidean inner product is an inner product space: hx,yi := xT y 8x,y 2 Rd . Norm is p kxk = xT y. David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 3 / 9 What norms can we get from an inner product? Theorem (Parallelogram Law) A norm kvk can be generated by an inner product on V iff 8x,y 2 V 2kxk2 + 2kyk2 = kx + yk2 + kx - yk2, and if it can, the inner product is given by the polarization identity jjxjj2 + jjyjj2 - jjx - yjj2 hx,yi = . 2 Example d `1 norm on R is NOT generated by an inner product. [Exercise] d Is `2 norm on R generated by an inner product? David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 4 / 9 Pythagorean Theroem Definition Two vectors are orthogonal if hx,yi = 0.
    [Show full text]
  • C Self-Adjoint Operators and Complete Orthonormal Bases
    C Self-adjoint operators and complete orthonormal bases The concept of the adjoint of an operator plays a very important role in many aspects of linear algebra and functional analysis. Here we will primar­ ily focus on s e ll~adjoint operators and how they can be used to obtain and characterize complete orthonormal sets of vectors in a Hilbert space. The main fact we will present here is that self-adjoint operators typically have orthogonal eigenvectors, and under some conditions, these eigenvectors can form a complete orthonormal basis for the Hilbert space. In particular, we will use this technique to find a variety of orthonormal bases for L2 [a, b] that satisfy different types of boundary conditions. We begin with the algebraic aspects of self-adjoint operators and their eigenvectors. Those algebraic properties are identical in the finite and infinite dimensional cases. The completeness arguments in infinite dimensions are more delicate, we will only state those results without complete proofs. We begin first by defining the adjoint. D efinition C.l. (Finite dimensional or bounded operator case) Let A H I -; H2 be a bounded operator between the Hilbert spaces HI and H 2. The adjomt A' : H2 ---; HI of Xis defined by the req1Lirement J (V2, AVI ) ~ = (A''V2, v])], (C.l) fOT all VI E HI--- and'V2 E H2· Note that for emphasis, we have written (. , .)] and (. , ')2 for the inner products in HI and H2 respectively. It remains to be shown that the relation (C.l) defines an operator A' from A uniquely. We will not do this here in general but will illustrate it with several examples.
    [Show full text]
  • The Determinant Inner Product and the Heisenberg Product of Sym(2)
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 14 NO. 1 PAGE 1–12 (2021) DOI: HTTPS://DOI.ORG/10.32323/IEJGEO.602178 The determinant inner product and the Heisenberg product of Sym(2) Mircea Crasmareanu (Dedicated to the memory of Prof. Dr. Aurel BEJANCU (1946 - 2020)Cihan Ozgur) ABSTRACT The aim of this work is to introduce and study the nondegenerate inner product < ·; · >det induced by the determinant map on the space Sym(2) of symmetric 2 × 2 real matrices. This symmetric bilinear form of index 2 defines a rational symmetric function on the pairs of rays in the plane and an associated function on the 2-torus can be expressed with the usual Hopf bundle projection 3 2 1 S ! S ( 2 ). Also, the product < ·; · >det is treated with complex numbers by using the Hopf invariant map of Sym(2) and this complex approach yields a Heisenberg product on Sym(2). Moreover, the quadratic equation of critical points for a rational Morse function of height type generates a cosymplectic structure on Sym(2) with the unitary matrix as associated Reeb vector and with the Reeb 1-form being half of the trace map. Keywords: symmetric matrix; determinant; Hopf bundle; Hopf invariant AMS Subject Classification (2020): Primary: 15A15 ; Secondary: 15A24; 30C10; 22E47. 1. Introduction This short paper, whose nature is mainly expository, is dedicated to the memory of Professor Dr. Aurel Bejancu, who was equally a gifted mathematician and a dedicated professor. As we hereby present an in memoriam paper, we feel it would be better if we choose an informal presentation rather than a classical structured discourse, where theorems and propositions are followed by their proofs.
    [Show full text]
  • Worksheet and Solutions
    Tuesday, December 6 ∗∗ Orthogonal bases & Orthogonal projections ∗∗ Solutions 1. A basis B is called an orthonormal basis if it is orthogonal and each basis vector has norm equal to 1. (a) Convert the orthogonal basis 80− 1 0 1 0 19 < 1 1 1 = B = @ 1 A , @ 1 A , @1A : 0 −2 1 ; into an orthonormal basis C . Solution. We just scale each basis vector by its length. The new, orthonormal, basis is 8 0−11 0 1 1 0119 < 1 1 1 = C = p @ 1 A , p @ 1 A , p @1A 2 6 3 : 0 −2 1 ; 011 0−41 (b) Find the coordinates of the vectors v1 = @3A and v2 = @ 2 A in the basis C . 5 7 Solution. The formula is the same as for a general orthogonal basis: writing u1, u2, and u3 for the basis vectors, the formula for each coordinate of v1 in the basis C is u · v i 1 = · 2 ui v1. kuik We compute to find 2 p −6 p 9 p u1 · v1 = p = 2, u2 · v1 = p = − 6, u3 · v1 = p = 3 3, 2 6 3 0 p 1 p2 B C so (v1)C = @−p 6A. Similarly, we get 3 3 r 6 p −16 2 5 u1 · v2 = p = 3 2, u2 · v2 = p = −8 , u3 · v2 = p , 2 6 3 3 0 p 1 3p 2 B C so (v2)C = @−8 p2/3A. 5/ 3 Orthonormal bases are very convenient for calculations. 2. (The Gram-Schmidt process) There is a standard process for converting a basis into an 3 orthogonal basis.
    [Show full text]
  • Inner Product Spaces
    CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn.
    [Show full text]