Cyanogenesis in Turnera Ulmifolia L. (Turneraceae): II
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Damiana/Turnera
Damiana/Turnera Introduction: Damiana is an excellent strengthening remedy for the nervous system. It has an ancient reputation as an aphrodisiac. Whilst this may or may not be true, it has a definite tonic action on the central nervous and the hormonal system. As a useful anti-depressant, Damiana is considered to be a specific in cases of anxiety and depression where there is a sexual factor. It may be used to strengthen the male sexual system. Scientific name: Turnera diffusa Var. aphrodisiaca Synonyms:Turnera aphrodisiaca; Turnera microphylla. Sources: The main source of Damiana is vegetable source. It is a shrub native to southern Texas in the United States, Central America, Mexico, South America, and the Caribbean. It belongs to the family Passifloraceae (Turneraceae). Damiana contains damianin; tetraphyllin B; gonzalitosin I; arbutin; tricosan-2-one; acacetin; p-cymene; β-sitosterol; 1,8-cineole; apigenin; α-pinene; β-carotene; β-pinene; tannins; thymol; and hexacosanol. In total, 22 flavonoids, maltol glucoside, phenolics, seven cyanogenic glycosides, monoterpenoids, sesquiterpenoids, triterpenoids, the polyterpene ficaprenol-11, fatty acids, and caffeine have been found in the genus Turnera. Damiana's anxiolytic properties might be due to apigenin. Viable plant and seed material sold as T. diffusa from both private and commercial sources largely turns out to be misidentified Turnera ulmifolia (a.k.a. "False Damiana"), a closely related species. This widespread issue has been noted by the scientific community, and has created much confusion among both amateur and professional horticulturists alike. While T. ulmifolia is similar in appearance, its chemical constituents and ethnobotanical uses are distinctly different. -
Origins of Six Species of Butterflies Migrating Through Northeastern
diversity Article Origins of Six Species of Butterflies Migrating through Northeastern Mexico: New Insights from Stable Isotope (δ2H) Analyses and a Call for Documenting Butterfly Migrations Keith A. Hobson 1,2,*, Jackson W. Kusack 2 and Blanca X. Mora-Alvarez 2 1 Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 0H3, Canada 2 Department of Biology, University of Western Ontario, Ontario, ON N6A 5B7, Canada; [email protected] (J.W.K.); [email protected] (B.X.M.-A.) * Correspondence: [email protected] Abstract: Determining migratory connectivity within and among diverse taxa is crucial to their conservation. Insect migrations involve millions of individuals and are often spectacular. However, in general, virtually nothing is known about their structure. With anthropogenically induced global change, we risk losing most of these migrations before they are even described. We used stable hydrogen isotope (δ2H) measurements of wings of seven species of butterflies (Libytheana carinenta, Danaus gilippus, Phoebis sennae, Asterocampa leilia, Euptoieta claudia, Euptoieta hegesia, and Zerene cesonia) salvaged as roadkill when migrating in fall through a narrow bottleneck in northeast Mexico. These data were used to depict the probabilistic origins in North America of six species, excluding the largely local E. hegesia. We determined evidence for long-distance migration in four species (L. carinenta, E. claudia, D. glippus, Z. cesonia) and present evidence for panmixia (Z. cesonia), chain (Libytheana Citation: Hobson, K.A.; Kusack, J.W.; Mora-Alvarez, B.X. Origins of Six carinenta), and leapfrog (Danaus gilippus) migrations in three species. Our investigation underlines Species of Butterflies Migrating the utility of the stable isotope approach to quickly establish migratory origins and connectivity in through Northeastern Mexico: New butterflies and other insect taxa, especially if they can be sampled at migratory bottlenecks. -
Annotated Checklist of the Butterflies of Bentsen-Rio Grande Valley State
AN ANNOTATED CHECKLIST OF THE BUTTERFLIES (LEPIDOPTERA: RHOPALOCERA) OF BENTSEN-RIO GRANDE STATE VALLEY PARK AND VICINITY JUNE, 1974 Published by TEXAS PARKS & WILDLIFE DEPARTMENT BENTSEN-RIO GRANDE VALLEY STATE PARK P.O. 30X 988; MISSION, TEXAS 78572 INTRODUCTION The species listed here in are primarily a result of the collecting by the authors during the period 1972-1973. Certain important records of the previous several years are also included. Additionally, the checklist incorporates records of a number of other lepidopterists. The primary focus of the checklist, then, is upon recent collecting, rather than being an attempt to list all known records from the Mid-Valley area. All lepidopterists collecting in the park and vicinity are urged to send copies of their records to the authors and/or the park authorities. A number of species on the list have been taken in Hidalgo Co. but not yet within the actual confines of the park; the annotations will indicate which species these are. Some of these have been taken at Santa Ana National Wildlife Refuge, approximately thirty miles down river, in habitats similar to those within the park. Others have been taken within several miles of the park, in nearby towns and along roadsides. These species can be reasonably expected to occur in the park, and their inclusion upon this list should alert the collector to their possible presence. The annotations have been kept necessarily brief. They are intended to aid the visiting lepidopterist in evaluating the significance of his catches. Local larval food plants are given where known. Much, however, is still to be learned regarding the life histories of even some of the commoner species. -
INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a Synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a Historical Sketch
ZOOLOGÍA-TAXONOMÍA www.unal.edu.co/icn/publicaciones/caldasia.htm Caldasia 31(2):407-440. 2009 HACIA UNA SÍNTESIS DE LOS PAPILIONOIDEA (INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a historical sketch JOSÉ LUIS SALINAS-GUTIÉRREZ El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] CLAUDIO MÉNDEZ Escuela de Biología, Universidad de San Carlos, Ciudad Universitaria, Campus Central USAC, Zona 12. Guatemala, Guatemala. [email protected] MERCEDES BARRIOS Centro de Estudios Conservacionistas (CECON), Universidad de San Carlos, Avenida La Reforma 0-53, Zona 10, Guatemala, Guatemala. [email protected] CARMEN POZO El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] JORGE LLORENTE-BOUSQUETS Museo de Zoología, Facultad de Ciencias, UNAM. Apartado Postal 70-399, México D.F. 04510; México. [email protected]. Autor responsable. RESUMEN La riqueza biológica de Mesoamérica es enorme. Dentro de esta gran área geográfi ca se encuentran algunos de los ecosistemas más diversos del planeta (selvas tropicales), así como varios de los principales centros de endemismo en el mundo (bosques nublados). Países como Guatemala, en esta gran área biogeográfi ca, tiene grandes zonas de bosque húmedo tropical y bosque mesófi lo, por esta razón es muy importante para analizar la diversidad en la región. Lamentablemente, la fauna de mariposas de Guatemala es poco conocida y por lo tanto, es necesario llevar a cabo un estudio y análisis de la composición y la diversidad de las mariposas (Lepidoptera: Papilionoidea) en Guatemala. -
BUTTERFLIES in Thewest Indies of the Caribbean
PO Box 9021, Wilmington, DE 19809, USA E-mail: [email protected]@focusonnature.com Phone: Toll-free in USA 1-888-721-3555 oror 302/529-1876302/529-1876 BUTTERFLIES and MOTHS in the West Indies of the Caribbean in Antigua and Barbuda the Bahamas Barbados the Cayman Islands Cuba Dominica the Dominican Republic Guadeloupe Jamaica Montserrat Puerto Rico Saint Lucia Saint Vincent the Virgin Islands and the ABC islands of Aruba, Bonaire, and Curacao Butterflies in the Caribbean exclusively in Trinidad & Tobago are not in this list. Focus On Nature Tours in the Caribbean have been in: January, February, March, April, May, July, and December. Upper right photo: a HISPANIOLAN KING, Anetia jaegeri, photographed during the FONT tour in the Dominican Republic in February 2012. The genus is nearly entirely in West Indian islands, the species is nearly restricted to Hispaniola. This list of Butterflies of the West Indies compiled by Armas Hill Among the butterfly groupings in this list, links to: Swallowtails: family PAPILIONIDAE with the genera: Battus, Papilio, Parides Whites, Yellows, Sulphurs: family PIERIDAE Mimic-whites: subfamily DISMORPHIINAE with the genus: Dismorphia Subfamily PIERINAE withwith thethe genera:genera: Ascia,Ascia, Ganyra,Ganyra, Glutophrissa,Glutophrissa, MeleteMelete Subfamily COLIADINAE with the genera: Abaeis, Anteos, Aphrissa, Eurema, Kricogonia, Nathalis, Phoebis, Pyrisitia, Zerene Gossamer Wings: family LYCAENIDAE Hairstreaks: subfamily THECLINAE with the genera: Allosmaitia, Calycopis, Chlorostrymon, Cyanophrys, -
A Preliminary List of the Vascular Plants and Wildlife at the Village Of
A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths. -
Final Lower Rio Grande Valley and Santa Ana National Wildlife
Final Lower Rio Grande Valley and Santa Ana National Wildlife Refuges Comprehensive Conservation Plan September 1997 (Reprint March 1999) U.S. Fish and Wildlife Service U.S. Department of the Interior Cover Artwork by Brian Cobble Table of Contents VISION........................................................................................................................................... 5 Executive Summary................................................................................................................... 6 1.0 Introduction and Regional Setting................................................................................. 8 1.1 LRGV Challenges............................................................................................... 8 2.0 Planning Perspectives and Considerations................................................................ 9 2.1 National Wildlife Refuge System ................................................................... 9 2.2 The Service & Ecosystem Management ...................................................... 9 2.3 Refuge Complex and Management Districts........................................... 10 2.4 Laguna Atascosa NWR -- A Partner with LRGV NWR............................ 10 2.5 Planning Perspectives.................................................................................... 10 2.6 The Issues.......................................................................................................... 11 2.7 The Need for Action........................................................................................ -
Woody and Herbaceous Plants Native to Haiti for Use in Miami-Dade Landscapes1
Woody and Herbaceous Plants Native to Haiti For use in Miami-Dade Landscapes1 Haiti occupies the western one third of the island of Hispaniola with the Dominican Republic the remainder. Of all the islands within the Caribbean basin Hispaniola possesses the most varied flora after that of Cuba. The plants contained in this review have been recorded as native to Haiti, though some may now have been extirpated due in large part to severe deforestation. Less than 1.5% of the country’s original tree-cover remains. Haiti’s future is critically tied to re- forestation; loss of tree cover has been so profound that exotic fast growing trees, rather than native species, are being used to halt soil erosion and lessen the risk of mudslides. For more information concerning Haiti’s ecological plight consult references at the end of this document. For present purposes all of the trees listed below are native to Haiti, which is why non-natives such as mango (the most widely planted tree) and other important trees such as citrus, kassod tree (Senna siamea) and lead tree (Leucanea leucocephala) are not included. The latter two trees are among the fast growing species used for re-forestation. The Smithsonian National Museum of Natural History’s Flora of the West Indies was an invaluable tool in assessing the range of plants native to Haiti. Not surprisingly many of the listed trees and shrubs 1 John McLaughlin Ph.D. U.F./Miami-Dade County Extension Office, Homestead, FL 33030 Page | 1 are found in other parts of the Caribbean with some also native to South Florida. -
Ecology, Population Biology and Mortality of Euptoieta Hegesia Cramer (Nymphalidae) on Jamaica
}<mrnal <1 the Lepidopterists' Society 52(1), 1998, 9-39 ECOLOGY, POPULATION BIOLOGY AND MORTALITY OF EUPTOIETA HEGESIA CRAMER (NYMPHALIDAE) ON JAMAICA PHILLIP J. SCHAPPERT] AND JOEL S. SHORE Department of Biology, York University, 4700 Keele Street, North York, Ontario M3J IP3, Canada ABSTRACT. We examine the ecology, population biology and potential sources of mortality of Euptoieta hegesia, a tropical lowland butterfly from Jamaica, using a combina tion of captive rearing, studies of natural populations, and experimental approaches. We provide detailed observations of the life cycle and methods for captive rearing of this spe cies. We assess the relative performance of larvae on primary and secondary hostplants, distribution of larvae on the primary hostplant, hostplant population utilization, and the distribution of E. hegesia on the island. A mark-release-recapture study was conducted to estimate population parameters and we recorded sex, size, age (as estimated by wing wear), and wing damage sustained by the butterflies prior to their initial capture. We pro vide evidence that Tumera ulmifdia is the plimary hostplant of K hegesia on Jamaica and that butterfly population size is not limited by the availability of hostplants. These short lived butterflies appear to be residents of discrete hostplant populations and experience high mortality levels. Females are damaged more frequently, show more total damage and more frequent symmetrical hindwing damage (attributablc to ground-based predators) than do males. Wc compare the results of the population study with available studies of other tropical butterflies and suggest that lowland butterfly population structure and dy namics are Significantly different from that of rainforest species. -
Architecture and Robustness of Mutualistic Networks with Multiple Interaction Types
Downloaded from http://rspb.royalsocietypublishing.org/ on November 23, 2016 Unravelling Darwin’s entangled bank: rspb.royalsocietypublishing.org architecture and robustness of mutualistic networks with multiple interaction types Wesley Da´ttilo1, Nubia Lara-Rodrı´guez2, Pedro Jordano3, Research Paulo R. Guimara˜es Jr4, John N. Thompson5, Robert J. Marquis6, Cite this article: Da´ttilo W et al. 2016 Lucas P. Medeiros4, Raul Ortiz-Pulido7, Maria A. Marcos-Garcı´a2 Unravelling Darwin’s entangled bank: and Victor Rico-Gray8 architecture and robustness of mutualistic 1 networks with multiple interaction types. Red de Ecoetologı´a, Instituto de Ecologı´a A.C., Carretera Antigua a Coatepec 351, El Haya, 91070 Xalapa, Veracruz, Mexico Proc. R. Soc. B 283: 20161564. 2Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, 03690 Alicante, Spain http://dx.doi.org/10.1098/rspb.2016.1564 3Integrative Ecology Group, Estacio´n Biolo´gica de Don˜ana, 41092 Sevilla, Spain 4Departamento de Ecologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, 05508-900 Sa˜o Paulo, Brazil 5Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95064, USA 6 Received: 12 July 2016 Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri—St Louis, St Louis, MO 63121-4499, USA Accepted: 28 October 2016 7Centro de Investigaciones Biolo´gicas, Universidad Auto´noma del Estado de Hidalgo, Pachuca, Hidalgo 42001, Mexico 8Instituto de Neuroetologı´a, Universidad Veracruzana, 91190 Xalapa, Veracruz, Mexico WD, 0000-0002-4758-4379 Subject Areas: behaviour, ecology, evolution Trying to unravel Darwin’s entangled bank further, we describe the architec- ture of a network involving multiple forms of mutualism (pollination Keywords: by animals, seed dispersal by birds and plant protection by ants) and evaluate whether this multi-network shows evidence of a structure that coupled networks, keystone mutualists, promotes robustness. -
Lepidoptera: Nymphalidae) THOMAS J
Morphology, molecules and fritillaries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae) THOMAS J. SIMONSEN, NIKLAS WAHLBERG, ANDREW V. Z. BROWER and RIENK de JONG Insect Syst.Evol. Simonsen, T. J., Wahlberg, N. , Brower, A. V. Z. & de Jong, R.: Morphology, molecules and fritillaries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae). Insect Syst. Evol. 37: 405-418. Copenhagen, December, 2006. ISSN 1399-560X. We examine the phylogenetic relationships among 29 species of Argynnini based on 141 pre- viously published morphological characters and new data from the mitochondrial gene COI and the two nuclear genes EF-1a and wingless. We investigate the stability and robustness of the resulting phylogenetic hypotheses through various combinations of the 4 functionally sep- arate datasets. Increasing the number of datasets in combined analyses led to increased sup- port for clades, sometimes substantially. We find that the tribe Argynnini is a well-supported, robust, monophyletic clade with the following internal subtribal structure: (Euptoietina (Yrameina (Boloriina Argynnina))). Our analyses support the classification of argynnine species into six robust and stable genera: Euptoieta, Yramea, Boloria, Issoria, Brenthis and Argynnis. We suggest that for moderate amounts of data, a total evidence approach is always best. Thomas J. Simonsen, Department of Entomology, Zoological Museum, University of Copen- hagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark* Niklas Wahlberg, Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden Andrew V. Z. Brower, Department of Biology, Middle Tennessee State University, Murfrees- boro, TN 37132, USA Rienk de Jong, National Museum of Natural History, Department of Entomology, PO Box 9517, 2300 RA Leiden, The Netherlands *Corresponding author. -
Explosive Radiation of Malpighiales Supports a Mid-Cretaceous Origin of Modern Tropical Rain Forests
Explosive Radiation of Malpighiales Supports a Mid-Cretaceous Origin of Modern Tropical Rain Forests The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Davis, Charles C., Campbell O. Webb, Kenneth J. Wurdack, Carlos A. Jaramillo, and Michael J. Donoghue. 2005. Explosive radiation of Malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. American Naturalist 165(3): E36-E65. Published Version http://dx.doi.org/10.1086/428296 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2710469 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA vol. 165, no. 3 the american naturalist march 2005 E-Article Explosive Radiation of Malpighiales Supports a Mid-Cretaceous Origin of Modern Tropical Rain Forests Charles C. Davis,1,* Campbell O. Webb,2,† Kenneth J. Wurdack,3,‡ Carlos A. Jaramillo,4,§ and Michael J. Donoghue2,k 1. Department of Ecology and Evolutionary Biology, University of Keywords: biome evolution, fossils, K/T boundary, Malpighiales, pe- Michigan Herbarium, Ann Arbor, Michigan 48108-2287; nalized likelihood, tropical rain forest. 2. Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut 06520; 3. Department of Botany and Laboratories of Analytical Biology, Modern tropical rain forests are one of the most important Smithsonian Institution, P.O. Box 37012, National Museum of and species rich biomes on the planet.