Isolation of Seselin from Clausena Anisata (Rutaceae) Leaves and Its Effects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antimicrobial Activity of Essential Oil and Furanocoumarin Fraction of Three Heracleum Species
Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 74 No. 2 pp. 723ñ728, 2017 ISSN 0001-6837 Polish Pharmaceutical Society ANTIMICROBIAL ACTIVITY OF ESSENTIAL OIL AND FURANOCOUMARIN FRACTION OF THREE HERACLEUM SPECIES JOANNA POLITOWICZ1*, ELØBIETA G BAROWSKA2, JAROS£AW PRO∆K”W3, STANIS£AW J. PIETR2 and ANTONI SZUMNY1 1Wroclaw University of Environmental And Life Sciences, Department of Chemistry, C.K. Norwida 25, 50-375 Wroc≥aw, Poland 2Wroclaw University of Environmental And Life Sciences, Department of Plant Protection, Grunwaldzka 53, 50-375 Wroc≥aw, Poland 3Wroclaw University of Environmental And Life Sciences, Department of Plant Biology, Koøuchowska 5b, 51-631 Wroc≥aw, Poland Keywords: essential oil, antimicrobial activity, furanocoumarin, Heracleum The genus Heracleum L. belongs to the family Two of them, H. mantegazzianum and H. per- Apiaceae and consists of about 60-70 species, that sicum, are widely used in folklore medicine for the occur mainly in the temperate zone of Eurasia (1-3). treatment of many disorders and have pharmacolog- In Europe there are about 9-11 species (4). In the ical activities: antibacterial, cardiovascular, antican- paper we describe 3 taxa belonging to the genus. didal, analgesic, cytotoxic and anti-inflammatory Three of them are called together as ìgiant (6). Moreover, the fruits of H. persicum are used as Heracleumsî (hogweeds) and are alien species for a spice and flavoring ingredient in food products (7). Europe, and simultaneously, they are commonly dis- H. mantegazzianum is used as an ornamental plant tributed and becoming invasive there, i.e., Heracleum and also for animal feeding in North America and sosnowskyi Manden., H. -
The Health Benefits of Grapefruit Furanocoumarins1 Yu Wang and Laura Reuss2
FSHN18-8 The Health Benefits of Grapefruit Furanocoumarins1 Yu Wang and Laura Reuss2 Although not recommended for use with certain medica- tions, grapefruits are known for their numerous health benefits. Both these effects come from, in part, natural chemicals called furanocoumarins. Although these biologically active plant compounds, or phytochemicals, are beneficial to overall health, some compounds have been shown to interact with numerous medications, causing adverse effects known as the “grapefruit juice effect.” Furanocoumarins and flavanones are the major compounds responsible in these drug interactions. Several studies have reported that furanocoumarins present in grapefruit affect absorption of some medications by interfering with a cer- tain liver and intestinal enzyme (Guo et al. 2000). However, numerous studies have shown that compounds in citrus fruits, including furanocoumarins, reduce inflammation and stop cancer cells from multiplying. Furthermore, they Figure 1. Furanocoumarins in grapefruit originate from psoralen and include bergaptol, bergapten, bergamottin, and epoxybergamottin. may also help repair damaged DNA that would otherwise Red, Ruby Red, Ray Red, Star Ruby, Thompson Pink, Marsh contribute to the development of tumors. A variety of White, and Duncan (Girennavar et al. 2008). furanocoumarins can be found in all types of citrus, but those found in grapefruit possess several health-promoting Grapefruits have long been considered a part of a healthy properties that include anti-inflammatory, anti-cancer, diet due to being rich in vitamins, minerals, fiber, and anti-obesity, and bone-building effects (Madrigal-Bujaidar phytochemicals, such as flavonoid and furanocoumarins. It et al. 2013; Mahgoub 2002; Chudnovskiy et al. 2014). is these phytochemicals, in particular the furanocoumarins, that demonstrate anti-inflammatory, anti-cancer, and The furanocoumarins found in grapefruit all originate anti-oxidative effects (Lee et al. -
Bioorganic & Medicinal Chemistry Letters
Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com/locate/bmcl Synthesis of coumarin derivatives and their cytoprotective effects on t-BHP- induced oxidative damage in HepG2 cells Tomomi Andoa, Mina Nagumob, Masayuki Ninomiyaa,b, Kaori Tanakac,d, Robert J. Linhardte, Mamoru Koketsua,b,⁎ a Department of Materials Science and Technology, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan b Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan c Division of Anaerobe Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan d United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan e Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States ARTICLE INFO ABSTRACT Keywords: Coumarins are ubiquitous in higher plants and exhibit various biological actions. The aim of this study was to Coumarin investigate the structure-activity relationships of coumarin derivatives on tert-butyl hydroperoxide (t-BHP)-in- Cytoprotection duced oxidative damage in human hepatoma HepG2 cells. A series of coumarin derivatives were prepared and Human hepatoma HepG2 cell assessed for their cytoprotective effects. Among these, a caffeoyl acid-conjugated dihydropyranocoumarin de- rivative, caffeoyllomatin, efficiently protected against cell damage -
Distribution of Furanocoumarins in Grapefruit Juice Fractions
5158 J. Agric. Food Chem. 2005, 53, 5158−5163 Distribution of Furanocoumarins in Grapefruit Juice Fractions JOHN A. MANTHEY* AND BEÄ LA S. BUSLIG Citrus and Subtropical Products Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 600 Avenue S N.W., Winter Haven, Florida 33881 The reported effects of grapefruit (Citrus paradisi Macf.) juice on oral bioavailability of certain prescription drugs have led to the discovery of the inhibition by compounds in grapefruit of cytochrome P450 3A4 (CYP3A4) in the intestinal wall and liver. Recent evidence indicates that furanocoumarins related to bergamottin [5-[(3′,7′-dimethyl-2′,6′-octadienyl)oxy]psoralen] are primarily responsible for the grapefruit effect, yet the exact mechanisms and roles that specific compounds play in this effect are still uncertain. In the current experiments freshly extracted grapefruit juice was separated into four fractions, consisting of raw finished juice (∼5% fine pulp), centrifugal retentate (∼35% fine pulp), centrifuged supernatant (<1% pulp), and coarse finisher pulp. The relative concentrations of furanocoumarins in each of these grapefruit juice fractions were measured by HPLC-MS. These measurements showed that the centrifugal retentate had the highest furanocoumarin content, containing 892 ppm of bergamottin, 628 ppm of 6′,7′-dihydroxybergamottin, 116 ppm of 6′,7′- epoxybergamottin, 105 ppm of 7-geranyloxycoumarin, and ∼467 ppm of furanocoumarin dimers. These high furanocoumarin concentrations make this fraction a useful starting material for preparative- scale isolations of these compounds. MS analysis of this furanocoumarin-enriched fraction provided evidence of additional furanocoumarins in grapefruit juice that remain to be fully characterized and evaluated for their roles in the grapefruit-drug interactions. -
White and Colored Grapefruit Juice Produce Similar Pharmacokinetic Interactions
ORIGINAL ARTICLES Clinical Pharmaceutics Laboratory, Department of Pharmaceutics, Meiji Pharmaceutical University, Tokyo, Japan White and colored grapefruit juice produce similar pharmacokinetic interactions Y. Uesawa, M. Abe, K. Mohri Received March 4, 2008, accepted March 28, 2008 Dr. Yoshihiro Uesawa, Clinical Pharmaceutics Laboratory, Department of Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan [email protected] Pharmazie 63: 598–600 (2008) doi: 10.1691/ph.2008.8550 Colored (pink and red) grapefruit pulp contains lower amounts of the furanocoumarin derivatives that cause pharmacokinetic interactions than white grapefruit pulp. However, few studies have ex- amined interactions with colored juice products. Therefore, we examined the potential interactions of both white and colored grapefruit products by measuring the concentrations of furanocoumarin derivatives and inhibition of the metabolizing cytochrome P450 (CYP) 3A enzymes, the target of the furanocoumarins. We measured concentrations of three major furanocoumarin derivatives, ber- gaptol, bergamottin, and 60,70-dihydroxybergamottin, with high-performance liquid chromatography in 21 brands of grapefruit juice sold in Japan, including 14 white and 7 colored brands. The mean difference in bergaptol, bergamottin, and 60,70-dihydroxybergamottin concentrations in white grape- fruit juice samples was 1.59, 0.902, and 1.03 times, respectively, the amounts in colored samples. White samples inhibited CYP3A-mediated testosterone-6b oxidation in human liver microsomes by 1.04 and 0.922 times (whole juice and furanocoumarin, respectively) the inhibition by colored juice. Thus, colored grapefruit juice may produce drug interactions at the same rate as white grapefruit juice. 1. Introduction 2. Investigations, results and discussion 2.1. -
Antiproliferative Effect of Angelica Archangelica Fruits Steinthor Sigurdssona,*, Helga M
Antiproliferative Effect of Angelica archangelica Fruits Steinthor Sigurdssona,*, Helga M. Ögmundsdottirb, and Sigmundur Gudbjarnasona a Science Institute, University of Iceland, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland. Fax: +354 525 4886. E-mail: [email protected] b Molecular and Cell Biology Research Laboratory, Icelandic Cancer Society, Skogarhlid 8, IS-101 Reykjavik, Iceland * Author for correspondence and reprint requests Z. Naturforsch. 59c, 523Ð527 (2004); received December 21, 2003/February 9, 2004 The aim of this work was to study the antiproliferative effect of a tincture from fruits of Angelica archangelica and the active components using the human pancreas cancer cell line PANC-1 as a model. Significant dose-dependent antiproliferative activity was observed in µ the tincture with an EC50 value of 28.6 g/ml. Strong antiproliferative activity resulted from the two most abundant furanocoumarins in the tincture, imperatorin and xanthotoxin. The contribution of terpenes to this activity was insignificant. Imperatorin and xanthotoxin µ µ proved to be highly antiproliferative, with EC50 values of 2.7 g/ml and 3.7 g/ml, respec- tively, equivalent to 10 and 17 µm. The results indicate that furanocoumarins account for most of the antiproliferative activity of the tincture. Key words: Angelica archangelica, Xanthotoxin, Imperatorin Introduction their inhibiting effect on cytochrome P450, result- Angelica archangelica has been long and widely ing in drug-interactions (Guo et al., 2000; Koenigs used in folk medicine, and it is one of the most and Trager, 1998; Zhang et al., 2001). Imperatorin respected medicinal herbs in Nordic countries, has also been found to decrease chemically in- where it was cultivated during the Middle Ages, duced DNA adduct formation and may thus pos- and exported to other parts of Europe. -
Diversification of Furanocoumarin-Metabolizing Cytochrome P450 Monooxygenases in Two Papilionids: Specificity and Substrate Encounter Rate
Colloquium Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: Specificity and substrate encounter rate Weimin Li*, Mary A. Schuler†, and May R. Berenbaum*‡ Departments of *Entomology and †Cell and Structural Biology, University of Illinois at Urbana–Champaign, Urbana, IL 61801 Diversification of cytochrome P450 monooxygenases (P450s) is such as steroids and fatty acids. Subsequent reciprocal adaptive thought to result from antagonistic interactions between plants selection between plants and herbivorous animals was associated and their herbivorous enemies. However, little direct evidence with the rapid diversification of P450s initiating 400 million years demonstrates the relationship between selection by plant toxins ago, concomitant with the colonization of terrestrial habitats by and adaptive changes in herbivore P450s. Here we show that the plants and animals. Plants have used P450s to produce defense furanocoumarin-metabolic activity of CYP6B proteins in two spe- compounds (allelochemicals), and herbivorous animals, includ- cies of swallowtail caterpillars is associated with the probability of ing insects, have used P450s to metabolize the toxins produced encountering host plant furanocoumarins. Catalytic activity was by plants. Multiple duplication and divergence events are compared in two closely related CYP6B4 and CYP6B17 groups in the thought to have allowed xenobiotic-metabolizing P450s, such as polyphagous congeners Papilio glaucus and Papilio canadensis. CYP2 and CYP3 in mammals and CYP6 in insects, to diversify Generally, P450s from P. glaucus, which feeds occasionally on and acquire new functions. Insect genome projects have revealed furanocoumarin-containing host plants, display higher activities tremendous diversity in putative xenobiotic-metabolizing P450 against furanocoumarins than those from P. canadensis, which families, with approximately half of the 90 P450s in the Dro- normally does not encounter furanocoumarins. -
Comparative Study of the Production of Coumarins and Furanocoumarins In
Comparative study of the production of coumarins and furanocoumarins in three Ruteae species Saida Bergheul, Mariana Limones-Mendez, Jeremy Grosjean, Alain Hehn, Alexandre Olry, Abdellah Berkani To cite this version: Saida Bergheul, Mariana Limones-Mendez, Jeremy Grosjean, Alain Hehn, Alexandre Olry, et al.. Comparative study of the production of coumarins and furanocoumarins in three Ruteae species. Indian Journal of Natural Products and Resources, New Delhi National Institute of Science Commu- nication and Information Resources, 2019, 10 (2), pp.137 - 142. hal-02917590 HAL Id: hal-02917590 https://hal.univ-lorraine.fr/hal-02917590 Submitted on 19 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Indian Journal of Natural Products and Resources Vol. 10(2), June 2019, pp. 137-142 Comparative study of the production of coumarins and furanocoumarins in three Ruteae species Saida Bergheul1,, Mariana Limones-Méndez2, Jérémy Grosjean2, Alain Hehn2, Alexandre Olry2* and Abdellah Berkani1 1Plant Protection Laboratory, Faculty of Sciences and the Natural Sciences and Life, University of Mostaganem, BP300, 27000 Mostaganem, Algeria 2Université de Lorraine, INRA-LAE - F54000 Nancy, France Received 19 April 2018; Revised 04 April 2019 Within specialized metabolites, coumarins and furanocoumarins represent a wide group of structurally diverse compounds and are specially produced in plants belonging to the Rutaceae family. -
Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals Found in Ammi Majus
Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals found in Ammi majus Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 5-HYDROXYMARMESIN Plant -- 10 5-METHOXY-PSORALEN Plant -- 0 5-[2-(3- Plant 1000.0 -- METHYLBUTYROXY)-3- HYDROXY-3- METHYLBUTOXY]-PS. 1 5-[2-(ACETOXY)-3- Seed 1000.0 -- HYDROXY-3- METHYLBUTOXY]- PSORALEN 21 8-METHOXY-PSORALEN Plant -- 0 8-[2-(3- Plant 100.0 -- METHYLBUTYROXY)-3- HYDROXY-3- METHYLBUTOXY]-PS. 4 ALLOIMPERATORIN Seed 1.0 -- 0 AMMAJIN Seed -- 0 AMMIDIN Plant -- 0 AMMIFURIN Seed -- 0 AMMIRIN Seed -- 1 AMMOIDIN Plant -- 0 ANGALCIN Plant -- 17 ANGELICIN Plant -- 0 ANGENOMALIN Plant -- 26 BERGAPTEN Seed 400.0 3100.0 0.22232578675103337 -- 4 CALCIUM-OXALATE Seed -- 0 CAMESOL Plant -- 0 CAMPESELOL Plant -- 0 CAMPESENIN Plant -- 0 CAMPESIN Plant -- 1 CELLULOSE Seed 224000.0 1.1650981847855737 -- 0 COUMARINIC-ACID Plant -- 0 DELTOIN Plant -- Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 DIHYDROOROSELSELONE Plant -- 0 DL-PIPERITONE Seed 1000.0 -- 0 EO(ASS.) Seed 10000.0 -- 0 FAT Seed 129400.0 -0.71629528571714 -- 0 FURANOCHROMONE Plant -- 0 FURANOCOUMARIN Plant -- 9 FUROCOUMARIN Plant -- 0 GLYCOSIDES Seed 10000.0 -1.1706691766863613 -- 2 HERACLENIN Seed 700.0 -- 25 IMPERATORIN Seed 100.0 8000.0 1.111306994003492 -- 8 ISOIMPERATORIN Seed -- 15 ISOPIMPINELLIN Seed -- 3 ISOQUERCETIN Seed -- 11 ISORHAMNETIN Plant -- 1 ISORHAMNETIN-3- Leaf -- GLUCOSIDE 0 ISORHAMNETIN-3- Leaf -- GLUCURONIDE 2 ISORHAMNETIN-3- Leaf -- RUTINOSIDE 0 KAEMPFEROL-7-O- -
Drug Metabolism, Pharmacokinetics and Bioanalysis
Drug Metabolism, Pharmacokinetics and Bioanalysis Edited by Hye Suk Lee and Kwang-Hyeon Liu Printed Edition of the Special Issue Published in Pharmaceutics www.mdpi.com/journal/pharmaceutics Drug Metabolism, Pharmacokinetics and Bioanalysis Drug Metabolism, Pharmacokinetics and Bioanalysis Special Issue Editors Hye Suk Lee Kwang-Hyeon Liu MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Hye Suk Lee Kwang-Hyeon Liu The Catholic University of Korea Kyungpook National University Korea Korea Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Pharmaceutics (ISSN 1999-4923) in 2018 (available at: https://www.mdpi.com/journal/ pharmaceutics/special issues/dmpk and bioanalysis) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-916-6 (Pbk) ISBN 978-3-03897-917-3 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... vii Preface to ”Drug Metabolism, Pharmacokinetics and Bioanalysis” ................. ix Fakhrossadat Emami, Alireza Vatanara, Eun Ji Park and Dong Hee Na Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals Reprinted from: Pharmaceutics 2018, 10, 131, doi:10.3390/pharmaceutics10030131 ........ -
Effects on Cyclosporine Disposition, Enterocyte CYP3A4, and P-Glycoprotein
PHARMACOKINETICS AND DRUG DISPOSITION 6′,7′-Dihydroxybergamottin in grapefruit juice and Seville orange juice: Effects on cyclosporine disposition, enterocyte CYP3A4, and P-glycoprotein Background: 6′,7′-Dihydroxybergamottin is a furanocoumarin that inhibits CYP3A4 and is found in grape- fruit juice and Seville orange juice. Grapefruit juice increases the oral bioavailability of many CYP3A4 substrates, including cyclosporine (INN, ciclosporin), but intestinal P-glycoprotein may be a more impor- tant determinant of cyclosporine availability. Objectives: To evaluate the contribution of 6′,7′-dihydroxybergamottin to the effects of grapefruit juice on cyclosporine disposition and to assess the role of CYP3A4 versus P-glycoprotein in this interaction. Methods: The disposition of oral cyclosporine was compared in healthy subjects after ingestion of water, grapefruit juice, and Seville orange juice. Enterocyte concentrations of CYP3A4 were measured in 2 indi- viduals before and after treatment with Seville orange juice. The effect of 6′,7′-dihydroxybergamottin on P-glycoprotein was assessed in vitro. Results: Area under the whole blood concentration–time curve and peak concentration of cyclosporine were increased by 55% and 35%, respectively, with grapefruit juice (P < .05). Seville orange juice had no influence on cyclosporine disposition but reduced enterocyte concentrations of CYP3A4 by an average of 40%. 6′,7′-Dihydroxybergamottin did not inhibit P-glycoprotein at concentrations up to 50 µmol/L. Conclusions: 6′,7′-Dihydroxybergamottin is not responsible for the effects of grapefruit juice on cyclosporine. Because the interaction did not occur with Seville orange juice despite reduced enterocyte concentrations of CYP3A4, inhibition of P-glycoprotein activity by other compounds in grapefruit juice may be responsi- ble. -
Cosmetic Ingredient Hotlist
Cosmetic Ingredient Hotlist June 2010 List of Prohibited and Restricted Cosmetic Ingredients (The Cosmetic Ingredient Hotlist) Current Hotlist: June 2010 This June 2010 Cosmetic Ingredient Hotlist replaces the September 2009 version. Please refer to the document entitled “June 2010 changes to the Cosmetic Ingredient Hotlist” to view the changes made. To help cosmetic manufacturers satisfy the requirements for sale of a cosmetic, Health Canada developed the Hotlist - a list of substances that are restricted and prohibited in cosmetics. The Hotlist takes its basis from the following sections of legislation: • Section 2 of the Food and Drugs Act addresses the definitions of products regulated under the Act. Should an ingredient lack a cosmetic purpose (or functional purpose in a cosmetic formulation) it should not be used in a cosmetic product. For example, fluoride in oral care products has no cosmetic purpose to cleanse, improve or alter the appearance of the body. Its purpose is to prevent dental caries (a disease state), which is therapeutic in nature. It is subsequently classified as a drug (in this case, a natural health product) ingredient. Therefore, fluoride is inappropriate in cosmetic oral care products, and is indicated as such on the Hotlist. • Section 16 of the Food and Drugs Act states, among other things, that no person shall sell a cosmetic product that has in it any substance that may injure the health of the user when the cosmetic is used according to its customary method. Section 16 permits Health Canada to restrict or prohibit any ingredient it deems unsafe. Should an ingredient become of concern, it is not necessary for the substance to be indicated on the Hotlist in order for Health Canada to take action.