In Situ Modelling of Biofilm Formation in a Hydrothermal Spring Cave
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Changes in Bacterioplankton Communities Resulting from Direct and Indirect Interactions with Trace Metal Gradients in an Urbaniz
Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area Clément Coclet, Cédric Garnier, Gaël Durrieu, Dario Omanović, Sébastien d’Onofrio, Christophe Le Poupon, Jean-Ulrich Mullot, Jean-François Briand, Benjamin Misson To cite this version: Clément Coclet, Cédric Garnier, Gaël Durrieu, Dario Omanović, Sébastien d’Onofrio, et al.. Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized Marine Coastal Area. Frontiers in Microbiology, Frontiers Media, 2019, 10, 10.3389/fmicb.2019.00257. hal-02049263 HAL Id: hal-02049263 https://hal.archives-ouvertes.fr/hal-02049263 Submitted on 26 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-10-00257 February 20, 2019 Time: 17:14 # 1 ORIGINAL RESEARCH published: 22 February 2019 doi: 10.3389/fmicb.2019.00257 Changes in Bacterioplankton Communities Resulting From Direct and Indirect Interactions With Trace Metal Gradients in an Urbanized -
Thiobacillus Denitrificans
Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate by Han Zhou A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Han Zhou 2014 ii Nitrate-Dependent, Neutral pH Bioleaching of Ni from an Ultramafic Concentrate Han Zhou Master of Applied Science Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract This study explores the possibility of utilizing bioleaching techniques for nickel extraction from a mixed sulfide ore deposit with high magnesium content. Due to the ultramafic nature of this material, well-studied bioleaching technologies, which rely on acidophilic bacteria, will lead to undesirable processing conditions. This is the first work that incorporates nitrate-dependent bacteria under pH 6.5 environments for bioleaching of base metals. Experiments with both defined bacterial strains and indigenous mixed bacterial cultures were conducted with nitrate as the electron acceptor and sulfide minerals as electron donors in a series of microcosm studies. Nitrate consumption, sulfate production, and Ni released into the aqueous phase were used to track the extent of oxidative sulfide mineral dissolution; taxonomic identification of the mixed culture community was performed using 16S rRNA gene sequencing. Nitrate-dependent microcosms that contained indigenous sulfur- and/or iron-oxidizing microorganisms were cultured, characterized, and provided a proof-of-concept basis for further bioleaching studies. iii Acknowledgments I would like to extend my most sincere gratitude toward both of my supervisors Dr. Vladimiros Papangelakis and Dr. Elizabeth Edwards. This work could not have been completed without your brilliant and patient guidance. -
Advance View Proofs
Microbes Environ. Vol. XX, No. X, XXX–XXX, XXXX https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME12193 Isolation and Characterization of a Thermophilic, Obligately Anaerobic and Heterotrophic Marine Chloroflexi Bacterium from a Chloroflexi-dominated Microbial Community Associated with a Japanese Shallow Hydrothermal System, and Proposal for Thermomarinilinea lacunofontalis gen. nov., sp. nov. TAKURO NUNOURA1*, MIHO HIRAI1, MASAYUKI MIYAZAKI1, HIROMI KAZAMA1, HIROKO MAKITA1, HISAKO HIRAYAMA1, YASUO FURUSHIMA2, HIROYUKI YAMAMOTO2, HIROYUKI IMACHI1, and KEN TAKAI1 1Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan; and 2Marine Biodiversity Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237–0061, Japan (Received October 23, 2012—Accepted January 6, 2013—Published online May 11, 2013) A novel marine thermophilic and heterotrophic Anaerolineae bacterium in the phylum Chloroflexi, strain SW7T, was isolated from an in situ colonization system deployed in the main hydrothermal vent of the Taketomi submarine hot spring field located on the southern part of Yaeyama Archipelago, Japan. The microbial community associated with the hydrothermal vent was predominated by thermophilic heterotrophs such as Thermococcaceae and Anaerolineae, and the next dominant population was thermophilic sulfur oxidizers. Both aerobic and anaerobic hydrogenotrophs including methanogens were detected as minor populations. During the culture-dependent viable count analysis in this study, an Anaerolineae strain SW7T was isolated from an enrichment culture at a high dilution rate. Strain SW7T was an obligately anaerobic heterotroph that grew with fermentation and had non-motileProofs thin rods 3.5–16.5 µm in length and 0.2 µm in width constituting multicellular filaments. -
Downloaded 13 April 2017); Using Diamond
bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 Re-evaluating the salty divide: phylogenetic specificity of 6 transitions between marine and freshwater systems 7 8 9 10 Sara F. Pavera, Daniel J. Muratorea, Ryan J. Newtonb, Maureen L. Colemana# 11 a 12 Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA 13 b School of Freshwater Sciences, University of Wisconsin Milwaukee, Milwaukee, Wisconsin, USA 14 15 Running title: Marine-freshwater phylogenetic specificity 16 17 #Address correspondence to Maureen Coleman, [email protected] 18 bioRxiv preprint doi: https://doi.org/10.1101/347021; this version posted June 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 Marine and freshwater microbial communities are phylogenetically distinct and transitions 21 between habitat types are thought to be infrequent. We compared the phylogenetic diversity of 22 marine and freshwater microorganisms and identified specific lineages exhibiting notably high or 23 low similarity between marine and freshwater ecosystems using a meta-analysis of 16S rRNA 24 gene tag-sequencing datasets. As expected, marine and freshwater microbial communities 25 differed in the relative abundance of major phyla and contained habitat-specific lineages; at the 26 same time, however, many shared taxa were observed in both environments. 27 Betaproteobacteria and Alphaproteobacteria sequences had the highest similarity between 28 marine and freshwater sample pairs. -
Evaluating the Biogeochemistry and Microbial Function in the Athabasca Oil Sands Region: Understanding Natural Baselines for Reclamation End-Points
University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2019 Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points Thomas Reid University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Reid, Thomas, "Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands region: Understanding natural baselines for reclamation end-points" (2019). Electronic Theses and Dissertations. 7732. https://scholar.uwindsor.ca/etd/7732 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Evaluating the biogeochemistry and microbial function in the Athabasca Oil Sands -
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
An Oligotrophic Deep-Subsurface Community Dependent on Syntrophy
An oligotrophic deep-subsurface community PNAS PLUS dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers Maggie C. Y. Laua,1, Thomas L. Kieftb, Olukayode Kuloyoc,2, Borja Linage-Alvarezc,3, Esta van Heerdenc, Melody R. Lindsaya,4, Cara Magnaboscoa,5, Wei Wangd, Jessica B. Wigginsd, Ling Guod, David H. Perlmane,6, Saw Kyine, Henry H. Shwee, Rachel L. Harrisa, Youmi Ohf,7, Min Joo Yig, Roland Purtscherth, Greg F. Slateri, Shuhei Onoj, Siwen Weik, Long Lik,l, Barbara Sherwood Lollarl, and Tullis C. Onstotta aDepartment of Geosciences, Princeton University, Princeton, NJ 08544; bDepartment of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801; cDepartment of Microbial, Biochemical, and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa; dHigh Throughput Sequencing and Microarray Facility, Lewis–Sigler Institute for Integrative Genomics, Princeton University, NJ 08544; eProteomics and Mass Spectrometry Core, Department of Molecular Biology, Princeton University, NJ 08544; fAtmospheric and Oceanic Sciences, Princeton University, Princeton, NJ 08544; gDepartment of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544; hClimate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern, Switzerland; iSchool of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1; jDepartment of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; kDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E3; and lDepartment of Earth Sciences, University of Toronto, Toronto, ON, Canada M5S 3B1 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved October 26, 2016 (received for review August 10, 2016) Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under reasonable to hypothesize that subsurface inhabitants with diverse oligotrophic conditions are typically supported by H2. -
An Integrated Study on Microbial Community in Anaerobic Digestion Systems
An Integrated Study on Microbial Community in Anaerobic Digestion Systems DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Yueh-Fen Li Graduate Program in Environmental Science The Ohio State University 2013 Dissertation Committee: Dr. Zhongtang Yu, Advisor Dr. Brian Ahmer Dr. Richard Dick Dr. Olli Tuovinen Copyrighted by Yueh-Fen Li 2013 Abstract Anaerobic digestion (AD) is an attractive microbiological technology for both waste treatment and energy production. Microorganisms are the driving force for the whole transformation process in anaerobic digesters. However, the microbial community underpinning the AD process remains poorly understood, especially with respect to community composition and dynamics in response to variations in feedstocks and operations. The overall objective was to better understand the microbiology driving anaerobic digestion processes by systematically investigating the diversity, composition and succession of microbial communities, both bacterial and archaeal, in anaerobic digesters of different designs, fed different feedstocks, and operated under different conditions. The first two studies focused on propionate-degrading bacteria with an emphasis on syntrophic propionate-oxidizing bacteria. Propionate is one of the most important intermediates and has great influence on AD stability in AD systems because it is inhibitory to methanogens and it can only be metabolized through syntrophic propionate- oxidizing acetogenesis under methanogenic conditions. In the first study (chapter 3), primers specific to the propionate-CoA transferase gene (pct) were designed and used to construct clone libraries, which were sequenced and analyzed to investigate the diversity and distribution of propionate-utilizing bacteria present in the granular and the liquid portions of samples collected from four digesters of different designs, fed different ii feedstocks, and operated at different temperatures. -
Microbial Community Composition and Activities in Wet Flue Gas
MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Gregory D. Martin May, 2017 MICROBIAL COMMUNITY COMPOSITION AND ACTIVITIES IN WET FLUE GAS DESULFURIZATION SYSTEMS Gregory D. Martin Thesis Approved: Accepted: ______________________________________ _______________________________________ Advisor Dean of the College Dr. John M. Senko Dr. John Green ______________________________________ _______________________________________ Faculty Reader Dean of the Graduate School Dr. Teresa J. Cutright Dr. Chand Midha ______________________________________ _______________________________________ Faculty Reader Date Dr. Hazel A. Barton ______________________________________ Department Chair Dr. Stephen C. Weeks ii ABSTRACT This project was conducted to characterize microbial communities and slurry in wet flue gas desulfurization (wFGD) units at coal burning power plants. An additional objective of this research was to ascertain microbial activity and the potential for microbial mercury metabolism. Coal fired power plants in the U.S. alone are responsible for emitting over 50 tons per year of Hg0 into the atmosphere. A consequence of this microbially produced MeHg is increased toxicity with distance in food webs, eventually reaching humans where it can damage nervous systems and impair fetal development. Therefore, Hg bioaccumulation as a direct result of increased anthropogenic Hg0 emissions is a global concern. To address the chemistry and microbial activities of wFGD slurry, I determined the physiochemisty of three wFGD systems. I then quantified the activity of microorganisms in the wFGD slurry using live/dead cell counts, respirometry experiments monitoring O2 consumption over time, a Hg reduction experiment monitoring total Hg loss over time, and total RNA sequencing reads. -
SIP Metagenomics Identifies Uncultivated Methylophilaceae As Dimethylsulphide Degrading Bacteria in Soil and Lake Sediment
The ISME Journal (2015) 9, 2336–2348 © 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 OPEN www.nature.com/ismej ORIGINAL ARTICLE SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment Özge Eyice1, Motonobu Namura2, Yin Chen1, Andrew Mead1,3, Siva Samavedam1 and Hendrik Schäfer1 1School of Life Sciences, University of Warwick, Coventry, UK and 2MOAC Doctoral Training Centre, University of Warwick, Coventry, UK Dimethylsulphide (DMS) has an important role in the global sulphur cycle and atmospheric chemistry. Microorganisms using DMS as sole carbon, sulphur or energy source, contribute to the cycling of DMS in a wide variety of ecosystems. The diversity of microbial populations degrading DMS in terrestrial environments is poorly understood. Based on cultivation studies, a wide range of bacteria isolated from terrestrial ecosystems were shown to be able to degrade DMS, yet it remains unknown whether any of these have important roles in situ. In this study, we identified bacteria using DMS as a carbon and energy source in terrestrial environments, an agricultural soil and a lake sediment, by DNA stable isotope probing (SIP). Microbial communities involved in DMS degradation were analysed by denaturing gradient gel electrophoresis, high-throughput sequencing of SIP gradient fractions and metagenomic sequencing of phi29-amplified community DNA. Labelling patterns of time course SIP experiments identified members of the Methylophilaceae family, not previously implicated in DMS degradation, as dominant DMS-degrading populations in soil and lake sediment. Thiobacillus spp. were also detected in 13C-DNA from SIP incubations. Metagenomic sequencing also suggested involvement of Methylophilaceae in DMS degradation and further indicated shifts in the functional profile of the DMS-assimilating communities in line with methylotrophy and oxidation of inorganic sulphur compounds. -
The Ecology of the Chloroflexi in Full-Scale Activated Sludge 2 Wastewater Treatment Plants
bioRxiv preprint doi: https://doi.org/10.1101/335752; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The ecology of the Chloroflexi in full-scale activated sludge 2 wastewater treatment plants 3 Marta Nierychlo1, Aleksandra Miłobędzka2,3, Francesca Petriglieri1, Bianca 4 McIlroy1, Per Halkjær Nielsen1, and Simon Jon McIlroy1§* 5 1Center for Microbial Communities, Department of Chemistry and Bioscience, 6 Aalborg University, Aalborg, Denmark 7 2Microbial Ecology and Environmental Biotechnology Department, Institute of 8 Botany, Faculty of Biology, University of Warsaw; Biological and Chemical 9 Research Centre, Żwirki i Wigury 101, Warsaw 02-089, Poland 10 3Department of Biology, Faculty of Building Services, Hydro and Environmental 11 Engineering, Warsaw University of Technology, 00-653 Warsaw, Poland 12 * Corresponding author: Simon Jon McIlroy, Center for Microbial Communities, 13 Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 14 DK-9220 Aalborg, Denmark; Tel.: +45 9940 3573; Fax: +45 9814 1808; Email: 15 [email protected] 16 § Present address: Australian Centre for Ecogenomics, University of Queensland, 17 Australia 1 bioRxiv preprint doi: https://doi.org/10.1101/335752; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Special Issue: Significance of Culturing Microbes in the Omics Era
Microbes Environ. Vol. 24, No. 3, 205–216, 2009 http://wwwsoc.nii.ac.jp/jsme2/ doi:10.1264/jsme2.ME09151S Special issue: Significance of culturing microbes in the omics era Minireview Cultivation of Uncultured Chloroflexi Subphyla: Significance and Ecophysiology of Formerly Uncultured Chloroflexi ‘Subphylum I’ with Natural and Biotechnological Relevance Special Issue TAKESHI YAMADA1, and YUJI SEKIGUCHI2* 1Department of Ecological Engineering, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi 441–8580, Japan; and 2Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Higashi, Tsukuba 305–8566, Japan (Received May 31, 2009—Accepted July 30, 2009—Published online August 20, 2009) Cultivation-independent molecular surveys have shown members of the bacterial phylum Chloroflexi to be ubiqui- tous in various natural and artificial ecosystems. Among the subphylum-level taxa of the Chloroflexi known to date, the formerly uncultured ‘subphylum I’ had well been recognized as a typical group that contains a number of environ- mental gene clones with no culture representatives. In order to reveal their ecophysiology, attempts were made over the past decade to domesticate them into laboratory cultures, and significant advances have been made in cultivating strains belonging to the group. The microorganisms characterized so far include seven species in six genera, i.e., Anaerolinea, Levilinea, Leptolinea, Bellilinea, Longilinea, and Caldilinea, and were proposed to represent two classes, Anaerolineae and Caldilineae, providing solid insights into the phenotypic and genetic properties common to the group. Another subphylum-level uncultured group of the Chloroflexi, i.e., the class Ktedonobacteria, has also been represented recently by a cultured strain.