Recovery Plan for Hawaiian Waterbirds, Second Revision

Total Page:16

File Type:pdf, Size:1020Kb

Recovery Plan for Hawaiian Waterbirds, Second Revision Second Revision Waterbirds Recovery for Hawaiian Plan U.S. Fish & Wildlife Service Ecological Services U.S. Fish & Wildlife Service http://www.fws.gov October 2011 Recovery Plan for Hawaiian Waterbirds Second Revision A‘eo Eric VanderWerf/USFWS Hawaiian stilt Eric VanderWerf/USFWS Eric VanderWerf/USFWS ‘Alae ‘ula ‘Alae ke‘oke‘o Hawaiian moorhen Hawaiian coot October Koloa maoli 2011 Zaun/USFWSBrenda Hawaiian duck Recovery Plan for Hawaiian Waterbirds, Second Revision Original plan approved 1978 First revision approved 1985 Region 1 U.S. Fish and Wildlife Service Portland, Oregon Recovery Plan for Hawaiian Waterbirds, Second Revision Disclaimer Recovery plans delineate reasonable actions that are believed to be required to recover and protect listed species. We, the U.S. Fish and Wildlife Service, publish recovery plans, sometimes with the assistance of recovery teams, contractors, State agencies, Tribal agencies, and other affected and interested parties. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not obligate other parties to undertake specific actions and may not represent the views nor the official positions or approval of any individuals or agencies involved in recovery plan formulation, other than our own. They represent our official position only after they have been signed by the Regional Director or Director as approved. Recovery plans are reviewed by the public and submitted for peer review before we adopt them as approved final documents. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery actions. Notice of copyrighted material: Permission to use copyrighted images in this recovery plan has been granted by the copyright holders. These images are not placed in the public domain by their appearance herein. They may not be copied or otherwise reproduced, except in their printed context within this document, without the written consent of the copyright holder. Literature citation of this document should read as follows: U.S. Fish and Wildlife Service. 2011. Recovery Plan for Hawaiian Waterbirds, Second Revision. U.S. Fish and Wildlife Service, Portland, Oregon. xx + 233 pp. Electronic copies of this document will be made available at: http://www.fws.gov/pacific/ecoservices/endangered/recovery/plans.html http://www.fws.gov/endangered/species/recovery-plans.html. ii Recovery Plan for Hawaiian Waterbirds, Second Revision Acknowledgments Parts I and II of this recovery plan were drafted in 1997 for the U.S. Fish and Wildlife Service by Andrew Engilis, Jr. (then of Ducks Unlimited, currently with the University of California, Davis) and Dr. Frederic A. Reid of the Western Regional Office of Ducks Unlimited. Modifications were made by Dr. Ann Marshall and Colleen Henson of the U.S. Fish and Wildlife Service, which resulted in the Draft Revised Recovery Plan for Hawaiian Waterbirds Second Revision, published in May 1999. Substantial revisions to the draft plan were made by Leilani Takano and Dr. Eric VanderWerf of the U.S. Fish and Wildlife Service, including the addition of figures illustrating the population trend of each species and maps showing their abundance and distribution on each island. The primary authors of the second draft revised plan, which was published in August 2005, were Andrew Engilis, Jr., Dr. Ann Marshall, Dr. Frederic A. Reid, Leilani Takano, and Dr. Eric VanderWerf. This second revised plan was finalized by Dr. Ann Marshall and Joy Hiromasa, also of the U.S. Fish and Wildlife Service. For valuable input and constructive comments on waterbird recovery issues we thank Dr. J. Michael Reed of Tufts University; Dr. Timothy Male of Environmental Defense; Jennifer Higashino, Dr. Fern Duvall, David Smith, John Polhemus, and Meyer Ueoka of the Hawai`i Department of Land and Natural Resources Division of Forestry and Wildlife; Dr. Diane Drigot of the Marine Corps Base Hawai`i. We also acknowledge Fred Amidon, Dr. Jeff Burgett, Grant Canterbury, Karen Goebel, Colleen Henson, Nancy Hoffman, Megan Laut, Susan Machida, Mark Metevier, Lynda Miyashita, Arlene Pangelinan, Sylvia Pelizza, Gina Shultz, Mike Silbernagle, Gordon Smith, Chris Swenson, Ron Walker, Marilet Zablan, and Brenda Zaun of the U.S. Fish and Wildlife Service for valuable insights into waterbird recovery needs, assistance with graphics, and review of the recovery plan. Other individuals who contributed to the plan include Kim Uyehara, Sharon Reilly, and Dr. Marie Morin. We also thank the Hawai`i Division of Forestry and Wildlife for providing the biannual waterbird count data and the Hawai`i Natural Heritage Program for compiling the data. Finally, we would like to acknowledge the efforts of the many researchers and managers whose efforts are helping to better understand and conserve Hawaiian waterbirds. iii Recovery Plan for Hawaiian Waterbirds, Second Revision Executive Summary Current Species Status: This recovery plan addresses four species of Hawaiian waterbirds: the Hawaiian duck or koloa maoli (Anas wyvilliana), Hawaiian coot or `alae ke`oke`o (Fulica alai), Hawaiian common moorhen or `alae `ula (Gallinula chloropus sandvicensis), and Hawaiian stilt or ae`o (Himantopus mexicanus knudseni), all federally listed as endangered under the Endangered Species Act. Historically, these four species were found on all of the main Hawaiian Islands except Lāna`i and Kaho`olawe. Currently, Hawaiian ducks are found on the islands of Ni`ihau, Kaua`i, O`ahu, Maui, and Hawai`i; Hawaiian coots and Hawaiian stilts are found on all of the main Hawaiian Islands except Kaho`olawe; and Hawaiian common moorhens are found only on the islands of Kaua`i and O`ahu. Population counts based on biannual waterbird surveys, which are considered to be most accurate for the Hawaiian coot and Hawaiian stilt, indicate that the numbers of birds fluctuate among years. Trend data collected over the past three decades show that Hawaiian coot, Hawaiian common moorhen, and Hawaiian stilt populations are either stable or increasing. However, in recent years only the Hawaiian coot has commonly shown population counts near or above 2,000 individuals. The status of the Hawaiian duck is difficult to judge due to the difficulty of distinguishing between Hawaiian ducks, feral mallards (Anas platyrhynchos), and hybrids. Hawaiian common moorhen numbers are difficult to estimate due to their secretive habits and use of densely vegetated wetland habitats. Habitat Requirements and Limiting Factors: These endangered Hawaiian waterbirds are currently found in a variety of wetland habitats including freshwater marshes and ponds, coastal estuaries and ponds, artificial reservoirs, kalo or taro (Colocasia esculenta) lo`i or patches, irrigation ditches, sewage treatment ponds, and in the case of the Hawaiian duck, montane streams and marshlands. The most important causes of decline for all four species were loss and degradation of wetland habitat and predation by introduced animals. Other factors that have contributed to waterbird population declines, and that continue to be detrimental, include modification of hydrology, alteration of habitat structure and vegetation composition by invasive non-native plants, loss of riparian vegetation and water quality degradation due to grazing, disease, and possibly environmental contaminants. In addition, hunting in the late 1800s and early 1900s took a heavy toll on Hawaiian duck populations, and to a lesser extent on iv Recovery Plan for Hawaiian Waterbirds, Second Revision populations of the other three endemic waterbirds (Swedberg 1967). Currently, predation by introduced animals may be the greatest threat to the Hawaiian coot, Hawaiian common moorhen, and Hawaiian stilt, and hybridization with feral mallards is the most serious threat to the Hawaiian duck. Recovery Priority Number: The recovery priority number for the Hawaiian duck is 2, on a scale of 1C (highest) to 18 (lowest) (see Appendix C) reflecting a high degree of threat, a high potential for recovery, and the Hawaiian duck’s taxonomic rank as a full species. The Hawaiian common moorhen and Hawaiian stilt each have a recovery priority number of 9, reflecting a moderate degree of threat, a high potential for recovery, and their taxonomic rank as a subspecies. The recovery priority number of 8 for the Hawaiian coot reflects a moderate degree of threat, a high potential for recovery, and taxonomic rank as a full species. The Hawaiian coot was considered a subspecies of the American coot (Fulica americana) at the time it was listed, but it has been split from the American coot and is now regarded as a distinct species (Fulica alai; American Ornithologists’ Union 1993). Recovery Goal: The ultimate goal of the recovery program for Hawaiian waterbirds is to restore and maintain multiple self-sustaining populations within their respective historical ranges, which will allow them to be reclassified to threatened status (downlisted) and eventually removed from the Federal List of Endangered and Threatened Wildlife and Plants (delisted). Recovery Objectives: Recovery of the four endangered waterbirds focuses on the following objectives: 1) ensuring that population numbers are large enough to persist into the foreseeable future in the face of stochastic demographic variability; 2) establishing multiple, self-sustaining breeding populations broadly distributed
Recommended publications
  • 'Alae 'Ula (Hawaiian Moorhen)
    NATIVE WATERBIRDS AVIAN NEWCOMERS These newly-created wetlands have been rapidly colonized by native waterbirds, Many non-native birds are attracted to the wetland restoration as well. The including four species that are highly endangered and found only in the Hawaiian long-necked white waders are Cattle Egrets, native to the Old World. Non-native Islands. The ‘Alae ‘Ula, or Hawaiian Moorhen (Gallinula chloropus sandvicensis), songbirds include the Common Myna, White-rumped Shama, two unrelated kinds of and Koloa Maoli, or Koloa Duck (Anas wyvilliana), have by now raised many broods cardinals, and three kinds of doves. Many of these exotic species probably became here, nesting among the native sedges. The Ae‘o, or Hawaiian Stilt (Himantopus established in recent decades as escaped cage birds. Before the accidental mexicanus knudseni), and the Nēnē, or Hawaiian Goose (Branta sandvicensis), stop introduction of mosquitoes in the 19th century and bird diseases they carry, by almost daily to rest and feed. In the morning and evening, watch for the ‘Auku‘u these coastal lowlands were home to native honeycreepers and other native or Black-crowned Night Heron (Nycticorax nycticorax). Long-distance migrants such songbirds, preserved abundantly in the fossil record of Makauwahi Cave. as the Kōlea or Pacific Golden Plover Pluvialis( fulva) stop to rest and often winter here, as part of their annual 10,000-mile migration from breeding grounds in the Arctic to wintering sites in the tropics. Bones of all these bird species occur as fossils in the sediment of adjacent Makauwahi Cave, showing that they have thrived here for thousands of years.
    [Show full text]
  • Growth Patterns of Hawaiian Stilt Chicks
    Wilson Bull., 11 l(4), 1999, pp. 478487 GROWTH PATTERNS OF HAWAIIAN STILT CHICKS J. MICHAEL REED,,2,8‘ ELIZABETH M. GRAY,334 DIANNE LEWIS3 LEWIS W. ORING,3 RICHARD COLEMAN,5 TIMOTHY BURR,6 AND PETER LUSCOMB7 ABSTRACT-We studied chick growth and plumage patterns in the endangered Hawaiian Stilt (Himantopus mexicanus knudseni). Body mass of captive chicks closely fit a Gompertz growth curve, revealing a growth coefficient (K) of 0.065 day- ’ and point of inflection (T) of 17 days. When chicks fledged about 28 days after hatching, they weighed only 60% of adult body mass; at 42 d, birds still were only 75% of adult mass; culmen, tarsus, and wing chord at fledging also were less than adult size. This trend of continued growth to adult size after fledging is typical for most shorebirds. After hatching, captive chicks grew more rapidly than wild chicks, probably because of an unlimited food supply. We found no evidence for adverse effects of weather on the growth of wild chicks. As with other shorebirds, the tarsus started relatively long, with culmen and then wing chord growing more rapidly in later development. Tarsal and wing chord growth were sigmoidal, whereas culmen growth was linear. We describe plumage characteristics of weekly age classes of chicks to help researchers age birds in the wild. Received 28 Dec. 1998, accepted 20 April 1999. Avian growth patterns have been studied (Himantopus mexicanus knudseni), a precocial primarily because of their relationships to the bird that is an endangered subspecies of the ecology and evolutionary history of different Black-necked Stilt.
    [Show full text]
  • Pu'u Wa'awa'a Biological Assessment
    PU‘U WA‘AWA‘A BIOLOGICAL ASSESSMENT PU‘U WA‘AWA‘A, NORTH KONA, HAWAII Prepared by: Jon G. Giffin Forestry & Wildlife Manager August 2003 STATE OF HAWAII DEPARTMENT OF LAND AND NATURAL RESOURCES DIVISION OF FORESTRY AND WILDLIFE TABLE OF CONTENTS TITLE PAGE ................................................................................................................................. i TABLE OF CONTENTS ............................................................................................................. ii GENERAL SETTING...................................................................................................................1 Introduction..........................................................................................................................1 Land Use Practices...............................................................................................................1 Geology..................................................................................................................................3 Lava Flows............................................................................................................................5 Lava Tubes ...........................................................................................................................5 Cinder Cones ........................................................................................................................7 Soils .......................................................................................................................................9
    [Show full text]
  • National Wildlife Refuges Changed2.Pub
    TAKE REFUGE Celebrating 100 Years of Threatened and Endangered Species Protection Through the National Wildlife Refuge System TAKE REFUGE Celebrating 100 Years of Threatened and Endangered Species Protection Through the National Wildlife Refuge System The State Public Interest Research Groups U.S. PIRG Education Fund March 2003 Written and designed by: Shannon Ryan, U.S. PIRG Education Fund For more information: Shannon Ryan U.S. Public Interest Research Group Education Fund 218 D Street, SE, Washington, DC 20003 Copies of this report may be ordered by sending a check or money order for $35.00 to: U.S. PIRG, 218 D Street, SE, Washington, DC 20003 The author would like to thank the following people: Alison Cassady and Tiernan Sittenfeld for research and writing assistance; Alicia Supernavage for production assistance; and refuge staff at Sauta Cave NWR, Buenos Aires NWR, Don Edwards San Francisco Bay NWR, Archie Carr NWR, Ash Meadows NWR, Nestucca Bay NWR, Attwater Prairie Chicken NWR, and James River NWR for their time and expertise. Production of this report would not have been possible without funding from: Center for Biological Diversity Defenders of Wildlife National Wildlife Federation Sierra Club PHOTOGRAPHY CREDITS: Pages 11 & 12: Turtle tracks, Archie Carr NWR (background), Friends of the Carr Refuge. Cover & Back Cover: Lange’s metalmark butterfly, USFWS/David Wright; salt marsh bird’s beak, ©Thomas Oberbauer; sandhill crane, USFWS/D.D. Iwurst; Pages 13 & 14: Crystal Spring, Ash Meadows NWR (background), The Mason Neck NWR (background), Mason Neck Canoe and Kayak. American Southwest. Acknowledgements & Table of Contents: Balcones Canyonlands NWR Pages 15 & 16: Nestucca Bay NWR (background), USFWS/David Pitkin.
    [Show full text]
  • A 2010 Supplement to Ducks, Geese, and Swans of the World
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 20. https://digitalcommons.unl.edu/biosciducksgeeseswans/20 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The World’s Waterfowl in the 21st Century: A 200 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard Pages xvii–xxiii: recent taxonomic changes, I have revised sev- Introduction to the Family Anatidae eral of the range maps to conform with more current information. For these updates I have Since the 978 publication of my Ducks, Geese relied largely on Kear (2005). and Swans of the World hundreds if not thou- Other important waterfowl books published sands of publications on the Anatidae have since 978 and covering the entire waterfowl appeared, making a comprehensive literature family include an identification guide to the supplement and text updating impossible.
    [Show full text]
  • Fossil Evidence for a Diverse Biota from Kaua'i and Its Transformation Since
    Ecological Monographs, 71(4), 2001, pp. 615±641 q 2001 by the Ecological Society of America FOSSIL EVIDENCE FOR A DIVERSE BIOTA FROM KAUA`I AND ITS TRANSFORMATION SINCE HUMAN ARRIVAL DAVID A. BURNEY,1,5 HELEN F. J AMES,2 LIDA PIGOTT BURNEY,1 STORRS L. OLSON,2 WILLIAM KIKUCHI,3 WARREN L. WAGNER,2 MARA BURNEY,1 DEIRDRE MCCLOSKEY,1,6 DELORES KIKUCHI,3 FREDERICK V. G RADY,2 REGINALD GAGE II,4 AND ROBERT NISHEK4 1Department of Biological Sciences, Fordham University, Bronx, New York 10458 USA 2National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560 USA 3Kaua`i Community College, Lihu`e, Hawaii 96766 USA 4National Tropical Botanical Garden, Lawa`i, Hawaii 96756 USA Abstract. Coring and excavations in a large sinkhole and cave system formed in an eolianite deposit on the south coast of Kaua`i in the Hawaiian Islands reveal a fossil site with remarkable preservation and diversity of plant and animal remains. Radiocarbon dating and investigations of the sediments and their fossil contents, including diatoms, invertebrate shells, vertebrate bones, pollen, and plant macrofossils, provide a more complete picture of prehuman ecological conditions in the Hawaiian lowlands than has been previously available. The evidence con®rms that a highly diverse prehuman landscape has been com- pletely transformed, with the decline or extirpation of most native species and their re- placement with introduced species. The stratigraphy documents many late Holocene extinctions, including previously un- described species, and suggests that the pattern of extirpation for snails occurred in three temporal stages, corresponding to initial settlement, late prehistoric, and historic impacts.
    [Show full text]
  • Endangered Species Permit: Te-25955C-1 January 01, 2019
    REPORT TO THE U.S. FISH AND WILDLIFE SERVICE FOR HAWAIIAN STILT ENDANGERED SPECIES PERMIT: TE-25955C-1 REPORTING PERIOD JANUARY 01, 2019 – DECEMBER 31, 2019 SUBMITTED BY: Melissa R. Price Assistant Professor University of Hawaii-Manoa 1910 East-West Road Sherman Hall Rm 118 Honolulu, HI 96822 Phone: 808-956-7774 Email: [email protected] January 31, 2020 1 2 EXECUTIVE SUMMARY 3 The Hawaiian Stilt (Himantopus mexicanus knudseni) is an endangered subspecies of the 4 Black-necked stilt (Himantopus mexicanus) that inhabits wetlands throughout the Hawaiian 5 Islands. Depredation of eggs and chicks by introduced predators is a major threat to Hawaiian 6 Stilt populations. Where and when a bird decides to nest may impact the likelihood of egg or 7 chick depredation. Nesting in close proximity to water may decrease depredation rates by 8 mammals, as water can act as a barrier to mammalian predators, does not hold scent, and 9 provides an obstacle-free escape route for chicks. Alternatively, some mammalian predators may 10 be attracted to water, and a number of aquatic species have been identified as predators of 11 Hawaiian Stilt chicks, including the American Bullfrog (Lithobates catesbeianus). Vegetation 12 height is also an important factor for egg and chick survival, as taller vegetation may help 13 conceal nests and chicks from predators, particularly aerial species. Additionally, depredation is 14 often not constant across the breeding season due to changes in parental activity, nest and chick 15 abundance, or habitat characteristics. The Hawaiian Stilt nests from February to September 16 across the Hawaiian Islands.
    [Show full text]
  • 25 Using Community Group Monitoring Data to Measure The
    25 Using Community Group Monitoring Data To Measure The Effectiveness Of Restoration Actions For Australia's Woodland Birds Michelle Gibson1, Jessica Walsh1,2, Nicki Taws5, Martine Maron1 1Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane, 4072, Queensland, Australia, 2School of Biological Sciences, Monash University, Clayton, Melbourne, 3800, Victoria, Australia, 3Greening Australia, Aranda, Canberra, 2614 Australian Capital Territory, Australia, 4BirdLife Australia, Carlton, Melbourne, 3053, Victoria, Australia, 5Greening Australia, PO Box 538 Jamison Centre, Macquarie, Australian Capital Territory 2614, Australia Before conservation actions are implemented, they should be evaluated for their effectiveness to ensure the best possible outcomes. However, many conservation actions are not implemented under an experimental framework, making it difficult to measure their effectiveness. Ecological monitoring datasets provide useful opportunities for measuring the effect of conservation actions and a baseline upon which adaptive management can be built. We measure the effect of conservation actions on Australian woodland ecosystems using two community group-led bird monitoring datasets. Australia’s temperate woodlands have been largely cleared for agricultural production and their bird communities are in decline. To reverse these declines, a suite of conservation actions has been implemented by government and non- government agencies, and private landholders. We analysed the response of total woodland bird abundance, species richness, and community condition, to two widely-used actions — grazing exclusion and replanting. We recorded 139 species from 134 sites and 1,389 surveys over a 20-year period. Grazing exclusion and replanting combined had strong positive effects on all three bird community metrics over time relative to control sites, where no actions had occurred.
    [Show full text]
  • Pueo Or Hawaiian Short-Eared Owl Asio Flammeus Sandwichensis
    Raptors Pueo or Hawaiian Short-eared Owl Asio flammeus sandwichensis SPECIES STATUS: State listed as Endangered on O‘ahu Photo: NRCS State recognized as Endemic at the subspecies level NatureServe Heritage Rank G5/T2 – Species secure/Subspecies imperiled SPECIES INFORMATION: The pueo, or Hawaiian short-eared owl, is an endemic subspecies of the nearly pandemic short-eared owl (Asio flammeus; Family: Strigidae). The species is thought to have colonized the Hawaiian Islands sometime after the arrival of Polynesians. Unlike most owls, pueo are active during the day (i.e., diurnal), and are commonly seen hovering or soaring over open areas. Like short-eared owls in continental environments, those in Hawai‘i primarily consume small mammals. Their relatively recent establishment on Hawai‘i may have been tied to the rats (Rattus exulans) that Polynesians brought to the islands. Little is known about the breeding biology of pueo, but nests have been found throughout the year. Males perform aerial displays known as a sky dancing display to prospective females. Nests are constructed by females and are comprised of simple scrapes in the ground lined with grasses and feather down. Females also perform all incubating and brooding. Males feed females and defend nests. Chicks hatch asynchronously and are fed by female with food delivered by male. Young may fledge from nest on foot before they are able to fly and depend on their parents for approximately two months. DISTRIBUTION: Found on all the Main Hawaiian Islands from sea level to 2,450 meters (8,000 feet). ABUNDANCE: Unknown. Because of relatively few detections, the Hawaiian Forest Bird Survey did not estimate the population size of the pueo.
    [Show full text]
  • Metadata for Hawaii Environmental Sensitivity Index (ESI)
    HYDRO Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Publication_Date: 200111 Title: Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Edition: Second Geospatial_Data_Presentation_Form: Vector digital data Series_Information: Series_Name: None Issue_Identification: Hawaii Publication_Information: Publication_Place: Seattle, Washington Publisher: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Other_Citation_Details: Prepared by Research Planning, Inc., Columbia, South Carolina for the National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Description: Abstract: This data set contains vector arcs and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Hawaii. The HYDRO data layer contains all annotation used in producing the atlas. The annotation features are categorized into
    [Show full text]
  • O'ahu Bike Plan
    o‘ahu bike plan a bicycle master plan August 2012 Department of Transportation Services City & County of Honolulu o‘ahu bike plan a bicycle master plan August 2012 Department of Transportation Services City & County of Honolulu Helber Hastert & Fee, Planners The Authors would like to acknowledge the leadership and contributions provided by the Director of the Department of T ransportation Services, Mr. Wayne Yoshioka, and the City’s Bicycle Coordinator, Mr. Chris Sayers. Other contributors included: Alta Planning + Design, San Rafael, California Engineering Concepts, Inc., Honolulu, Hawaii TABLE OF CONTENTS Executive Summary . ES-1 1 Introduction . 1-1 1.1 Overview . 1-1 1.2 Plan Development . 1-3 1.3 Plan Organization ................................................1-7 2 Vision, Goals, Objectives . .2-1 2.1 Vision..........................................................2-1 2.2 Goals and Objectives .............................................2-2 3 The 5 E’s: Encouragement, Engineering, Education, Enforcement, Evaluation . .3-1 3.1 Encouragement .................................................3-2 3.2 Engineering.....................................................3-3 3.2.1 Maintenance....................................................3-3 3.2.2 Design Guidance . 3-4 3.3 Education . 3-6 3.4 Enforcement ....................................................3-7 3.5 Evaluation ......................................................3-8 3.6 Other Policy Initiatives . 3-9 3.6.1 Safe Routes to School . 3-9 3.6.2 Complete Streets . 3-9 4 Support Facilities . 4-1 4.1 Parking . 4-1 4.2 Showers/Changing Rooms . 4-3 4.3 Transit Integration . 4-4 5 Bikeway Network . 5-1 5.1 Existing Network.................................................5-3 5.2 Planned Facilities ................................................5-4 5.2.1 Project Prioritization and Methodology...............................5-4 5.2.2 Projected Costs and Funding......................................5-29 5.3 Short-Range Implementation Plan .
    [Show full text]
  • News from the Conservation Council for Hawai`I Special Issue! Volume 66, Issue 4 - Fall 2016 Volume 67, Issue 1 & 2 - Winter & Spring 2017
    News from the Conservation Council for Hawai`i Special Issue! Volume 66, Issue 4 - Fall 2016 Volume 67, Issue 1 & 2 - Winter & Spring 2017 Sheila Sarhangi View of the western pali (cliff) of Nihoa from Hikianalia. Photo by Brad Ka‘aleleo Leatherback turtles the size of a Obama expanded the boundaries of was established by President George W. Volkswagen Beetle. Laysan ducks, once Papahānaumokuākea to 200 nautical Bush in 2006. For example, 24 species of widespread around the Hawaiian miles around the existing monument, whales and dolphins occur outside of the Archipelago. Black coral 4000 years old, with the exception of the southeast original protection area. Three of these the world’s oldest organism. These are boundary, for a total of 583,000 square species are listed under the Endangered just some of the 7,000 remarkable species miles, an area more than twice the size Species Act as threatened or endangered: found in Papahānaumokuākea Marine of Texas. sperm whales, fin whales, and sei whales. National Monument. Why was additional protection needed? Moreover, the expanded monument In August 2016, in response to a Recent scientific studies show that now safeguards more than 75 seamounts, movement led by Hawai‘i stakeholders species found within Papahānaumokuākea known as underwater volcanoes or – from kūpuna to conservationists, local have geographic ranges that go beyond mountains. These features form biological fishers, and scientists – then-President the 50 nautical-mile protection, which hotspots that provide habitat for a wide continued on page 4 U.S. Hosts IUCN World Conservation Congress for the First Time! Lorraine Garnier The International Union for and successful international gathering was Conservation of Nature (IUCN) held based at the beautiful Hawai‘i Convention its first-ever World Conservation Center in Honolulu 10 days last September, Sylvia Earle and Lorraine Garnier.
    [Show full text]