Response of the Gut Microbiota During the Clostridioides Difficile Infection

Total Page:16

File Type:pdf, Size:1020Kb

Response of the Gut Microbiota During the Clostridioides Difficile Infection Gu et al. BMC Microbiology (2020) 20:260 https://doi.org/10.1186/s12866-020-01943-z RESEARCH ARTICLE Open Access Response of the gut microbiota during the Clostridioides difficile infection in tree shrews mimics those in humans Wenpeng Gu1,2, Wenge Li3, Wenguang Wang1, Dexuan Kuang1, Wenzhu Zhang3, Caixia Lu1,NaLi1, Pinfen Tong1, Yuanyuan Han1, Xiaomei Sun1, Jinxing Lu3, Yuan Wu3* and Jiejie Dai1* Abstract Background: Clostridioides difficile is a major cause of antibiotic associated diarrhea. Several animal models are used to study C. difficile infection (CDI). The tree shrew has recently been developed as a model of primate processes. C. difficile infection has not been examined in tree shrews. We infected tree shrews with hyper-virulent C. difficile strains and examined the alterations in gut microbiota using 16S rRNA gene sequencing. Results: C. difficile colonized the gastrointestinal tract of tree shrew and caused diarrhea and weight loss. Histopathologic examination indicated structures and mucosal cell destruction in ileal and colonic tissues. The gut microbial community was highly diversity before infection and was dominated by Firmicutes, Fusobacteria, Bacteroidetes, and Proteobacteria. Antibiotic administration decreased the diversity of the gut microbiota and led to an outgrowth of Lactobacillus. The relative abundance of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Lachnospiraceae, Enterobacteriaceae, Escherichia, Blautia, and Tyzzerella increased following C. difficile infection. These taxa could be biomarkers for C. difficile colonization. Conclusions: In general, the disease symptoms, histopathology, and gut microbiota changes following C. difficile infection in tree shrews were similar to those observed in humans. Keywords: Clostridioides difficile, Tree shrew, Gut microbiota Background outcomes, including asymptomatic colonization, diarrhea, Clostridioides difficile is a major cause of antibiotic asso- life threatening pseudomembranous colitis, or intestinal ciated diarrhea in patients after hospitalization and anti- obstruction [2]. CDI is the most common cause of biotic administration [1]. C. difficile infection (CDI) healthcare-associated diarrhea and colitis, and is respon- caused by toxigenic isolates can result in a wide range of sible for significant morbidity and substantial healthcare costs worldwide [3, 4]. The primary pathogenic mechan- * Correspondence: [email protected]; [email protected] ism of C. difficile is the production of enterotoxin A 3 State Key Laboratory of Infectious Disease Prevention and Control, (TcdA) and cytotoxin B (TcdB); some C. difficile strains Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and can produce a binary toxin, encoded by the cdtA and cdtB Prevention, Chinese Center for Disease Control and Prevention, Chang bai genes, that increases pathogenesis [5]. Since emerging in Road 155, Chang ping District, Beijing 102206, China North American in 2005, hyper-virulent C. difficile isolates 1Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, (PCR ribotype RT027) have caused several infections and Yunnan Key Laboratory of Vaccine Research and Development on Severe outbreaks in the United States of America, Canada, and Infectious Diseases, Yunnan Innovation Team of Standardization and most European countries [6]. Recently, C. difficile RT078 Application Research in Tree Shrew, Zhao zong Road 66, Kunming 650118, China has been reported from both hospitalized patients and Full list of author information is available at the end of the article © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Gu et al. BMC Microbiology (2020) 20:260 Page 2 of 13 environmental surfaces in eastern China [7]. This emer- not a statistically significant difference in weight loss be- gent strain also causes severe disease, especially in elderly tween groups (each strain represented a group) (Fig. 1.E, patients [8]. F = 0.115, P = 0.892; average weights 13.35 ± 2.79 g for Several animal models have been used to study differ- CD21062, 12.68 ± 1.71 g for CD10010, and 12.92 ± 2.13 g ent aspects of CDI, including pathophysiology, for CD12038). No animals died during the experiment. colonization, transmission, recurrence, and the impact of Fecal samples were all positive for tcdA, tcdB, cdtA, and strain variability [9]. Small animals, such as mice, ham- cdtB two days after infection. Fecal samples were toxin sters, and rats, as well as larger animals, such as foals, negative before infection. The control group for gross gnotobiotic piglets, and rhesus monkeys have been used anatomy of the abdominal cavity showed normal gut to study CDI [10]. Each laboratory animal has its own structure of the tree shrew, without any congestion, application limitations and does not fully reflect the en- bleeding or inflammation (Additional file 1.A). However, tire pathophysiological process of C. difficile infection in the infected group of animal indicated the typical in- humans. For example, primates were rarely used due to flammation for anatomy of the abdominal cavity, the their ethical restrictions; the lesion sites of rodents in- mesenterium of the tree shrew emerged bled or conges- fected by C. difficile were different from human patients; tion, and the gut structure disorders could be found germfree animals didn’t really show the ecological niche (Additional file 1.B). of human intestine. The utility of the animal model mainly depends on the similarities in pathological char- Elisa acteristics with humans. The tree shrew (Tupaia belan- TcdA toxin could be detected at day 4 after oral gavage geri) belongs to the family Tupaiidae and order of the animals, shown as Fig. 2. A-C. CD10010 and Scandentia, and is widely distributed in South and CD12038 strain produced TcdA toxin from two tree Southeast Asia [11]. Compared with rodents, tree shrews shrews at day 4, while toxin could be detected at day 5 were considered as an alternative animal model for non- for CD21062 strain. At experimental day 5, most of the human primates. Simultaneously, use of the tree shrew animal feces could be identify the TcdA. Similar results as a laboratory animal has increased in recent years due of TcdB toxin were showed from Fig. 2. D-F. At day 5, to its low cost of maintenance, life span, small body size, both TcdA and TcdB reached the higher levels for some short reproductive cycle, and close relationship to pri- of the tree shrews, after that, the concentration of toxins mates [12]. Several human diseases models have been were relatively stable. constructed by using this animal [13]. In view of advan- tages of tree shrews mentioned above, we attempted to Histopathology use this animal as a novel model for CDI, compared the Histopathology changes were detected in the ileal and characteristics of infection with other animals, and ex- colonic tissues of all animals. In healthy ileal and colonic plored its feasibility and applicability. tissues, mucosal cells and structures were arranged In addition, disruption of the gut microbiota is another neatly and lacked congestion, edema, and inflammatory important component of CDI [14]. A number of animal infiltration (Figs. 3.A to D). Pathology following infection models have been developed to examine the relationship showed evidence of epithelial cell destruction, structural between the gut microbial community and C. difficile infec- disorders, mucosal ulcers, and necrosis in the mucosa tion [15, 16]. However existing models do not fully capture and submucosa of the ileum. Gland and crypt destruc- the relationship between the human gut microbiota and C. tion, as well as goblet cell reduction and inflammatory difficile pathogenesis. Therefore, we further analyzed the cell infiltration, was observed in mucosal and submuco- gut microbiota changes of tree shrews during CDI process sal layers (Figs. 3.E and F). There was an increase in eo- by using 16SrRNA gene sequencing in this study. The fea- sinophil cells, as well as an increase in the infiltration of tures of intestinal microbial communities among different lymphocyte and plasma cells into colonic tissues in the animals and humans were compared, and the usability of mucosal and submucosal layers (Figs. 3. G and H). tree shrews as CDI model was further estimated. Taxonomy of the gut microbiota Results 3,794,301 reads were obtained from 45 fecal samples. 3, Clinical features 690,628 reads survived merging and quality trimming. Nine of 15 infected animals showed clinical signs of The average read length was 423.62 ± 6.93 bp and ranged CDI, including diarrhea and weight loss (Fig. 1). The from 408 to 430 bp. Reads were mapped to 3675 OTUs. remaining animals did not exhibit signs of diseases des- At baseline (TSCDB group), Firmicutes (64.98%), pite being colonized with C. difficile. Four days after in- Fusobacteria (11.06%), Bacteroidetes (9.28%), Proteobac- fection, the animals began suffering diarrhea (i.e., loose teria (7.79%), and Epsilonbacteraeota (4.29%) were the stools containing mucous) (Fig. 1.A to D). There was most abundant phyla (Fig.
Recommended publications
  • Sporulation Evolution and Specialization in Bacillus
    bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Research article From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile Paula Ramos-Silva1*, Mónica Serrano2, Adriano O. Henriques2 1Instituto Gulbenkian de Ciência, Oeiras, Portugal 2Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal *Corresponding author: Present address: Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands Phone: 0031 717519283 Email: [email protected] (Paula Ramos-Silva) Running title: Sporulation from root to tips Keywords: sporulation, bacterial genome evolution, horizontal gene transfer, taxon- specific genes, Bacillus subtilis, Clostridioides difficile 1 bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of a highly resistant, dormant spore. Spores allow environmental persistence, dissemination and for pathogens, are infection vehicles. In both the model Bacillus subtilis, an aerobic species, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes.
    [Show full text]
  • Cwp22, a Novel Peptidoglycan Cross-Linking Enzyme, Plays Pleiotropic Roles in Clostridioides Difficile
    Environmental Microbiology (2019) 21(8), 3076–3090 doi:10.1111/1462-2920.14706 Cwp22, a novel peptidoglycan cross-linking enzyme, plays pleiotropic roles in Clostridioides difficile Duolong Zhu ,1 Jessica Bullock,1 Yongqun He2 and Introduction Xingmin Sun1* Clostridioides difficile (formerly Clostridium difficile) (Lawson 1Department of Molecular Medicine, Morsani College of et al., 2016; Oren and Garrity, 2018) is a Gram-positive, Medicine, University of South Florida, Tampa, FL, USA. spore-forming, toxin-producing, anaerobic bacterium that 2Department of Microbiology and Immunology, and has established itself as a leading cause of nosocomial Center for Computational Medicine and Bioinformatics, antibiotic-associated diarrhoea in developed countries Unit for Laboratory Animal Medicine, University of (Sebaihia et al., 2006). Symptoms of C. difficile infection Michigan Medical School, Ann Arbor, MI, USA. (CDI) range from mild diarrhoea, intestinal inflammation to pseudomembranous colitis (Lessa et al., 2012). Recently, Summary morbidity and mortality rates of CDI have been increasing Clostridioides difficile is a Gram-positive, spore-forming, steadily, causing over 500,000 infections per year in the – toxin-producing anaerobe pathogen, and can induce United States alone with an estimated cost of $1 3 billion nosocomial antibiotic-associated intestinal disease. (Dubberke and Olsen, 2012; Lessa et al., 2015). fi While production of toxin A (TcdA) and toxin B (TcdB) C. dif cile has a number of virulence factors. Among contribute to the main pathogenesis of C. difficile, them are two large potent exotoxins, toxin A (TcdA) and adhesion and colonization of C. difficile in the host gut toxin B (TcdB) that are recognized as the major virulence fi are prerequisites for disease onset.
    [Show full text]
  • Identification and Antimicrobial Susceptibility Testing of Anaerobic
    antibiotics Review Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Márió Gajdács 1,*, Gabriella Spengler 1 and Edit Urbán 2 1 Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; [email protected] 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-342-843 Academic Editor: Leonard Amaral Received: 28 September 2017; Accepted: 3 November 2017; Published: 7 November 2017 Abstract: Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance
    [Show full text]
  • Characterization of an Endolysin Targeting Clostridioides Difficile
    International Journal of Molecular Sciences Article Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth Shakhinur Islam Mondal 1,2 , Arzuba Akter 3, Lorraine A. Draper 1,4 , R. Paul Ross 1 and Colin Hill 1,4,* 1 APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; [email protected] (S.I.M.); [email protected] (L.A.D.); [email protected] (R.P.R.) 2 Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh 3 Biochemistry and Molecular Biology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh; [email protected] 4 School of Microbiology, University College Cork, T12 K8AF Cork, Ireland * Correspondence: [email protected] Abstract: Clostridioides difficile is a spore-forming enteric pathogen causing life-threatening diarrhoea and colitis. Microbial disruption caused by antibiotics has been linked with susceptibility to, and transmission and relapse of, C. difficile infection. Therefore, there is an urgent need for novel therapeutics that are effective in preventing C. difficile growth, spore germination, and outgrowth. In recent years bacteriophage-derived endolysins and their derivatives show promise as a novel class of antibacterial agents. In this study, we recombinantly expressed and characterized a cell wall hydrolase (CWH) lysin from C. difficile phage, phiMMP01. The full-length CWH displayed lytic activity against selected C. difficile strains. However, removing the N-terminal cell wall binding domain, creating CWH351—656, resulted in increased and/or an expanded lytic spectrum of activity. C. difficile specificity was retained versus commensal clostridia and other bacterial species.
    [Show full text]
  • Bacteriology
    SECTION 1 High Yield Microbiology 1 Bacteriology MORGAN A. PENCE Definitions Obligate/strict anaerobe: an organism that grows only in the absence of oxygen (e.g., Bacteroides fragilis). Spirochete Aerobe: an organism that lives and grows in the presence : spiral-shaped bacterium; neither gram-positive of oxygen. nor gram-negative. Aerotolerant anaerobe: an organism that shows signifi- cantly better growth in the absence of oxygen but may Gram Stain show limited growth in the presence of oxygen (e.g., • Principal stain used in bacteriology. Clostridium tertium, many Actinomyces spp.). • Distinguishes gram-positive bacteria from gram-negative Anaerobe : an organism that can live in the absence of oxy- bacteria. gen. Bacillus/bacilli: rod-shaped bacteria (e.g., gram-negative Method bacilli); not to be confused with the genus Bacillus. • A portion of a specimen or bacterial growth is applied to Coccus/cocci: spherical/round bacteria. a slide and dried. Coryneform: “club-shaped” or resembling Chinese letters; • Specimen is fixed to slide by methanol (preferred) or heat description of a Gram stain morphology consistent with (can distort morphology). Corynebacterium and related genera. • Crystal violet is added to the slide. Diphtheroid: clinical microbiology-speak for coryneform • Iodine is added and forms a complex with crystal violet gram-positive rods (Corynebacterium and related genera). that binds to the thick peptidoglycan layer of gram-posi- Gram-negative: bacteria that do not retain the purple color tive cell walls. of the crystal violet in the Gram stain due to the presence • Acetone-alcohol solution is added, which washes away of a thin peptidoglycan cell wall; gram-negative bacteria the crystal violet–iodine complexes in gram-negative appear pink due to the safranin counter stain.
    [Show full text]
  • The Clostridioides Difficile Species Problem: Global Phylogenomic 2 Analysis Uncovers Three Ancient, Toxigenic, Genomospecies
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.21.307223; this version posted September 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 The Clostridioides difficile species problem: global phylogenomic 2 analysis uncovers three ancient, toxigenic, genomospecies 3 Daniel R. Knight1, Korakrit Imwattana2,3, Brian Kullin4, Enzo Guerrero-Araya5,6, Daniel Paredes- 4 Sabja5,6,7, Xavier Didelot8, Kate E. Dingle9, David W. Eyre10, César Rodríguez11, and Thomas V. 5 Riley1,2,12,13* 6 1 Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia, Australia. 2 School of 7 Biomedical Sciences, the University of Western Australia, Nedlands, Western Australia, Australia. 3 Department of 8 Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand. 4 Department of Pathology, University 9 of Cape Town, Cape Town, South Africa. 5 Microbiota-Host Interactions and Clostridia Research Group, Facultad de 10 Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile. 6 Millenium Nucleus in the Biology of Intestinal 11 Microbiota, Santiago, Chile. 7Department of Biology, Texas A&M University, College Station, TX, 77843, USA. 8 School 12 of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK. 9 Nuffield Department of Clinical 13 Medicine, University of Oxford, Oxford, UK; National Institute for Health Research (NIHR) Oxford Biomedical 14 Research Centre, John Radcliffe Hospital, Oxford, UK. 10 Big Data Institute, Nuffield Department of Population Health, 15 University of Oxford, Oxford, UK; National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, 16 John Radcliffe Hospital, Oxford, UK.
    [Show full text]
  • The American Society of Colon and Rectal Surgeons Clinical Practice
    CLINICAL PRACTICE GUIDELINES 05/18/2021 on m7j+Lz0A3Xux7u8LH54Mj5YEKJ1nYV8VK4orUjhbpk89GhwzOnar+8anRBK3LfF1V2zEXE1u0nGxPGdFl1M3hEeUEtFEphcxy9cz7yeir/pEV8b5POc6vbIuuK2BN7bKd/4WfXOBO9Zdt9xCqbLQaKAuqUBNPYvKIxVC/YioDhw= by http://journals.lww.com/dcrjournal from Downloaded The American Society of Colon and Rectal Surgeons Downloaded Clinical Practice Guidelines for the Management of from http://journals.lww.com/dcrjournal Clostridioides difficile Infection Vitaliy Poylin, M.D.1 • Alexander T. Hawkins, M.D., M.P.H.2 • Anuradha R. Bhama, M.D.3 Marylise Boutros, M.D.4 • Amy L. Lightner, M.D.5 • Sahil Khanna, M.B.B.S., M.S.6 Ian M. Paquette, M.D.7 • Daniel L. Feingold, M.D.8 by m7j+Lz0A3Xux7u8LH54Mj5YEKJ1nYV8VK4orUjhbpk89GhwzOnar+8anRBK3LfF1V2zEXE1u0nGxPGdFl1M3hEeUEtFEphcxy9cz7yeir/pEV8b5POc6vbIuuK2BN7bKd/4WfXOBO9Zdt9xCqbLQaKAuqUBNPYvKIxVC/YioDhw= Prepared by the Clinical Practice Guidelines Committee of The American Society of Colon and Rectal Surgeons 1 Division of Gastrointestinal Surgery, Northwestern Medicine, Chicago, Illinois 2 Department of Surgery, Section of Colon & Rectal Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 3 Department of Surgery, Division of Colon & Rectal Surgery, Rush University Medical Center, Chicago, Illinois 4 Jewish General Hospital, McGill University, Montreal, Quebec, Canada 5 Department of Colorectal Surgery, Digestive Disease Surgery Institute, Cleveland Clinic, Cleveland, Ohio 6 Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 7 Department of Surgery, University of Cincinnati,
    [Show full text]
  • (Clostridium) Difficile Isolates M
    Ann Ig 2020; 32(1): 72-80 doi:10.7416/ai.2020.2332 Antibacterial activity and mechanism of action of chitosan nanofibers against toxigenic Clostridioides (Clostridium) difficile Isolates M. Shahini Shams Abadi1, E. Mirzaei2, A. Bazargani1, A. Gholipour3, H. Heidari1, N. Hadi1,4 Key words: Chitosan nanofibers, Clostridioides difficile, antibacterial effect, electron microscopy, atomic force microscopy Parole chiave: Nanofibre di chitosano, Clostridioides difficile, effetto antibatterico, microscopio elettronico, microscopia a forza atomica Abstract Background. Clostridioides difficile a Gram-positive, obliged anaerobic, rod-shaped spore-former bacte- rium, causes a wide spectrum of diseases, ranging from mild, self-limiting diarrhoea to serious diarrhea. Chitosan, a natural polysaccharide, is largely known for its activity against a wide range of microorgani- sms. Chitosan, in the form of nanofibrils (nanofibrilated chitosan), consists of separated fibers which can be suspended easily in aqueous media. Study design. This paper, for the first time, aims to evaluate the antimicrobial activity of chitosan nanofibers against C. difficile isolates. Methods. Chitosan nanofibers were characterized through scanning electron microscopy and atomic force microscopy. Minimum inhibitory concentration and minimum bactericidal concentration of chitosan nano- fibers against toxigenicC. difficile isolates (with resistance gene: ermB, tetM and tetW) was determined by the standard broth microdilution method. Results. The Miniumum Inhibitory Concentration of chitosan nanofibers for two toxigenic isolates with resistance genes ermB, tetM and tetW, two toxigenic isolates ermB+ tetM+ and the standard strain ATCC 700057 was similar and equal to 0.25 mg/mL. The minimum bactericidal concentration for all isolates was 0.5 mg/mL. Conclusions. The results demonstrated that chitosan nanofibers exhibit potent antimicrobial activities against multiple toxigenic C.
    [Show full text]
  • Induction of Clostridioides Difficile L-Form
    7th International Conference on Biochemistry and Molecular Biology S4-P-01 Induction of Clostridioides difficile L-form Anchuleerat Maleehuan 1, Puey Ounjai 1, Phurt Harnvoravongchai 1, Tavan Janvilisri 2, and Surang Chan- khamhaengdecha 1 * 1 Department of Biology, Faculty of Science, Mahidol University; [email protected] (A.M.); [email protected] (P.O.); [email protected] (P.H.) 2 Department of Biochemistry, Faculty of Science, Mahidol University; [email protected] * Correspondence: Department of Biology, Faculty of Science, Mahidol University; [email protected] Abstract: L-forms are cell wall deficient variants of conventional bacteria that are capable to prolif- erate. Although L-forms were discovered for several decades, little is known about their general properties, mainly due to the lack of reliable methods for generating such bacteria. This work aims to create and characterize L-forms of Clostridioides difficile using cell wall interfering agents, includ- ing penicillin G, vancomycin, and lysozyme at various concentrations on osmoprotective brain heart infusion agar. The results revealed that C. difficile L-forms could be induced by 100 µg/mL penicillin G and 250 µg/mL vancomycin. The induced L-forms showed distinguished water drop-like colony morphology on agar plate. In addition, the abnormal shape or pleomorphic cells in induced condi- tion was observed for L-forms by phase contrast microscopy. Muramic acid assay showed the sig- nificantly decrease of peptidoglycan abundance in L-form under the treatment of penicillin G. This study provides new investigation and characterization of the C. difficile L-form, which would be initiate a valuable research tool for gene delivery and biotechnology in Clostridioides spp.
    [Show full text]
  • CDI) Has on Patients
    Overview of Clostridioides difficile Infection 1 Presenter Erik Dubberke, MD, MPSH Professor of Medicine Washington University School of Medicine Contributions by Linda Greene, RN, MPS, CIC, FAPIC University of Rochester, Highland Hospital Karen Jones, RN, MPH, CIC University of Michigan Jeffrey Rohde, MD University of Michigan 2 Learning Objectives • Outline the impact Clostridioides difficile infection (CDI) has on patients • Demonstrate knowledge of C. difficile pathogenesis • Describe a tiered approach to C. difficile infection prevention 3 The Organism Clostridioides difficile • C. difficile vegetative cells are anaerobic and die shortly after air exposure • Spores are difficult to kill • Toxin production causes disease • Most common cause of healthcare-associated infections (HAIs) in the US (Image Source: Jones G, CDC, 1980) (Magill SS, N Engl J Med, 2014) 4 The Infection • C. difficile infection (CDI) – Toxins cause symptomatic disease – Toxins cause colitis • Most common symptom is diarrhea • Additional symptoms: cramping, nausea, and fever – Range from self-limited diarrheal illness to life-threatening toxic mega-colon and sepsis • Most cases of CDI occur soon after a new acquisition of toxin producing C. difficile (Caroffa DA, J Clin Microbiol, 2014) 5 Urgent Threat • Over 450,000 initial cases • Over 29,000 associated deaths • Recurrent CDI – 20% to 30% with at least one recurrence – 5% to 10% with multiple (2+) • Hospital costs: $5.9 billion (Lessa FC, N Engl J Med, 2015; Kwon JH, Infect Dis Clin North Am, 2015) 6 Pathogenesis
    [Show full text]
  • Intracellular Membranes of Bacterial Endospores Are Reservoirs for Spore
    www.nature.com/scientificreports OPEN Intracellular membranes of bacterial endospores are reservoirs for spore core membrane expansion Received: 6 June 2018 Accepted: 16 July 2018 during spore germination Published: xx xx xxxx Michael Laue 1, Hong-Mei Han2, Christin Dittmann1 & Peter Setlow3 Bacterial endospores are formed by certain bacteria, such as Bacillus subtilis or the pathogenic Bacillus anthracis and Clostridioides difcile, to allow survival in environmental conditions which are lethal to vegetative bacteria. The spores possess a particular architecture and molecular inventory which endow them with a remarkable resistance against desiccation, heat and radiation. Another remarkable spore feature is their rapid return to vegetative growth during spore germination and outgrowth. The underlying processes of this latter physiological and morphological transformation involve a number of diferent events, some of which are mechanistically not entirely understood. One of these events is the expansion of the central spore core, which contains the DNA, RNA and most spore enzymes. To date, it has been unclear how the ~1.3- to 1.6-fold expansion of the core membrane surface area that accompanies core expansion takes place, since this occurs in the absence of signifcant if any ATP synthesis. In the current work, we demonstrate the presence of intracellular membrane structures in spores located just below the core membrane. During spore germination these internal core membranes disappear when the core size increases, suggesting that they are integrated into the core membrane to allow core expansion. These intracellular membranes are most probably present as more or less compressed vesicles or tubules within the dormant spore core.
    [Show full text]
  • Clostridioides Difficile Infection: Is There a Role for Diet and Probiotics?
    NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #202 NUTRITION ISSUES IN GASTROENTEROLOGY, SERIES #202 Carol Rees Parrish, MS, RDN, Series Editor Clostridioides difficile Infection: Is There a Role for Diet and Probiotics? Christopher Ward Colleen R. Kelly Clostridioides difficile is a spore forming bacterium leading to significant morbidity and mortality amongst hospitalized as well as non-hospitalized patients in the United States. While hospital acquired infections have reduced, in recent years we have seen an increase in community acquired infections. With the focus on antimicrobial therapies and fecal microbiota transplantation, it is important to understand the evidence behind probiotics and nutrition in the management of C. difficile infections. There is an abundance of new literature regarding the $40 billion a year probiotic industry, meanwhile patients require dietary advice following an infection. In this review, we aim to give the non-specialty clinician some clarity regarding these issues. INTRODUCTION lostridioides difficile is an anaerobic, of CDI, as many cases occur without a history of gram positive, spore forming bacterium antibiotic use.2 There was a significant increase in Cthat causes a spectrum of gastrointestinal CDI between 2000-2010, which has been attributed symptoms ranging from mild diarrhea to colitis, to increased detection with use of nucleic acid toxic megacolon, intestinal perforation, and amplification testing, more virulent strains, and death. It is spread via the fecal-oral route and increased community antibiotic use. Since then, is frequently encountered in hospitals, affecting we have seen a reduction in healthcare associated 1% of US hospital stays1 and nursing homes CDI, though there are still almost half a million where antibiotic use is common.
    [Show full text]